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Griiss type multidimentional integral inequalities are established involving two func-
tions of any number of independent variables. These estimates open new directions in the
study of multivariate integral inequalities in general.
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0. Introduction

One of the most famous integral inequalities was given by Griiss [6] in
1935 and it can be stated as follows (see [7, p. 296]),

i [ s dw—(b_/f io) (525 [ o)

< (M m)(N —n)

where f and g are integrable functions on [a, b] and satisfy the conditions
m< f(z) <M, n<g(x) <N,

for all x € [a,b], where m, M, n, N are given real numbers.

A great deal of attention has been given to the above inequality and
many articles related to various generalizations, extensions, and variants of it
have appeared in the literature; see Chapter X of the book [7] by Mitrinovi¢,
Pecari¢, and Fink, where more references are given.
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Here we establish the multivariate analog of Griiss inequality for as many
as possible independent variables, given in two variations. Griiss inequalities for
functions of two variables were first given by B. Pachpatte in [8]. His paper
is one of our motivations. Next we mention one of his results. We follow the
notations of [8] exactly.

Here R denotes the set of real numbers and A = [a,b] X [¢,d], a, b, c,
d € R. We denote by G(A) the set of continuous functions z: A — R for which

DyDyz(z,y) = % exists and is continuous on A and belong to Lo (A). For
any function z(z,y) € Loo(A), we define ||z|00 = sup(, 4ea [2(2, y)|-

We need the following notation
k= (b a)(d-c),
1 +b\?
Hi(z) = Z(b—a)2+<gc—“2 )]
1 c+d\?
Hy(y) = Z(d—6)2+<y— 5 ) )

i b d
Flz,y) = |(d—c) / f(ty)dt+ (b— a) / f(:v,S)ds],

Gla,y) = <d—c>/abg<t,y>dt+<b—a>/cdg<x,s>ds],

M(z,y) = lg(z, )| [|D2D1 flloo + | £ (2, 9)| | D2Di1g]loc.

for f,g € G(A).

Then we have the following

Theorem 2 ([8]). Let f,g € G(A). It holds
b pd
%/a /C fz,y)g(z,y) dy dz

+ (%/ab/cdf(w,y)dydw> (%/ﬂb/cdg(w,y)dydx>

b pd
g | [ G FE ) + 196 dy o

< o [ [ Mm@ ) dy i

Another motivation for this work is the approach in [3].
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1. Auxiliary Result
We need the following generalized Montgomery type identity.

Theorem 2 ([1]). Let f: X [ai,bi] — R be a continuous mapping on
i=1
X [a;, bi], and %ﬁ‘é;:”) exists on ;L< [a;,b;] and is integrable. Let also (z1,. ..,

1= =1

Tn) € ,Ql[ai,bi] be fived. We define the kernels p;: [a;, b;]*> — R:

Si — a4, S; € [ai,wi], .
(2. 8:) 1= =1,....n.
pi(zi, s;) {Si b, s € (an,bi]. for all i N )

Then it holds

i=1\ j=1 @i
J#i
@ » -
+ H (b — ag) f@i, . oy 8i.oe, 85,00, @n)dsids;
=1\ k=1 @i g
[ \FF (0)

1
-

X (bj—aj)/n f(Sl,...,l‘j,...,Sn)dsl"'JS\]""dSn
j=1 2 lawbi]
L i#]
—i—(—l)”/n f(s1,...,8p)ds1---dsy, =: O2p.
X [ai7bi

i=

The above ¢ counts all the (i,5)’s, i < j and 4,5 = 1,...,n. Also d/s\j
means ds; is missing.

2. Main Results

We present now the following
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Theorem 1. Let f,g € C"(B), n € N, where B := ?< [ai, bi], a;,b; € R,

with a; < by, i =1,...,n. Denote by OB the boundary of the box B. Assume
that f(z) = g(x) =0, for all x = (x1,...,2,) € OB (in other words we assume
that

foralli=1,...,n). Call V, := ﬁ(bi—ai). Then
i=1

2) i / Fr,. a9, x| dey - - dan
on f
< .. n —————————
- 2n+1 / |g Iy, y L |‘681 D5, N

Proof. Let (xz1,...,2,) € B, i.e., a; < z; < b;, for alli =1,...,n. By
the assumptions we get

flx1,...,2p / /"8f31,..., )d51 -dsy,
881

and

b bn 8nf 81,..., )
R L L T N,

In general we introduce the subintervals
Lo = lai, x] and Liy =[x, bi], i=1,...,n.

Then we find that

(3) f(xla"-al'n): 61+ +5n/ / 8 fsla-..a )d31 d
1151 In 881

sEn

where each ¢; can be either 0 or 1. Adding up (3) for all 2" choices for (e1,...,&5)
we obtain
(4) 2nf(:[,‘1,...,33n> = Z (_1)61-{--.._1_6""/\

€1ye-sEn 11,51

I"f(s1,...,5n)
.. dsy---dsp.
/In N 851 asn S1 Sn
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Next by taking absolute values in (4) and using basic properties of inte-
grals (noticing that the 2" “sub-boxes” I ., X --- X I ., form a partition of B)
and the subadditivity property of the absolute value we find that

O"f(x1,...,op)

1
< — dri---d
’f(l'la 75671)’ =on /B dx1 - Oz, X1 Tn
[ I
20 || 0z - Oxy ||
L.e., we have that
14 onf
< — || m—— ,
(5) |f($]_, ,"I}'n)‘ — 2n 81:1 8l‘n o ’

is true for all (z1,...,z,) € B. Similarly it holds

Vi g
6 < — [|l=—1
( ) |g($1, 73:77:)‘ = 9n 81_181,” ool
true for all (x1,...,z,) € B. Hence
Vi o
(M) |f(@r, ozl lg(@, . zn)] < 2—n\9($17---,$n)’ ’ Wfamn N
and
Vi o
)  |f(z1,..,xn)llg(z1,. .. 2n)| < 2—n\f(z1,,xn)] ‘ Wg&:n -
Therefore by adding (7) and (8) we see that
9) |f(z1,. . zn)|g(z1, ... zn)
Va of
< ~ Fa
< gorr (ool 725
e | e
A (P TR o
is true for all (z1,...,z,) € B. Integrating (9) over B we obtain (2). [

Remark 1. Inequality (9) has by itself its own merits.

We also give
Theorem 2. Consider the class of functions G = {f: 'Ql[ai,bi] — R

exists on Q [ai, bi] and belongs to

continuous, n € N: the partial % X

L
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Loo(;l[ai,bi]) with norm || - ||eo}. Here (x1,...,2y) € 'Ql[ai,bi]. Let f,g € G.

1=

Denote V,, := lﬂ[(bl —a;), and
i=1
. 2 b 2
Hy(ay) = OO Z ) g,
Call
@ ( .
Fl(xl,...,xn) = H(b] —aj) f(:rl,...,si,...,xn)dsi
i=1 | j=1 i
J#

Gi(z1,...,xp) = H (bj — aj)/ g(T1, .oy Siye .o, Tp)ds;

i=1\ j=1 @i
J#i
(;> n b by
Falor,ocsmn) == |3 ] o) [ [
=1\ k=1 i Jaj
k#i,j

where £ counts all (i,7)’s, i < j, and i,j =1,...,n, also

(;) n bi rb;
Go(x1,...,xp) := — b, —a ‘
2(xq ) LE(E“ k)/ai /a]'

ki,

X g(ml,...,si,...,sj,...,xn)dsidsj> ];
@)

(nil)
Fn—l(xh <. 7xn) = (_1)n[ Z (b] - aj) /n
i#]

X f(sl,...,xj,...,sn)dsl---d/s?‘udsn],
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where E; means ds; is missing, also

n:ll
Gn-1(z1,...,2p) lz (bj — a; /
]:1 X [a,;,b,;}

i=

i#£]

><g(sl,...,mj,...,sn)dsl---d/s;---dsn]

Also define

081+ 08p || e

o"g
+|f(331>---;$n)‘ m .
Then
1
(10) Iy = —/n f(a:l,...,x Yg(x1, ... wp)dxy - - - day
X (1“

_7</x[a“b]l g st

1 n
< — /. (z1,. I | dxy---dxy
- 22 /x’ [ai,bi] ! (]:1 ) b
=1

medskip
Proof. We define the kernels p;: [a;, b;]? — R:

(x4, 81) == si— ai,  si € [ai, 2]
bi\Zs, Si) * si—b;,, s € (xi’bi]’
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foralli=1,...,n
We also have that

/ pj(zj;85)ldsj = Hj(xj), j=1,....n
[a;,6;]
¢ From Theorem 2 ([1]) we obtain
n—1
(11) Viuf(z1,...,xy) = Z Fj(xq,...,2y)
j=1

G. Anastassiou

+(_1)n+1/><[ ]f(sl,...,Sn)d81"'d8n

=1

n
le 1‘1)81 8 f(817 — ,Sn)dsl ot 'dSn.
f laibil = 0s1 -+ 0sp
And also
n—1
(12) Vyg(za,...,xy) = Z Gj(x1,...,2n)
j=1
+ (=1)"*! /n g(s1,...,8n)dsy -+~ dsp
iil[ai’bi]
n
3"g(S1,. .., 8n)
-l-/n i(Tiy 8i)—F——F——ds1 - - - dsp.
X [ag,b; Ep ( ) 831 : '8371 !
i=1
Next we multiply (11) by g(z1,...,x,) and (12) by f(x1,...,z,) and we

add the resulting identities, to get

(13) 2V f(z1,...,x )g(ajl,...,wn)
= [ Llyeeny ZF Tlyeeey X
+ f(z1,...,2n ZG (1, 2n)
+A?‘L(xl""axn)+B7‘L(:L‘1""7x7‘b)

Here we have

(14) An(z1,...

X)) (—1)"+1 lg(xl, ceeyTp)
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X /n f(s1,...,8n)dsy - dsp
X [ai7bi]
1

i=

+f(x17"'7xn)/n g(sl,--.,sn)d31"'d3n ’
X[ai,b-]

i=1

and

(15) By(x1,...,2p) = [g(ml,...,xn)/n Hpi(xi,si)

We observe that

(16) |Bp(x1,. .., xn)| < Mp(21,...,2T0) (H Hj(:cj)> .
j=1

Next we integrate (13) over X [a;, b;] and we find
i=1

1
(17) 7 n f(xl’“-»xn)g(xl,---,ﬂl’n)dl‘l-“dxn
n X [ai,bi}
i=1
1 n—1
2Vn2 (/; (ai,bi] lg($1a y L )JZZ:I ](33'1 T )
i=1
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Consequently we obtain

1
< -
"7 2V2 ) L lanbi]

=1

(18) r |Bp(x1, ..., 2p)|de - - - dx

At last using (18) along with (16) we have established (10).
Remark 2. From (13), (14), (16) we get

(19) 12V f(z1,..yxn)g(xr, ..oy xn) — g(@1, ...y xp)

n—1 n—1
X ZFj(:rl,...,xn) — f(z1,...,xn) ZGj(xl,...,xn) —Ap(z1,... 2,
j=1 j=1

< My(zq,...,x (HH m]),for(asl,..., n) € xl[ai,bi].

We also give

Corollary 1 (to Theorem 1). Consider the class of functions F :
{f € C"(B), where n € N, B := .QI[ai,bi] such that f(x) = 0, for all x

(x1,...,xy) € OB (the boundary of B)}. Let f € F. Let also g € C™(B). Se

Vp = [1(bi — a;). Then

i=1
@) [ 15 an g ) do - do,
L[] 9(f9)
< = = A e n e n
- 2”/3 3$1'~-8xn(x1’  Tn)| do1 - dz

Proof. Totally the same way as in the proof of Theorem 1 we obtain

o f(1,...,an
P < o [ @1, )

8x1--‘8xn
Integrating over B the last one we get

(21) /|f TlyeooyXp)|day - dry, < 2n/

true for any f € F.
The inequality (21) was also proved in [3]. Clearly here f-g € F.
Finally applying (21) for f - g we establish (20).

dxy---dx,, VfeF.

8”f $1V.., )

dzy---dzp,
a$1 X1 - X

Finally we have

t



On Griiss Type Multivariate Integral Inequalities

3 53 3
. . 5 .
of functions G* = {f:izl[ai,bi} — R continuous: WSB];@@B exists on izl[ai,bi}

3
and belongs to Loo( X

1=

[a;, bj]) with norm ||+ || }. Let (z1,x2,x3) €

Corollary 2 (to Theorem 2). Case of n = 3. Here we consider the class

=

3
f,g € G*. Denote V3 := ] (b; — a;), and

Call

=1

b2 b3
+ (b1 — al)/ f(x1,52,53)dsads3 |,
as Jas

by rbo
Go(z1, x2,23) 1= — [(bs — as)/ / g(s1, 82, x3)ds1ds2
al ao

Ms(z1, 22, 23) 1=

by pbs
+ (b — GQ)/ g(s1,x2,s3)ds1ds3
a1 Jas

by rbs
+ (by — al)/ / g($1,82,83)d82d83]§
as Jas

O
(981882883 o
_ Py
881882883 o

\9(z1, 22, 23)

+ ’f($17$27$3)|

3
X |ai, b;] and
=1
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Then

(22)

1 b1 bQ b3
73/ / flx1,z2, 23)g(x1, T2, x3)dT1dTodT3
a1 Jas Jaz

1 bl b2 b3
- VS/ / f(@1, w2, x3)dw1dwodrs
ai az as
1 by b2 b3
v3/ / g(xth,SCg)dmldedxs
al a2 as

1 b1 b2 bg
T oy2 / / / l9(x1, 22, 23)(F1 (21, 22, T3)
3 Jai Jaz Jaz

+ Fy(z1, 22, 23)) + f(x1, 22, 23)(G1 (21, 22, 3)

+ Gy (.1171, x9, xg))]dxldxgdmg

b1 pba b
< 2V2/ / M;(x1, 2, 3)

Comment. Our Theorem 2 clearly generalizes Theorem 2 of [8], i.e.,
for n = 2 the corresponding inequalities coincide.

zw

) d$1d$2d$3
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