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Bernstein-Stancu Operators on the
Standard Simplex!

Michele Campiti?, Ioan Rasa®

Presented by Bl. Sendov

In this paper we introduce a simplicial composition of two different positive approxi-
mation processes on a finite real interval in order to construct a positive approximation process
on a d-dimensional simplex. We take into consideration the sequences of Bernstein and Stancu
operators, but the same method can be applied to different sequences of positive operators.
We can also obtain estimates of the rate of convergence and a Voronovskaja’s formula for
the compound operators. The application to the approximation of the solution of suitable

parabolic problems constitutes one of the main motivation of this construction.

1. Introduction

Consider the standard simplex

d

(1.1) I(d = {($1,...,Z‘d)€Rd | (L‘1,...,(L‘d20, Z:l:iS].}
i=1

of RY.

Many examples of diffusion models are described in suitable function
spaces on K. Particular interest has the study of the following evolution prob-
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leins
¢, d ,
Ou 0%u
FED = 2 ey
1,7=1
L ou
(12) +Zﬁl("l‘)67(a'1t)a T = (-’Ula-"a:l"d) € Kq,
f=1 L
t>0,
| u(z,0) = uwy(z), ze K.

For example, the preceding problem is a gene frequency model in population
genetics in the particular case where j(x) = z;(d;; — ;)/2; in this case every
vertex of Ky represents an allele. This diffusion process is knowin as Fleming-
Viot model; there are different types of Fleming-Viot models and in order to
approximate the solution of (1.2) we may need to combine different sequences
of operators which take into account the different behavior of each allele.

More precisely, if we assign d sequences of approximnation processes on
C[0, 1], we define a corresponding sequence of linear operators on C'(Ky) and we
study its approximation properties and the validity of a Voronovskaja’s formula.
Finally, conuections with the evolution problemn (1.2) are also considered.

For the sake of brevity, we limit ourselves to the leading case d = 2; the
generalization to an arbitrary dimension is straightforward and for this reason
we shall omit the details.

We shall deal with sequences (Ly)y>1 of linear operators on C[0, 1] having
the formn "

Lnf(fl") = Z an,k(’”) )‘n,k (f) 3
k=0
where, for every n > 1 and k£ = 0,...,n, the functions ) are positive con-
tinuous functions on [0,1] and A, : C[0,1] = R are assigned Radon measures.
Thus, for every n > 1, L, is a positive linear operator.

The difficulty in extending the operators L, to the simplex K is mainly
due to the fact that we have to point out separately the dependence of the
functions cy, ), on the variables # and 1 — z in order to extend these functions
to Kz.

However, if we assume oy, (%) = an 19k (2)@n—1(1 — @), their extensions
can be easily defined as

Cn bk (1;1 y) ‘= G hOp—h,kPh (-'L')(Pk (y)‘Pn—h——k(l —T— '!/)

for every h+k < mn.
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As regards to the Radon measures ), we need to extend them to Radon
measures Ap 1 on C(Ky).

We observe that if A and p are Radon measures on [0, 1], we can consider
the tensor product A ® p which is defined on C([0,1]?) as the unique Radon
measure which takes the value

(1.3) A @ w)(f) == Ae) - n(¥)

for every f(z,y) = p(z) ¥(y), (z,y € [0,1]), with ¢, € C[0,1]. This follows
from the density of these functions in C([0,1]?) with respect to the sup-norm
(see, e.g., Choquet [4, Lemma 13.8]). Now, the same functions are dense in
C(K32) too (indeed, every f € C(Ks) adnits a continuous extension to [0, 1]%)
and therefore (1.3) determines a unique Radon measure also on the simplex K.
However, for our purposes it will be more useful to define the simplicial
tensor product A @ p of X and p as the unique extension obtained by setting

A ®s p)(f) = Ap) - u(¥a) ,  a=1-max(supp(N)), a=1(a")

for every f(z,y) = ¢(x) ¥(y).

At this point, for every h + k < n we put Ay pk := Anp ®s An—n,i and
we can generalize the operators L, to Ko by setting, for every f € C(K2) and
(ﬁ, y) € 1{21

n n—h

L.f(z,y) := Z Z an,h,k(a’a y)/\n,h,k(f) -

h=0 k=0
If we apply the preceding definition to some classical approximation pro-
cesses on [0,1], we obtain their classical generalization to Ks. For example,
cousider the classical Bernstein operators By, : C[0,1] — C[0,1] on the interval
[0,1] which are defined by setting, for every f € C[0,1] and = € [0, 1],

Buf(@):=3" (7) o (1= gk g (%) .

k=0

In this case, the extension to K, yields the operator B, : C(K3) — C(XK2)
defined by

n n—h
puen = B (1)("") Ata-emur

h=0 k=0

<t (o (1-3) w23)
n n) n—nh

Z n! o,k —h-k g (0K
= Ty (l—a'_y)n ' f(_)_) ’
hikgn hE' (n — h — k) n’'n
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(f € C(K2), (z,y) € K2), which is the classical extension of By, to K.

The advantage of the above procedure consists mainly in the fact that it
can be applied even to different sequences of positive linear operators; so, if

n
AJnf(w) = Z .Bu,k(w) Nn,k(f) s
k=0
are positive linear operators with 8, (z) = by ;¥k (2)¥n—k(1 — ) we can define

the simplicial composition L, ®4M,, : C(Ky) — C(IK2) of the sequences (Ln)neN
and (Mp),cN by setting, for every f € C(K3) and (z,y) € Ko,

n n—h

(Ln Qs n)f(-c y) = Z Z Gn,h bn—n k‘Ph( )"pk(y) Pn—h—I (1 - — y)

h=0 k=0
X (An,h ®s ,U'n—h,k)(f) .

However, the above sequence has the disadvantage that even if L,, (1) = 1
and M, (1) = 1 for every n > 1 we do not necessarily have (L, ®; Mp)(1) = 1.
For this reason, if we put

T,y) = Z bk Y () Y-k (y) (z,9) € K2,

k=0

it may be convenient to replace the preceding definition with the following

n n—h
‘pn—h(l—m)
Ln ®s My)f(z,y) = anh bn—nk Pn(@
(Ln ®s My) f(z,y) hgolg) Thalt Sl on )Xn—-h(yal’"w—y)

X'K/Jk(y) "ﬁn—h—k(l —T— y) ()‘n,h Rs Nn—h.,lc)(f) .

In this case, if L,1 = 1 and M, 1 = 1 for every n > 1 and if the measures
pin s are probability Radon measures, then (L, ®; My;)1 =1 for every n > 1.

No matter of the generality of the preceding construction, in many cases
the extensions of the functions a;; are quite natural and we can choose the
factor xn(z,y) in a very suitable way.

In the sequel, we are interested to performn the above construction tak-
ing into consideration two classical sequences of positive operators, namely the
sequences of Bernstein and of Stancu operators.
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2. Bernstein-Stancu operators on Ko

The classical Stancu operators Sy, : C[0,1] — C[0,1] on the interval
[0, 1] are defined by setting, for every f € C[0,1] and z € [0,1],

Sn,anf(w) = __1__ Z (Z‘) (I)k(:z;;an) (I)n—k(l — I, an) f (%) 3

pn(an) k=0
where (a,),cN is an assigned sequence of positive real numbers and

k-1

Qi (y;an) = H('.‘/ +jan) , Pn(an) = @n(l;an)
=0

with the convention, ®y(y;a,) = 1 (see also [12, 13]).

If no confusion arises, in the sequel we shall briefly write S, in place of
Biae:

A different expression of Stancu operators which is very useful in studying
some of their approximation properties, has been obtained in [8, pp. 61-67] and
[9] (see also [1, (6.3.21)]); indeed, for every f € C[0,1] and z € [0, 1] we have

1
Snf(l) B pn(an) Z k' n VL= Uk
(2-1) |v|k=n
x Z :L‘m(]. _ w)k—m Z f (9&*%?1.’1) ,
m=0 {i1,.eim }EC(kym)

where the notation |v|; = n means that the sum is extended to all (vy,...,v;) €
{1,...,n}* such that v1 +...+wvj, = n and C(k,m) denotes the set of all subsets
of {1,...,k} having m different elements if m > 1, while if m = 0 we set
C(k,m)=0and v;; +... +v;, =0.

Inspired from the general procedure described in Section 1, we define the
Bernstein-Stancu operators By, ®4 Sy, : C(K2) — C(K2) on the simplex K by
putting, for every f € C(K2) and (z,y) € Ko,

n _ \n—h n—h —h
(Bn Qs Sn)f(an y):= Z <Z> th ) (1 z).. Z (n k i )

h=0 n—h(]- — T a'n—h) k=0
X ®p(y; an-n) Prn—r(l — 2 — y;an_p) f(%: %

(2:2)

— Z nl :L'h (1 - x)n—h
hirgn ME'(n—h —k)!'" ®,p_p(1 — z; a.ﬁ,‘@'
X B (Y5 an—) Brn_k(1 — & — y; an AL BrE
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The factor (1 — z)""/®,_;(1 — x;a,—p) is needed in order to siinplify
the following forinulas.

Bernstein-Stancu operators have also aun interesting probabilistic inter-
pretation. Indeed, according to the fact that Bernstein operators are associated
with a Polya urn schemne with two different objects and without replacement
while Stancu operators are associated with a sinilar scheine where at the n-th
step the extracted object is replaced by a, objects of the samne type, these op-
erators are related to an urn scheme with three objects and where only two are
replaced with a,, objects of the same type.

Of course, ifa; =0, j =1,...,n, we have S; = Bj; forevery j = 1,...,n
and consequently B, ®,.5,, coincides with the classical n-th Bernstein operator on
the two dimensional simplex; referring to the above probabilistic interpretation,
the replacement with a; = 0 objects means that there is no replacemnent.

Using (2.1), we obtain, for every f € C(K») and (z,y) € Ko,

= (n) o (1—g)nh =l p)

(B ®s Su)f(z,y) = Y

s h Cpn(l —z500-10) [ K
1 k
—h—k m e k—
xap Tt Y o 2yt —e—y)tm
VUL
|v|g=n—h m=0

h v, + ...+ v,
x Z f (ﬁ’ n )

{il 1“-yi1n}EC(k,1n)

where, by couvention, empty sums are equal to 0 (these occur in the variable k
if h =n).

We recall that (see e.g. [8, (1.1.5), p. 13 or (1.1.9), p. 14] or [1, (6.1.25)
and (6.1.26)])

= nl 1
pnlan) = Z k_ - —
k=1 lolg=n 1"k
and hence (see also [8, (3.2.26), p. 66])
2. n! "
(23) Bulain) = 30 At Y
k=1 |v|k—n 4

Taking this into accouut, for every (z,y) € Ky we obtain

n 1 — g)n—h n=ho B!

h=0 n—n(l —z;a5_p) k=1
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k

—h—k 1 k -
D ol (4 U

v UV,
|v|g=n—h i k m=0

_ Z n) n__ (@ —g)nh i (n — h)!
h @, _n(l —z5an-1) E=1 k!

h=0

Xan:h—k(l _ ’L)k 1
n—nh ng";_h vy VR
n
= Y (Z’) ah(l-z)" Pt =1.
h=0

Analogously, it follows

n _l_ _ fL')n_h n—h ('rL - ]L)!
B S T = = " (
( n ®s "’)pr] (7" '!/) Z (h) L (I)n,—-h.(l - T an—h) kzz:l k!

h=0
3 1
it Y oo
|v|g=n—h V1"V
k
IC k— h
X M1 o m '
<m> yrl - -yt
m=0
= n h h n—h
h=0
= 7 i n—1 Zh! (1 _ z)(n—l)—(h—-l) -
— h—1

and, taking into account the formula
E—-1
Z (viy +...+v;,)=(n—h) (m—-l)
{#1,-eim }€C(k,m)

which can be easily derived by finite induction on m = 1,...,%k (with the con-
vention that the suin is equal to 0 if m = 0), we also have

(B'n. Ry Su)Pl'z(wa y)

_ i (n) n—~h Zh (1- w)n—h nz—ft (n — h)!
e h 7 G, pn(1 —z50,_p) = k!

k
x an—h—k Z 1 Z k-1 m(l e )k——m
nh ——— m—11Y T—y

|v|p=n—h V1o Uk 0y
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i n\ h (1 —z) "t n—h "X—f (n=nh)! sk

= 1 T -

Yy A h (I)n—h(l — I an_h) n — k! n—h

1
x(1-— a;)k'"' Z
|v|p=n—L VLo Uk

= i ny h (1 _)n_h n—h 1 \
-7 h)*© * n 11—z Yy

h=0

(if z = 1 the preceding formula can be verified directly).
At this point, we evaluate the operators B, ®; S, at the functions pr;pr;,
1,7 = 1,2. For the sake of brevity, we omit some intermediate equalities which

are similar to the preceding ones.
We have

(Bn ®s Sn) (pr}) (z, y)

_ i n\ (L—z)vh = (n—h)!
=t h Dp_n(l —z;an-p) o K
n—h—k 1 E (kN m p—
Xl _h Z el Z m Y (1—‘515—31) n2
|v|p=n—h U1 k m=0 "
2 [n\ h? —h z(l — )
Z(h. n—zmh(l—w)"’=z2+—n——
h=0
and further
(Bn ®s Sn)(prlpr2)(w: y)
_ zn: n\n—h 5, (L—z)v "
= h n @, n(l —z505-3)
n—h
(n — h)! n—h—k 1
Xy anr”;
= M o e
k
k—1 h m k—m
& (03) pro-eos
— oy i (n o (1—z)nh hn—h
= \b O, n(l—z5apn_p)n n
n—h
(n—h)! o hk k-1 1
X Z an"p " x (1 —x) Z
Pl o ole=n—n 177" Vk
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[n " n_n b h 1
- yZ(h (1 -2) z.( ;)l—z
h=0
,  z(l—a)) |
—y_<w_$z_a,(l :L)):n

1—x n n

|

zy

(again, the equality can be proved directly at « = 1).
Finally, using the formula (see, e.g., [8, (1.1.10)] or also [2, (2.9)] and [1,
Proposition 6.1.5, (6.1.33), pp. 386-7])

° -1 v? .+ v?
Pusi(@) =pa(a) 3o O gnon 5o vk dop
k=1 :

[vle=n .
we can evaluate (By, ®, Sp)(pr3) as in [2, (2.17)] and obtain

(Bn Ry Sn)(pr%)(z’ y)
_ oy (n) g ()t
B Z (h) « (I)n,—h.(l _x;an-—h)

h=0

14+ (n—~h)an_p 9 )
X 1- Dp_n(l — 2505
(y( y) n(1+an_h) +y° P, }( Z;dn h)
wl4+(m—~nh)ap_p
= 24yl - zh (1 — g)nh
@9 32 (1) ey Lot
Ry
= y2+¥0n(ﬂ3),

where we have put, for simplicity,

on(z) := zn: (Z’) o (1 — g)n=h 1L+ (n—h)ann )

h=0 1+ an—n

It is well-known that Stancu operators converge strongly to the identity
operator if the sequence (an)n21 tends to 0. Now, we prove the analogous
result for the Bernstein-Stancu operators. First of all, we establish the following
lemma.

Lemma 2.1. Assume that the sequence (@n)n>1 tends to 0. Then, the
sequence of functions

i — (n K n—k
gn () _5)(’“) a'k(]-—z) k;ak

converges uniformly to 0 on the interval [0,1].
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Proof. Let € > 0 and let p > 1 such that a,, < € for every n > p.
Denote by M the maximum of the sequence (ay)n>1 and put

6::H’ I/::Inin{n21|n2%)} .

For every n > v and z € [0, 1], we have

P k
{jn(fli) = Z(:) wk(l n k_a'l'*' Z ( ) _w)n—k;ak

k=p+1
P
<n> a,'k (1 _ :L')”_k E +e.
k n

Now, we observe that for every k = 0,. .., p the function ¥ (1 —2)*~* attains its
maximum at the point k/n < § and is decreasing on the interval [§, 1]. It follows

IA
=
(]

n

that also the maximum of Y ¥ _, ( I

o (1 —2)"~% £ i5 achieved in [0, §]. Since

for every z € [0, 4]
P o (n Lk
gn(z) <M E k(1 —z)" +e<MH e< Mb§+e=2¢,

the proof is complete.
We observe that 1/(1 + ap—p,) < 1 and therefore, for every (z,y) € Ko,

. 1 & _ 1
|(Bn ®s 52) () (2, ) —4?| = M1—w(;§3(ﬁ>f“1“ﬂ"”fiz;;

snh (R—Hh)an_p
g Z (h) — )" n(l+ an_h)>

h=0

somnbe g (1) oo-arh)

= y1-y) (5 +0-) -

Hence, under the assumption that (a,)n>1 tends to 0, from the prececeding
lemma we deduce that ((B, ®;Sn)(prs))a>1 converges uniformly to the function
pra. -

At this point, we can state the following approximation properties of the
sequence (B ®; Sp)n>1-
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In the sequel, we denote by 7' : C(K,) — C(K,) the standard projection
which maps every f € C(K3) onto the unique afline function which interpolates
f at the vertices of K. Thus, for every f € C(K3) and (z,y) € Ko,

Tf(z,y) =2f(1,0) +yf(0,1) + (L —2 — y)f(0,0) .
Moreover, we define the iterates of B, ®; S, by setting, as usual
(Bn®s8n)' = Brn®:Sn, (Bu®sSu)™! = (Br®sSn)™0(Br®sSy), m>1.
Theorem 2.2. Let (an)n>1 be a sequence of positive real numbers. We
have the following properties:
1. TIor cveryn > 1 and f € C(K,),

lim (B, ®; Sp)"f =T(f) uniformly on Koy .

m—-00
2. If the sequence (an)n>1 tends to 0, then for every m > 1 and f € C(Ky),
nligl{loo (Bn®s Sp)"™f=f uniformly on I(o .
Proof. From the preceding formulas, we obtain in a straightforward
way, for every n,m > 1, f e C(K») and (z,y) € Ko,

(Bn Rs Sn)ml(*'”v y) =
(Bn, Rs Sn)mprl (=, Y)
(Bn s Sn)mpr'z (a"’ y) = 3

L (EE R (B (1—1))
(Ba ®, Sa)™(0rd) (z,y) = (1—"—“) TP+ (1- (1_"_-(_))) y

n

)

Il

1
Z Il
)

~

and therefore the first part of the theoremn follows from [1, Example 3.3.5, p.
173] and the second part from Volkov’s theorem (see, e.g., [1, Example 2 to
Theorem 4.4.6, p. 245]). &

Using the same methods of [2, Section 3, Theoremn 3.4], we can also obtain
a quantitative estimate of the convergence. In our case, for every f € C(Kb),
we have (see [2, Definition 3.1])

1(Bu @, S)f — £l < (1 + M) 0 (f, %) .



9250 M. Campiti, I. Rasa

Remark 2.3. Among the general properties of the Bernstein-Stancu
operators, we can also easily obtain the preservation of the k-convexity and the
Lipschitz class Lipy,1, M > 0.

Indeed, it is well-known that the Stancu operator Sy, ., preserves the
k-convexity (see [10, 11]) and the Lipschit.. “lass Tipy 1 (see [5]).

Now, for every f € C(Iy) and b =0,... 1, lct

hon—1
pnatt) =1 ("0, 0<tst.

T

Then, according to (2.2),

n 1,
(Bn ®s S ) f (2, y) Z < ) (1 — ) h (S,L_h,u.,l-h/u—z><Pn,h) (1i )

Z

for every (z,y) € Ko\ {(1,0)}.

Hence, it easily follows that if f(a,-) is k-convex (respectively, in Lip,,1,
M > 0) ou [0,1 —q] for all @ € [0,1], then (B, ®s Sn,)f(z,-) is k-convex
(respectively, in Lipy,1) on [0,1 — z] for all z € [0, 1[.

At this point, we conclude our investigation of Bernstein-Stancu opera-
tors stating a Voronovskaja’s type formula for these operators. The guidelines
are the methods used in [3] and [1, Theorem 6.2.5, p. 433], but we need some
supplemnentary tools.

Lemma 2.4. If (an)n>1 5 a sequence of positive real nuinbers converg-
ing to 0, we have

n
lim Y (7) o (1—2)" % ap,=0

.—)
n +ook

uniformly on every interval [§,1] with 0 < § < 1 (we use as usual the convention
ap = 0)
Proof. Fix § > 0 and let € > 0. Then, there exists p > 1 such that
a, < ¢ for every n > p. Now, let n > p/d; we have
k_p

<=

— <é for every k =0,...,p
n n

and therefore

i < ) (1—-z)™ Fap = Zp: (:) zF (1 —a;)”_kak
=0 k=0
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n
+ Z (;j) .’l:k(].—.'l,')"_k(l.k

k=p+1
L4 n k L
k(1 _ =k
< Mkz_o(k) ¥ (1 —z) +e€,

n s —k
where M := sup>, a;. As regards to the sum ¥ _, ( i 2k (1 = 2)"F, we
- v

observe that the maximum of each addend z* (1—z)" ¥ is attained in k/n € [0, §]
and therefore each addend is decreasing in [4, 1].
Thus, the preceding inequalities yield

n p
n k o=k n k n—k
Z(Ow(l—i) akSME:(k>5(1—5) ‘e,

k=0 k=0

P
and since nglfookz: (Z) 6% (1 = 8)"* = 0, the proof is complete. m

Theorem 2.5.  Assume that the sequence (n - an)n>1 converges to a
positive real number b.
Then, for every u € C?*(Ks), we have

nll)r_{_to n ((Bn ®s Sn)u(sc,y) - 'U'(-'L'a y))

_z(l—z) 0% y(l y) 0%u 9%
_‘2—&3(% y) + (1 +0) —=—F—= y2 a5 (T Y) — 2y m(lﬁy)

uniformly on Ko.
Proof. First, we show that the sequence (o7 (z))n>1 converges to 1 +b
uniformly on every interval [0, 6] with 0 < § < 1. Indeed, for every z € [0, d], we

have
n - B neh l—I-(’IL""h)U'n——h _ L
hE—:( ) Sl < 1+an—n G b)>l
( 2" (1= )" |(n ~ h)an_p b

n
+(1+0) Z (Z) zh (1 - )" " an_y

h=0

lon(z) = (1+0)] =

l+an—n

IA

) h (1 n h ( h)an-—h —~b= (1 + b) Gp—h
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Z( ) "k""”|/u,]~—l)|
7 : n—k
M Iz—%) (k) (1- z)* ™ Fa, .

Since the sequences (|na, —b|),>1 and (a,)n>1 converge to 0, fromn the preceding
leimna we have the convergence of the sequence (0, ())n>1-

As a consequence of the above property, we have that the sequence (y(1—
y) on(x))n>1 converges uniformly to (1 + b)y(1 —y) on Ky. To show this, fix
€ > 0 and denote by ¢ the supremum of the sequence (|oy (2) — (L +0)|)n>1 with
respect to n > 1 and z € [0,1] (observe that the sequence is bounded at the
point 1). Then, we can find v > 1 such that |oy,(z) — (1 4+ 0)| < € for every
n > v and z € [0,1 — ¢/c]. Hence, for every n > v and (z,y) € Ky we have
(y(L —y)lon(z) — (L +0)| < eifx <1—¢€/c, while if 2 > 1 — €/¢ we have
y < 1—a < e/c and consequently y(1 —vy)|on(z) — (1 +0)| < (¢/¢) ¢ = €. Since
€ > 0 is arbitrarily chosen, the uniform convergence on Ky has been proved.

Now, let u € C?(Ky); for every (s,t), (z,y) € Ka, we can write

u(ot) = ulw) + 5e(e) (s =)+ 5o en) ¢ - )
2U
3 0 ay) (s—:u)2+]§ﬁu ) (- )’
0%u
-l—m(w,y)(s——w)(t—y)
+w((5,8), (#9)) ((s = 2)* + (t = 9)?)

where w : K9 X Ko — R satisfies

(2.4) |w| < M, lim  w((s,t),(z,y)) =0 uniformly on K,
(s:t)—(z:y)
(see also [L, (1), p. 433 and (2)(3), p. 434)).
Since
1 0%u 9
n (Ba @5 Sa)u(z,y) — u(z,1) = 15 52(,9) (Bu @, 5)(or: — 2)*(, )
1 8%u :
+n 2 92 ('L y) (Bn ®s Sp)(pra — y)z(ﬂ;,y)
02w
+ m(ma y) (Bn ®s Sn)((prl - (L) (pl‘2 - y))(-""’ y)
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1 (Bo @ Su) (w(-, (2,9)) ((ory — ) + (pu -1)%)) (@)

_ 2.,
=7%ﬁ(,1,n f")ng( )+L;y(1n ,() (Ly)
%Y 9%u v
T deu(“’y)
(Bn ®s Sn) (“’(" (29)) ((org = 2)? + (o = 9)?)) ()
- 32 a2
= (12 x) 3 u J(l /(1 —y) on(w) %('L,y) —xy Z‘)(.)'v—;y(ﬂ;’y)

+(Bn ®, s,.) (w(-, (2,)) ((prl —2)? + (pry = 9)?)) (1) ,
the proof is complete if we show that
lim n(By @, Sa) (w(, (2,9)) ((or; = 2)* + (pr2 — 1)?)) () = 0
n—-+4oco

uniforinly on Ko.

Let € > 0; from (2.4) we can find § > 0 such that |w((s,t), (z,¥))| < €
for every (s,t), (z,y) € Ky such that (z — s)? + (y —t)? < 6.
As a consequence, we show that for every (s,t) € Ky

lw((s,2), (2,9)) ((ore(s,2) —2)® + (bra(s.1) - ?)|
<e ((s—a)?+t-v?) + 5 (6 -2’ +(-)*)

25) 2

Indeed, if (s,1) € Ky satisfies (z — s)? + (y — t)2 < 62, we have
|w(s,8): (@) (ri(s,) — )% + (ras, 1) = 9)?) | < e ((s = @) + = 9)?)
while, if (z — $)2 + (y — t)? > 62, we have (see (2.4))

[w((s:2), (@,9) ((Pri(s,8) = @) + (ora(s, ) - 1)?) | < 2M

< 3514‘1 (s -2+ (- y)2)2
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At this point, we denote by a the supremun of (n - an)n>1 and we have

1 (By ®s Su) ((pry — 2)* + (pry — 9)?) (2,9)
z(l—z) +y(1 _y)a'n

(2)
<.L(l—.L)+J1—y (;L) :L'h'(l—a;)"_h 1+a
+ a)

t 1+an—h
2.
26) < (1 - 2) +y(1 - ) {
1 1
< 4=
_4+4(1+u.)

_ In order to estimate the last term in (2.5), we consider 4,5 € {1,2} and
put hy := pr; — pr;(z,y) and hy = pr; — pr;(z,y). Following the proof of [1,
Theorem 6.2.1, p. 424 and Lemna 6.2.2, p. 429], we can write

7 (Bn ®s Sn) (i"% : ﬁj) (z,v)
— i n :L'h' (1 — a’.)n——h 7§L (n — h)‘ un—h—k
=\ ®n-n(l —z3an-n) 3 N =
n — h)( b o =g e
X Z (———)-— Z Rm Viyeo-,Up,y vk+1) T (hf : /L:j) (.’L‘, y)

v m=1

|v|g=n—h

where, by convention, vi41 := h, s;, are suitable natural numbers and, for every
m =1,...,sp, there exist constants ¢, dy, € R such that

1 .
|an(’ll1, vka”k-*-l)l <= 3 Cm Z’U +— n1 dm Z ’U;l'ng .
=1 {p1,p2}€C(k,2)

Finally, with the same arguments used in the proof of [1, Lemma 6.2.2,
p. 429] and taking into account formula (2.3), we obtain

72 12 - n h n—h CTL+D
n oS (1 1) @) < 3 (7)ot e (i)

he=

C’n+D
——Ilhzll [|R3]]

Il

and hence

(B, s 5u) (((or =0+ (or2 = %)) (@)
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2 Iy
= 3 n(Bus S (((on = pratw ) - 015 - pry(2,9))) (530)
5,j=1

§4CTL_,+-D

n?

(2.7)

At this point, comparing (2.5) with (2.6) and (2.7), we obtain

M (Cn+ D)

<ec i
<ce+8 P

n [(Ba . 5 (=27 + o~ 7)") (20

and this completes the proof. )
The preceding Voronovskaja’s type formnula allows us to approximate the
solution of the following evolution problein

ou z(1 — z) 0%
r E(wa Y, t) = (ﬁz—) gg(la Y, t)
8%u

+<1+b)”(1—‘y)@(x,y,t)

(28) | o

u
. . , Ko, t>0,
“yaxay(“’y’t)’ (z,y) € Kz, t >

 u(z,9,0) = ug(z,y), (z,y) € K2,

where up € C(K3) and b € [0, +o0[ are assigned.
Indeed, consider the second-order differential operator
(2.9)

Au(z,y) =

&%y

Oz Oy

(1 — 2 — 2
z(1 — ) 6%u 2,y) + (1 +b) yd-y) —%%(w,y) -y (z,9),

2 Oz? 2

defined for u € C?(Ky).

A result by Ethier [6] establishes that the closure of A generates a Cop-
semigroup (T'(t)):>0 on C(K>) (see also [7]). Indeed, in this case the coefficients
of the first derivatives terms are equal to 0 and therefore satisfy Ethier’s con-
dition; moreover the coefficient 1 + b does not influence the generation of a
Co-semigroup since it is a constant factor. (We point out that the generation of
a Cy-semigroup is established with different methods also in [1, Theorem 6.2.6,
p. 436].)

Hence, we can apply a theorem of Trotter [14] and represent the semi-
group in terms of iterates of the operators B, ®, Sy, (see also [1, Chapter 6] for
more details on this procedure).
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Thus, for every ¢ > 0 and every sequence (k(n)),>i of positive integers
satisfying lim, , o k(n)/n = t, we have
lil*l—l (B @ Sp )M = (1) strongly on C(I,)
T—r-1- 00

[4) ¢

and heuce the solution of problemn (2.8) is given by

(@, y,t) = T(t)(uwo)(w,y) = Tn ((Bn ®s Sp)H ™ (uo)) (z,y) -

FFinally, we point out that our construction can be applied even to se-
quences of Stancu operators associated with diflerent sequences of positive real
munbers, yielding in this case a new generalization of Stancu operators on Ky,
Namely, if (an), cn and (byn), oy are assigned sequences of positive real nuinbers,
we may define

n!
(Sn,an ®s S‘n,bn)f(w7 y) = E 171 - ,(I)h (3 a‘n)(I)n—h(l — & an)
Kbk ME(n —h —E)!

» (I)k(y; bn)(I)n—h—k(l —Z—Y; bn) (ﬁ ﬁ)
q)n—h(l — & bn——h) :

’
n n

The convergence properties of the sequence (S 4, ®s Snba)n>1 can be
investigated with the saine techuiques used above and for this reason we omit
the details.
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