Mathematica Balkanica

New Series Vol. 18, 2004, Fasc. 3-4

Interpolation in the Class M^p , p > 1

Ljupco Nastovski

Presented at Internat. Congress "MASSEE' 2003", 4th Symposium "TMSF"

In this paper we give sufficient conditions for sequence of complex numbers $(\lambda_k)_{k=1}^{\infty}$, $(c_k)_{k=1}^{\infty}$ so that the interpolation problem has a solution in the class M^p , p > 1.

AMS Subj. Classification: 30E05

Key Words: holomorphic function, interpolation, M^p -space

1. Definition of some spaces of holomorphic functions and some known results

Let $D=\{z\in C\mid |z|<1\}$ be the unit disk. We denote by M^p the space of holomorphic function in D such that

$$\int_0^{2\pi} (\log^+ M f(\theta))^p d\theta < \infty,$$

where

$$Mf(\theta) = \sup_{0 \le r \le 1} |f(re^{i\theta})|$$

and

$$\log^{+} a = \begin{cases} 0, & 0 < a \le 1 \\ \log a, & a \ge 1 \end{cases} \text{ (see [1])}.$$

By N^p we denote the set of holomorphic functions on the unit disk D such that

$$\sup_{0 \le r \le 1} \int_0^{2\pi} (\log^+|f(re^{i\theta})|)^p d\theta < \infty.$$

By H^p we denote the set of all holomorphic function on the unit disk such that

$$\sup_{0 \le r < 1} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta < \infty.$$

390 Lj. Nastovski

The following inclusions are true:

$$\bigcup_{p>0} H^p \subset \bigcap_{p>1} N^p \ , \ \bigcup_{p>1} N^p \subset M \subset N.$$

For p > 1 it holds $N^p = M^p$. Also, it holds $N \neq M$ (see [3]). We denote by b(z) the Blaschke product

$$b(z) = \prod_{j=1}^{\infty} \frac{\lambda_j - z}{1 - \overline{\lambda_j} z} \frac{|\lambda_j|}{\lambda_j}, \quad \sum_{j=1}^{\infty} (1 - |\lambda_j|) < \infty, \quad z \in D$$

and

$$b_k(z) = \prod_{j \neq k} \frac{\lambda_j - z}{1 - \overline{\lambda_j} z} \frac{|\lambda_j|}{\lambda_j}.$$

For the Blaschke product it holds $|b(z)| \le 1$, for $z \in D$ (see [4]).

Let X be a class of holomorphic functions defined on the unit disk and $(\lambda_k)_{k=1}^{\infty}$ be a sequence in D. For the sequence $(c_k)_{k=1}^{\infty}$ of complex numbers, the interpolation problem is the problem of finding the function $f \in X$ such that

$$f(\lambda_k) = c_k \quad \text{for} \quad k \in \mathbb{N}.$$
 (1.1)

Let Y be a family of sequences of complex numbers. The sequence $(\lambda_k)_{k=1}^{\infty}$ is the interpolation sequence of the pair (X,Y), if for every sequence $(c_k)_{k=1}^{\infty} \subset Y$ exists function $f \in X$ such that (1.1) holds.

The sequence is uniformly separated, if there is positive number δ such that

$$\inf_{k \in \mathbf{N}} |b_k(\lambda_k)| \ge \delta.$$

By l^{∞} we denote the set of all bounded sequences of complex numbers.

Carleson (1958) has proved the following result:

The sequence $(\lambda_k)_{k=1}^{\infty}$, $\lambda_k \in D$ for which $\sum_{1}^{\infty} (1-|\lambda_k|) < \infty$ is the interpolation sequence for the pair (H^{∞}, l^{∞}) , if and only if it is uniformly separated.

Let (λ_n) be a sequence of complex numbers such that $\lambda_k \in D$, $\lambda_n \neq \lambda_m$, for $n \neq m$ and $\sum_{k=1}^{\infty} (1 - |\lambda_k|) < \infty$.

For all $0 with <math>\overline{l}^p$ we denote the set of all sequences of complex numbers (c_k) such that $\sum_{k=1}^{\infty} (1 - |\lambda_k|^2) |c_k|^p < \infty$.

Let $0 . The sequence <math>(\lambda_k)_{k=1}^{\infty}$, $\lambda_k \in D$ for which $\sum_{1}^{\infty} (1 - |\lambda_k|) < \infty$, is the interpolation sequence for the pair (H^p, \bar{l}^p) , if and only if it is uniformly separated.

The above result for $1 \le p < \infty$ is obtained by H.S. Shapiro and A.L. Shields (1961) and for 0 is obtained by V. Kabaila (1963).

We give a condition for these sequences $(\lambda_k)_{k=1}^{\infty}$ and $(c_k)_{k=1}^{\infty}$ so that a function $f \in M^p$ with the property $f(\lambda_k) = c_k$, $k = 1, 2, \ldots$ exists.

We will use the next theorems.

Theorem A. The sum of a uniformly convergent series of holomorphic functions is a holomorphic function in every inner point on the set, where the series converges uniformly, see [5].

Theorem B. (Principle for compactness for holomorphic functions) Let (f_n) be a sequence of functions which are holomorphic on region G and for which it holds: for every closed set $B \subset G$ exists a constant M(B) such that for every function of the sequence (f_n) it is true

$$|f_n(z)| \leq M(B)$$
 for every $z \in B$.

Then the sequence (f_n) has subsequence which converges uniformly on every closed subset from G, see [5]

Holder's inequality. If a_k and b_k are complex numbers, $k = 1, \ldots, n$ and if $\frac{1}{p} + \frac{1}{q} = 1$, p > 1, then $\sum_{k=1}^{n} |a_k b_k| \leq \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^{n} |b_k|^q\right)^{\frac{1}{q}}$.

2. Main results

Theorem 1. Let p > 1 and let $(\lambda_k)_{k=1}^{\infty}$ be a sequence of complex numbers such that $\lambda_k \in D$ and $\sum_{k=1}^{\infty} (1 - |\lambda_k|)^{\frac{1}{p}} < \infty$. Let $(c_k)_{k=1}^{\infty}$ be a sequence of complex numbers such that

$$\sum_{k=1}^{\infty} \frac{(1-|\lambda_k|)^{\varepsilon}}{|b_k(\lambda_k)|} |\log c_k| < \infty \text{ for some } \varepsilon \text{ which satisfies } 0 < \varepsilon < 1.$$

Then there exists $f \in M^p$ such that $f(\lambda_j) = c_j$ for $j \in \mathbb{N}$ and $f \notin H^s$, for every s > 0.

392 Lj. Nastovski

Proof. Because of $0 \le |\lambda_k| < 1$ and p > 1, it follows that $\sum_{k=1}^{\infty} (1 - |\lambda_k|) < \infty$. Let $f(z) = \exp g(z)$, where $g(z) = g_1(z) + g_2(z) + g_3(z)$ and

$$g_{1}(z) = \sum_{k=1}^{\infty} \frac{(1 - |\lambda_{k}|)^{\alpha+1}}{(1 - ze^{-i\theta_{k}})^{\alpha}} \quad g_{2}(z) = -\sum_{k=1}^{\infty} (1 - |\lambda_{k}|),$$
$$g_{3}(z) = \sum_{k=1}^{\infty} \frac{b_{k}(z)}{b_{k}(\lambda_{k})} \cdot \frac{(1 - |\lambda_{k}|)^{\varepsilon}}{(1 - ze^{-i\theta_{k}})^{\varepsilon}} \cdot \log c_{k},$$

where $\theta_k = \arg \lambda_k$ and $\alpha = \frac{1}{p}$.

It is obvious that $f(\lambda_j) = c_j, \ j \in \mathbb{N}$.

Since f is a holomorphic function, it is sufficient to prove that g(z) is holomorphic function. This is a corollary of the above expansions via Theorem A. Further, we get the following estimates:

$$|g_1(z)| \le \sum_{k=1}^{\infty} \left| \frac{(1-|\lambda_k|)^{\alpha+1}}{(1-ze^{-i\theta_k})^{\alpha}} \right| \le \sum_{k=1}^{\infty} \frac{(1-|\lambda_k|)^{\alpha+1}}{(1-|z|)^{\alpha}} \le \frac{A}{(1-|z|)^{\alpha}}$$
 for some $A > 0$,

$$|g_3(z)| \le \sum_{k=1}^{\infty} \frac{|b_k(z)|}{|b_k(\lambda_k)|} \cdot \frac{(1-|\lambda_k|)^{\varepsilon}}{|1-ze^{-i\theta_k}|^{\varepsilon}} \cdot |\log c_k|$$

$$\leq \sum_{k=1}^{\infty} \frac{1}{|b_k(\lambda_k)|} \cdot \frac{(1-|\lambda_k|)^{\varepsilon}}{|1-ze^{-i\theta_k}|^{\varepsilon}} \cdot |\log c_k| \leq \frac{B}{(1-|z|)^{\varepsilon}} \text{ for some } B > 0.$$

Let s > 0. Let $f_1(z) = \exp g_1(z)$, $f_2(z) = \exp g_3(z)$, $A_k = (1 - |\lambda_k|)^{\alpha+1}$. We will estimate $|f_1(z)|$:

$$|f_{1}(z)| = \exp\left(Re\sum_{k=1}^{\infty} \frac{(1-|\lambda_{k}|)^{\alpha+1}}{(1-ze^{-i\theta_{k}})^{\alpha}}\right)$$

$$= \exp\left(\sum_{k=1}^{\infty} A_{k}Re\left(\frac{1}{(1-ze^{-i\theta_{k}})^{\alpha}}\right) = \exp\left(\sum_{k=1}^{\infty} A_{k}Re\frac{(1-re^{-i(\theta-\theta_{k})})^{\alpha}}{(1-2r\cos(\theta-\theta_{k})+r^{2})^{\alpha}}\right)$$

$$= \exp\left(\sum_{k=1}^{\infty} A_{k}Re\frac{(1-\alpha re^{-i(\theta-\theta_{k})} + \binom{\alpha}{2}r^{2}e^{-2i(\theta-\theta_{k})} - \dots)}{(1-2r\cos(\theta-\theta_{k})+r^{2})^{\alpha}}\right)$$

$$= \exp\left(\sum_{k=1}^{\infty} A_{k}\frac{1-\alpha r\cos(\theta-\theta_{k}) + \binom{\alpha}{2}r^{2}\cos 2(\theta-\theta_{k}) - \dots}{(1-2r\cos(\theta-\theta_{k})+r^{2})^{\alpha}}\right)$$

$$\geq \exp\left(\sum_{k=1}^{\infty} A_k \frac{1 - \alpha r - \binom{\alpha}{2} r^2 - \dots}{(1 - 2r \cos(\theta - \theta_k) + r^2)^{\alpha}}\right)$$

$$= \exp\left(\sum_{k=1}^{\infty} A_k \frac{2 - (1 + \alpha r + \binom{\alpha}{2} r^2 + \dots}{(1 - 2r \cos(\theta - \theta_k) + r^2)^{\alpha}}\right)$$

$$= \exp\left(\sum_{k=1}^{\infty} A_k \frac{2 - (1 + r)^{\alpha}}{(1 - 2r \cos(\theta - \theta_k) + r^2)^{\alpha}}\right)$$

$$\geq \exp\left((2 - (1 + r)^{\alpha}) \frac{A_1}{(1 - 2r \cos(\theta - \theta_k) + r^2)^{\alpha}}\right)$$

We use the inequality $e^x \ge \frac{x^{\beta}}{\beta!}$, $\beta > 0$ and x > 0. Now,

$$\sup_{0 \le r < 1} \int_{0}^{2\pi} |f_{1}(re^{i\theta})|^{s} d\theta$$

$$\geq \sup_{0 \le r < 1} \int_{0}^{2\pi} \exp(s(2 - (1+r)^{\alpha}) \frac{A_{1}}{(1 - 2r\cos(\theta - \theta_{k}) + r^{2})^{\alpha}} d\theta$$

$$\geq \sup_{0 < r < 1} \int_{0}^{2\pi} \frac{1}{(p!)} \frac{s^{p}(2 - (1+r)^{\alpha})^{p} A_{1}^{p}}{1 - 2r\cos(\theta - \theta_{k}) + r^{2})^{\alpha p}} d\theta.$$
Since $\alpha = \frac{1}{p}$, then

$$\sup_{0 \le r < 1} \int_0^{2\pi} |f_1(re^{i\theta})|^s d\theta \ge \frac{s^p}{p!} A_1^p \sup_{0 \le r < 1} \int_0^{2\pi} \frac{(2 - (1+r)^{\frac{1}{p}})^p}{1 - 2r\cos\theta + r^2} d\theta$$
$$= \frac{s^p}{p!} A_1^p 2\pi \sup_{0 \le r < 1} \frac{2 - (1+r)^{\frac{1}{p}})^p}{1 - r^2} = \infty.$$

Since $f_2(z) = \exp g_3(z)$ has no zero, it exists $\delta_0 > 0$ such that:

$$|f_2(z)| \ge \delta_0 > 0, \ \forall z \in \overline{D} = \{z : |z| \le 1\}.$$

So we have

$$\int_{0}^{2\pi} |f(re^{i\theta})|^{s} d\theta = l^{s} \int_{0}^{2\pi} |f_{1}(re^{i\theta})|^{s} |f_{2}(re^{i\theta})|^{s} d\theta \ge \delta_{0} l^{s} \int_{0}^{2\pi} |f_{1}(re^{i\theta})|^{s} d\theta = \infty,$$

394 Lj. Nastovski

where $l = \exp g_2(z)$.

Now we show that $f \in M^p$. We use the inequalities $\log^+ ab \le \log^+ a + \log^+ b$ and $(a+b)^p \le 2^p(a^p+b^p)$ for a>0 and b>0. For p>1 it holds $M^p=N^p$, in the sense of a set.

We show that $f_1 \in M^p$. We have shown above (in the estimation of $|f_1(z)|$) that $Re \sum_{k=1}^{\infty} \frac{A_k}{(1-ze^{i\theta_k})^{\alpha}} > 0$ for |z| < 1.

Now, the following holds:

$$\log^+|f_1(z)| = \log^+ \exp\left(Re\sum_{k=1}^{\infty} \frac{A_k}{(1 - ze^{-i\theta_k})^{\alpha}}\right)$$

$$= Re \sum_{k=1}^{\infty} \frac{A_k}{(1 - ze^{-i\theta_k})^{\alpha}} \le \sum_{k=1}^{\infty} \frac{A_k}{|1 - ze^{-i\theta_k}|^{\alpha}}.$$

Let 1 < q' < p and $\frac{1}{p'} + \frac{1}{q'} = 1$. Then from Holder's inequality we have

$$(\log^+ |f_1(z)|^p \le \left(\sum_{k=1}^{\infty} A_k^{p'}\right)^{\frac{p}{p'}} \cdot \left(\sum_{k=1}^{\infty} \frac{1}{|1 - ze^{-i\theta_k}|^{\alpha q'}}\right)^{\frac{p}{q'}}.$$

It is true that: $\sum_{k=1}^{\infty} A_k^{p'} < +\infty$ and $\alpha q' < 1$ $(\alpha = \frac{1}{p})$.

Then, if $z = re^{i\theta} (0 \le r < 1)$, we get

$$\int_{0}^{2\pi} (\log^{+}|f_{1}(re^{i\theta})|)^{p} \leq \sum_{k=1}^{\infty} A_{k}^{p'} \int_{0}^{2\pi} \frac{d\theta}{|1 - re^{i\theta}|^{\alpha q'}} < C,$$

i.e.
$$f_1 \in M^p$$
.

Since $\sum_{k=1}^{\infty} (1-|\lambda_k|)^{\varepsilon} \frac{|\log c_k|}{|b_k(\lambda_k)|} < \infty$, in a similar way, for f_1 we can show $f_2 \in M^p$.

It holds $\exp g_2(z) \in M^p$, so $f \in M^p$.

References

[1] Hong Oh Kim. On an F-algebra of holomorphic functions, Can. Math. 15, No 3, 1988, 718-741.

Received: 30.09.2003

- [2] V. Kabaila. On the interpolation of a function in class H^p , Uspehi Matematicheskih Nauk 13, No 79, 1958, 181-188.
- [3] R. Meštrović. Topološke i F-algebre holomorfni funkcii, Ph.D. Thesis, Podgorica, 1998.
- [4] P. L. Duren. H^p Spaces, Academic Press, 1970.
- [5] M. A. Evgrafov. Analytic Functions, Nauka, Moscow, 1991 (In Russian).

Institute of Mathematics Faculty of Natural Sciences and Mathematics P.O. Box 162, 1000 Skopje, MACEDONIA e-mail: ljupcona@iunona.pmf.ukim.edu.mk