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The Leibniz Programme: Calculation in Lieu
of Disputation

Viadimir Sotirov!

1. Historical introduction

Leibniz’s basic idea of the arithmetization of human reasoning was related
to syllogistic. His goal was to establish a correspondence between syllogistic
terms (or notions) and suitable integers (their characteristic numbers), so that
the logical truth of a proposition would turn into an arithmetical truth of a
calculation. This idea had two realizations described by Leibniz. The first one
used single integers and their divisibility but unfortunately was unsuccessful.
The second one was successful but more complicated and less intuitive: it used
pairs of co-prime numbers (see [Luk 57, § 34]). Leibniz’s texts can be found
in Couturat’s old edition [Cou 03] as well in the new academic edition of his
philosophical writings [Lei 99].

Here I will justify the viability of the earlier, less complicated realization
(with appropriate modifications, of course). Something more, Leibniz’s initial
sketch will be extended so to envelop the syllogistic enriched with term negation
and term composition (that is the whole Boolean syllogistic), the monadic pred-
icate calculus (i.e., the logic of properties), and the monadic predicate calculus
with equality as well. Various syllogistic systems have clear algebraic represen-
tation in the terms of partially-ordered structures, semi-lattices, lattices, and
Boolean algebras (see my report [Sot 99c]).

The full proof of the theorems concerning syllogistic together with a
detailed historical and bibliographical exposition of Leibniz’s logical ideas can be
found in [Sot 99a]. The arithmetization of the pure monadic predicate calculus
was announced in [Sot 99b]; the full proof is published here. The arithmetization
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of the monadic predicate calculus with equality was exposed in [Sot 01]. Almost
all results mentioned in this report are accessible from my Web-site.

2. Arithmetizations of the traditional syllogistic

I will treat the Aristotelian syllogistic in the style that became canonical
after Lukasiewicz’s celebrated book [Luk 57]. For this purpose the language
of the classical propositional calculus is extended by term variables (for short,
terms) ti,to,... together with two binary term relations: A and Z. Syllogistic
atoms are all formulae of the kind sAp or sZp with s and p being terms. A
syllogism is any propositional formula with all propositional letters replaced by
syllogistic atoms.

The standard and the most intuitive semantics of the Aristotelian syllo-
gistic is that in the theory of sets: if S and P are arbitrary non-empty sets, sAp
is translated into S C P, sZp into SN P # (), and the formal propositional con-
nectives are replaced with the informal ones. Thus any syllogism is translated
into a sentence about non-empty sets. If this sentence is true, i.e., if the expres-
sion so obtained is a set-theoretical tautology, the syllogism is said to be true.
It is true in a given (non-empty) set U when any replacement of its terms with
(non-empty) subsets of U gives a true sentence. I call this semantics Scholastic
according to Leibniz’s use of this word. It can be shortly characterized by the
pair (C,N # 0).

Another semantics in the theory of sets is also possible; it will be named
Leibnizian being (partially) accepted by him. When a non-empty set U is given,
term variables are evaluated by subsets of U different from U. If S and P are
such sets, sAp is interpreted as S DO P, sZp as SU P # U, and the formal
propositional connectives are replaced by informal ones. A syllogism is said
to be true in U when the sentence obtained after any replacement of all term
variables with subsets of U (different from U) is true. The syllogism is true
when it is true in any set U. This semantics is characterized by (D,U # U).
Obviously, both semantics are dual.

On the base of both set-theoretical intuitions, two translations of syllo-
gistic are obtained:

Scholastic arithmetical interpretation. Let aq,as,... denote arbi-
trary integers greater than 1. Given a syllogism, replace t;At; with a;|a; (“a; is
a divisor of a;”), t;7t; with a new relation a;Ga; (“a; and a; have a common
divisor greater than 1”7, or: g.c.d.(aj,a;) > 1), and the formal propositional
connectives with the informal ones. In short, this interpretation is characterized
by (|, g.c.d. > 1). Call the syllogism arithmetically true (in the Scholastic sense)
if the sentence so obtained is an arithmetical truth.
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Theorem 1 (Adequacy of the Scholastic arithmetical interpretation):
A syllogism is true iff it is arithmetically true in the Scholastic sense.

If the empty set is admitted to evaluate terms in the Scholastic semantics,
the arithmetical interpretation may be modified: 1 has to be added to the list
of divisors being the number corresponding to the empty terms.

Leibnizian arithmetical interpretation. Let u (the Universe num-
ber) be an arbitrary integer greater than 1, and let ay,as,... be arbitrary its
proper divisors, i.e., a; < u for any ¢ (however, a; = 1 is permitted). Replace
tiAt; by a relation a;/a; (“a; is divisible by a;”), and t;7t; by a relation a;La;
(“the least common multiple of a; and a; is less than u”, or: “there is a prime
divisor of u dividing neither a; nor a;”). In short, the Leibnizian arithmetical
interpretation is characterized by (/, L.c.m. < ). Finally, formal propositional
connectives are replaced with their informal analogues. The syllogism is said to
be arithmetically true (in the Leibnizian sense) with respect to u if the sentence
so obtained is an arithmetical truth. The syllogism is arithmetically true (in the
Leibnizian sense) if it is arithmetically true in the same sense with respect to
any u > 1.

Theorem 2 (Adequacy of the Leibnizian arithmetical interpretation):
A syllogism is true iff it is arithmetically true in the Leibnizian sense.

3. Arithmetizations of syllogistic with negative terms

Expand the language of syllogistic by adding an operation of term nega-
tion —; then, if ¢ is a term, —¢ (“non-t") is a term, too. The definition of atoms
is modified by permitting s and p to be arbitrary terms in sAp and in sZp as
well. In both set-theoretical semantics, a universal set U is introduced. Accord-
ing to the tradition, terms are evaluated by subsets of U different from ) and
U (in such a case, U obviously cannot be an one-element set). If a term ¢ is
evaluated by a set T, the value of —t is the complement of T' to U. The rest
of the definitions of a true syllogism remains the same. In both arithmetical
interpretations, a Universe number u > 1 without multiple factors is introduced
together with the following rules: 1) all evaluating integers are divisors of u
different from 1 and u (therefore, u cannot be prime); 2) if term ¢ is evaluated
by an integer a, then the term —t is evaluated by 2.

Theorem 3 (Adequacy of both Scholastic and Leibnizian arithmetical
interpretations of syllogistic with term negation): A syllogism (possibly
with negative terms) is true iff it is arithmetically true in the Scholastic as well
as in the Leibnizian sense.
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4. Arithmetizations of syllogistic with term composition

In this section, neither empty not universal sets will been rejected. The
treatment may be made independent of the presence of term negation. However,
if negation does occur together with a composition (it does not matter whether
it will be treated as an intersection or as a union), all Boolean term operations
will be defined. That is why it will be better to consider the full Boolean algebra
straight away.

The composition will be noted by o. The class of terms now is the small-
est class including term variables, and closed under negation and composition.
Given a Universe U # (), an evaluation of a term ¢ in U is a set T obtained
after replacing all term variables in ¢ with arbitrary subsets of U as well as term
operations with their corresponding set-theoretical operations. Namely, in the
Scholastic semantics o is interpreted as an intersection, and in the Leibnizian
semantics it is a union. Having terms evaluated, the translation of a syllogism
into a set-theoretical sentence remains the same as in Section 2.

Further, in both arithmetical interpretations, term variables will be eval-
uated by arbitrary divisors of a Universe number v > 1 without multiple factors.
The evaluation of the negation remains as it was defined in the previous Section.
If terms s and so are evaluated by integers a and b, the composition s 0 5o will
be modelled by g.c.d. (a,b) in the Scholastic arithmetical interpretation, and by
l.c.m. (a,b) in the Leibnizian one. Note that in the second case, if @ and b have
no common divisor, s; o sy is represented by their product ab.

Theorem 4 (Adequacy of both Scholastic and Leibnizian arithmetical
interpretations of syllogistic with all Boolean term operations): A
syllogism (possibly containing arbitrary Boolean term operation) is true iff it is
arithmetically true in the Scholastic as well as in the Leibnizian sense.

5. Arithmetization of the pure monadic predicate calculus

The language of the monadic calculus contains individual variables x, vy,
z, ..., one-place predicate symbols Py, P, ..., quantifiers ¥V and 3, and the usual
propositional connectives with brackets. A monadic proposition is a formula
without free variables. For such formulae we adopt Theorem 25.4 from [BJ 89]:

Lemma 1 Any monadic proposition is equivalent to a monadic proposition with
the same predicate symbols and one variable only.

Let the sole variable be z. In addition, we may suppose it is not bound
“twice” anywhere. So, no formula is a Boolean combination of two subformulae
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A(z) and B, one of them containing a free z and the other containing = bound;
in (Qz)A(z), where @ is a quantifier, a free z does occur in A. In other words,
the formula under consideration either is of the kind Q(z)A(z) where A(z) does
not contains quantifiers (and therefore is a Boolean combination of predicates),
or is a Boolean combination of formulae of the kind just mentioned.

To build up an arithmetical model for monadic propositions, let an arbi-
trary integer u > 1 without multiple factors be taken, and let its divisor d; be
associated with the predicate P;(z). Further, following the construction of the
formula, a divisor of u will be associated with any subformula containing a free
x, and a statement about divisors will be associated with the subformula when
it does not contain a free . Namely, if a and b are associated with A(z) and
B(z), then g.c.d. (a,b) is associated with A(z)&B(zr), & with —~A(z), and so on
for other Boolean connectives; the statements ¢ = v and a > 1 are associated
with (Vz)A(z) and (3z)A(z), respectively; if statements p and ¢ are associated
with subformulae A and B, then “p and ¢” and “not p” will be associated with
A& B and —A, respectively. Finally, a certain statement comparing divisors of u
with v and 1 will model the initial monadic proposition. If this statement is an
arithmetical truth for an arbitrary integer u, the proposition is called arithmeti-
cally true. Using that any predicate tautology is equivalent to a closed formula,
we obtain the main

Theorem 5 Any formula of the pure monadic predicate calculus is a tautology
iff its corresponding monadic proposition is arithmetically true.

Proof. For the proof the well known fact that the monadic predicate
calculus is decidable is used. I. e., if given formula with n predicate letters is
not valid, it is rejected in a domain D containing N < 2" elements. Suppose the
elements of D are eq,..., ey, the predicate P; is interpreted by a subset D; of D,
and the rejecting evaluation attaches an element e of D to the sole individual
variable z. As it was shown, the formula under consideration may be supposed
to be a Boolean combination of subformulae of the kind (Qz)A(z) where Q
denotes a quantifier. Let A* be the sentence obtained after replacing in A(z)
each predicate P;(z) by the expression e € D; and each formal connective by its
informal analogue. A(z) is true under given evaluation in given interpretation
iff A* is true. Further on, let A** denotes the set obtained after replacing the
predicate P;(z) by D; and the propositional connectives by their set-theoretical
analogues (i. e., A by N, = by complement, etc.). Then A* is true iff x € A**
is true. Hence (Vx)A(x) will be true in given interpretation iff A** = D, and
(3z)A(x) will be true iff A** # (.

Now it is easy to show that the interpretations of a monadic predicate
formula in sets and its arithmetical interpretations are isomorphic. Given an
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interpretation in a set D, take N different prime numbers aq,...,ay and let u
be their product. If the subset D; is not empty, denote by d; the divisor of
u obtained after multiplying those prime numbers which indexes coincide with
the indexes of the elements of D;; if D; is empty, d; = 1. Conversely, given an
arithmetical model with a Universe u without multiple factors, let D denote the
set of all prime multipliers of u, and let D; be the set of the prime multipliers
of its arbitrary multiplier d;; if d; is 1, D; = (). Then for any sub-formula A(x),
A** coincides with the divisor of « which is obtained as an arithmetical value
of A(z). It is obviously that that divisor will be equal to u (and respectively,
(Vz)A(z) will be arithmetically true) iff A** = D, i. e., iff (Vz)A(x) is true
independently of the value of the variable z. The case of (3x)A(z) is analogous.
Therefore, any sub-formula of the kind (Qx)A(z) is arithmetically true exactly
when it is true in the corresponding interpretation in sets.

6. Arithmetization of the monadic predicate calculus with equal-
ity

Now, the language of the pure monadic predicate is extended by the only
two-place predicate =. Formulas are defined in the usual way. For this language,
models in non-empty domains and evaluations of individual variables in them
are introduced in the standard manner [Kle 67, § 29].

For the arithmetical models, let w > 1 be an integer without multiple
factors. Any predicate P; is interpreted by arbitrary divisor of u (possibly 1 or
u) denoted with d(F;), and any individual variable z; is evaluated by d(z;), a
prime divisor of u. Following the construction of a formula F, its arithmetical
statement AR[F| corresponding to given evaluation will be obtained. Namely,
for atomic formulas AR[P;(z;)] is “d(z;) divides d(P;)” and AR[z; = z;] is
“d(z;) = d(z;)”; for a subformula G, AR[(Vz)G] is “for any prime divisor d,
ARE[G]” where ARY differs from AR only attaching d to z; finally, all propo-
sitional connectives are replaced with their non-formal analogues. If AR[F] is
a true arithmetical sentence for any u under arbitrary evaluation, F' is named
arithmetically true. This semantics is relevant:

Theorem 6 Any formula of the monadic predicate calculus with equality is a
tautology iff it is arithmetically true.
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