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This paper deals with the solutions of nonlinear second order differential equations,
arising in viscoelastic fluid flows in a rotating cylinder. Existence, uniqueness and analyticity
results are obtained using the perturbation techniques and the Shauder theory. For special
values of some parameters, we obtain some results given recently by Vajravelu et al. (2000).
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1. Introduction

In a recent paper, Vajravelu et al [6] have studied the existence, unique-
ness, and behaviour of exact solutions of second order nonlinear differential
equations arising in viscoelastic fluid flows in a rotating cylinder, and other
problems [4]. Such problems were considered earlier by Garg and Rajagopal [2],
Rajeswari and Rathna [5], Dunn and Rajagopal [3], and others.

In this paper, we consider a modified form of the steady equation [1] for
the fluid in a cylinder of radius R and angular velocity €2, in the following form:

d?v  1ldv v dv  o\°(. d*v adv av
1 —_—t—— - — = hb— — ) = b
(1) N(dr2+rdr r2>+ﬂ(dr r) ( dr? rdr+r2> 0, a,6>0,

with the boundary conditions

(2) v = RQ at r=R,
v — 0 as 1 — 00,
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where v = vy is the nonzero velocity in polar coordinates, and p and (G are
material constants due to viscosity and viscoelasticity, respectively. Taking the
dimensionless variables

v
r = d D= ——
T=r/R and @ 70
and substituting in equation (1) and (2), we get (without bars),
(3) d2_’l)+1d_’l)_£+a8 d_’U_EQ éd2_v_1d_v+£ =0
dr? = rdr r? dr r adr? rdr  r2) 7
with the boundary conditions
(4) v = 1 at r=1,

v — 0 as r — oo,

and € = %ﬁ, the dimensionless number related to the material constants and
the rotation of the cylinder.

2. Existence and uniqueness

Here our aim is to find v = v (r) which satisfies (3) and (4). Let A =

‘;—jﬁ — ¥ then equation (3), together with the boundary conditions given by (4),

r b
can be rewritten as

(5) (1+6bA2)d2—U+é(1—5aA2)=0 1<r<oo
dr? 7 ’ ’
(6) v(l)=1 and ILm (r) =0.
Dividing by (1 +¢ b A%) > 0, we get
d>v 1 (1—-¢ca A?
@) W+;(71+56A2)A_0'
dv v

Differentiating A = 92 — 7 with respect to r, we obtain

dA d?v  1ldv v

(8) i el i ML
d2v dA A
(9) or W = %—F?

Substituting this into (7), we get

dA 1(1 1—ca A2

| o (1+=E2 % Y a—0, a(1) =
(10) d7"+7“ +1+€bA2) 0, A1) =4



A Modified Form of Nonlinear Differential Equations ... 337

where )\ is an unknown parameter. Let w = ¢ A% > 0, and consider the function

l-aw
subject to
. ) a
(12) })I_I)%f (w)=1 and wlLrgof (w) =— 7
Then it follows that
a+b

13 wy=———5 <0, for a+b>0
(13) [ (W) 1t bw)?
and therefore, we have for w > 0:
(14) —%<f(w)<1 and  |f ()] < a+b.
Solving (10), we get

1 A2
(15) A(r) =X exp{—/ mdn}.

1 n
Observe that
(16) sign A (r) = sign A and |[A(r)] < |Al.

Moreover, we have the following

2
Proposition 1. Recall  A(r) = X exp{—f{% dn} and

[ (w) > =9, then for 1 <r < oo, we have

(17) A r2< A <A e

2b—a

(18) AL=Z) r < A <2 et

Proof. First we see from (14) and (15) that

1+ (eA? p 1= e
(19) A=A e T T my e oy
and

(20) |A’(r)|:% |1+f(5A2)||A|2% D e PV e
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furthermore, since f (w) < 1, then we have

(21) [A @)= AL e 20 = A
and
B 1 9 2 _b-a _ 2b-a
(22) |A(r)|:;|1+f(5A)||A| §;|)\| rTe =2|A rT .
Combining these inequalities we get the required results. [
From (22), we see that
(23) A <2 <2, 1<r<oo

which implies a uniform continuity on 1 < r < oo.

Next we define the mapping T : B — B, where B is the Banach space of
bounded continuous functions on 1 < r < oo with norm ||g|| = sup; <, |9 (7)]
for all g € B, via the formula -

r 2
(24) (Tg)(r) =X\ exp{—/1 an&dn}, 1 <r<oo.

From the analysis for (19), we see that

_b—a
b

(25) [(Tg) (M) <Al r=777,  1<7r <oco.

Differentiating T'g , since (T'g) (r) is a continuously differentiable function on
1 <r < oo with norm ||Tg|| < |A\| < 0o, we obtain

1+ f(e g ()

r

(26) (Tg)'(r) = (Tg) (r).

From the analysis for (22), we see that

(27) (Tg) (r)] <2A r 5%, 1<r<oo.

Therefore, we conclude that the image T'B consists of functions bounded by (24)
and equicontinuous by (27).

Now we define a subspace Sy of B as follows

Sy = {QEBi|9(T)|S|>\| 7r17_T&,1§7"<oo, and
(28) lg(r1) —g(ro)| <2|A||r1 — 72| , 1 <7 <o < o0}
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Consequently, using (24), we see that TB C S).
Next we state and prove the existence and the uniqueness theorem, which
is the main result of this paper.

Theorem 2.  For each A\ € (—o0,00), there exists a unique function
Ay € Sy, which depends continuously upon X, such that

r 2
(29) INGER exp{—/1 Mdn},
where / .
(30) NGRS

A proof of this fundamental theorem is presented in the next three propo-
sitions. We begin first by showing the continuity of the map 7" : Sy — S).

r 14+£(cA2)

Proposition 3. Recall (Tg) (r) = X exp {— 1 7

dn} , then we

have
(31) ITg1 — Tgoll < [N* (a+b) be g — gall -

Proof. Using the mean value theorem twice, we get

1+f(69f)

Tgi(r) —Tg2(r) = /\{ e — d"—e_ffw dn}
_ e [T (eg?) — f (c93)
= Ae /1 ; dn
-0 T@f*(cn)(g%— g%)
= e /1

and therefore, for 1 < r < 0o, we have

dn

e f'(e g1 +g
|Tg1 (r) —Tga2(r)] < |l Hgl_92H/1 (n)n’ 1+ 92| dn
b—a
"IN T
< W a+ne [ BT dyjgr - g
a+b _b-a
< Wbe i (177 Xl — gl
(32) < [A? (a+Db) be |lgi —gof -
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Taking the supremum over r € [1,00), we get the required result. [

From the above proposition, we have shown that T is a continuous map
of Sy into S). Therefore by the Shauder theorem there exists a fixed point of
T, and hence we proved the existence part. For the uniqueness part, we need to
show first the following proposition.

Proposition 4. A) is continuous with respect to .

Proof. Let Ay, (r) and Ay, (r) be solutions that satisfy (31), then using
the mean value theorem twice, we have

. 1+f(eA§1(n)) ;
Ay (r) = Ax, (1) = (A= A2) e_fl 5 an
, 1+f (eAil(ﬂ)) , 14+f (eAiQ (77))

+Xy | e 7 e
L 141 (a3, )
— ()\1_/\2) e—fl —771 dn
reed [ L)y A A A d
—Xyee 1T(>\1(77)— ,\2(77))(,\1(77)’*‘ ,\2(77)) 7.
Taking absolute value of both sides together with (16), we get

IAM (’l’) - A)\z (Ir)|

(33) <[ — ol e (atb) el (Ml + o) /1T|AM () — Ay, ()] dn.

Applying the Gronwall inequality, we get

1
(34)  |Ax, (r) — Ay, (1) < A= X [e“—l)k + (e“—l)k - 1)] ,

(35) with & = ¢ (a+0b) || (M| +[N2]),
which proves our claim. ]
Proposition 5. The solution Ay (r) is unique.

Proof. Suppose there is another solution B, (r) that satisfies (32) for
A (= A1 = Ag), then (33) implies that By (r) = Ay (r). [ |

By this we end the proof of our theorem. Now we will give a representa-
tion for v. Recall by definition that

(36) — ——v=A)(r), 1<r<oo,
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(37) v(l)=1 and ILm v(r) =0,
whose solution is N
(38) v(r)=r+r / /\5( ) do,

1

or equivalently:

147 (= A3(m)

v It
(39) v(?“)=r+>\r/ ¢ n5 do.
1

From the second condition of (37) A needs to be negative, i.e. A = —a,
a > 0, thus (39) becomes

1+f(s A2, ()

e I o d
(40) v(r)=r—ar / 5 do.
1

Considering the case v (R) = 0 for some R > 1, then a must satisfy

1+ (= A2, ()

§
1 R~ [ d
(41) a=-, with Ié/ ¢ ’ do.
i 1 5

Now since —% < f (w) < 1, then we get

1 — R_2 b b—a
< < — R o
(42) 2 _I_b—a<1 R b)’
and therefore we have
b— 2
(43) T __<a <

Letting R — oo in (43), we get

b—a
b

(44) <a<2.

3. Perturbation analysis and solution

In this section we obtain the exact and the approximate solution to

dv  1ldv v dv o\’ [ dv adv
4 v 222 ez S ) =
(45) dr? + rdr r? Te (dr 7") (bdr2 r (dr r>> 0
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(46) v(l) =1, v (00) =0, I<r<oco.

First we begin by finding the approximate solution for every e. For small ¢ < 1,
we let v = vy + evy + O (¢2) in (45) and obtain the O (1) problem

d2’U0 1 dU() Vo

(47) w2 o T 2=0 W (=1, vg (00) =0
and the O (&) problem
d*vy,  ldv; dvg g 2 d?vy  a (dvy v
gg) LUL 24 v (@0 B0, ¢t @ (dv o
(48) dr? + rdr 12 dr r dr?2  r \ dr r ’
vy (1) = 1, v1 (00) =0 .

Solving (47) gives vy = I, substituting this in (48) yields

d2111 1 dvq U1 8 (CL + b)
(49) PR i Bl
U1 (1) =4 U1 (OO) - 07
whose solution is given by
(a+ ) 1 1
(50) n=y i Te)
Therefore the solution for the problem (45) for small ¢ is
1 (a+0b)e 1 1 9

Now if € is large then we let n = % in (45) to obtain

v ldv v dv v\ [ d* dv v
2 fuv, i v A I P
(52) (dr2 + rdr 7"2) + (dr 7“) ( dr? (dr r>)
(53) v (1

) = v (00) =0, I<r<oco.
Let v =vo +nv; + O (7}2) then either d{}’O — %0 = 0 whose solution is given by

d*vo dvo _ wo
dr? dr T

case it is not possible to satisfy the infinity condition. Now since we failed to
obtain an approximate solution for the problem (45) when ¢ is large, we have

. a .
vy = cr, or b - ) = 0 which gives vg = c¢17 + ¢o rv. In either

to solve it exactly. Let w = ¥= v, then the problem (45) becomes

v dw 2 ((dw 20 dPw dw
(54) 1o+t (%> (b ot (2 )dr>_o
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(55) w (1) = Ve, w (00) = 0.
Moreover, letting 7 = Inr, we get
d*w dw dw\? [ d*w dw
(56) dr? + dr + (dT) ( dr? +(b-a) dT) 0
(57) w (0) = Ve, w (00) =0,
and integrating equation (56) with respect to 7, gives
27 Tty
dw b—a (dw -
_ 1 hatad _ 2T .
(58) i [ t— (d7> ] ce 0
If we take b = 3a as a special case of equation (58), then we get
dw\® 1 dw o7
o7 22T e =
(59) <d7'> + a dr e ’

whose solution is given in [6] as

(60) W [m;gm} =G (r,0),

wl=

where
(61) g (1) =108 ce 2™ + 616 + 324 2e—47.

Integrating equation (60) with respect to 7, gives

(62) w(r) = — / Y G (p.o) dp.

Using the boundary condition w (0) = /e, we find an implicit equation for the
constant c

(63) \Ez—A“Gm@dp

and therefore, the exact solution for the problem (45) is given by

—r &)
(64) o)== [ G a
Now since G (7,¢) ~ 2ce”?" for 7 — oo, the asymptotic behavior of v (r) is
given by
(65) v(r) ~ —c(©) as r — oo.

r /e



344 S.L. Kalla, Y. Ben Nakhi

For special values of the parameters a and b, the results of Vajravelu et
al. [6] are recovered.
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