Mathematica Balkanica

New Series Vol. 19, 2005, Fasc. 1-2

γ -Sets, γ_k -Sets and Hyperspaces *

Ljubiša D.R. Kočinac

We consider relationships between γ -set property and hyperspaces. In particular, we show that each open subset of a space X is a γ -set if and only if the hyperspace 2^X of closed subsets of X with the Z^+ -topology is (strongly) Fréchet-Urysohn. We also introduce and study two classes of spaces related to γ -sets.

AMS Subj. Classification: 54B20, 54D20, 54D55

Key Words: Selection principles, hyperspace, ω -cover, k-cover, γ -cover, γ -set, γ_k -set,

1. Introduction

The notation and terminology that we use in this paper are standard as in [6]. Let us fix some other notation and terminology. X will denote an infinite Hausdorff topological space. By 2^X we denote the family of all closed subsets of X. For a subset A of X and a family A of subsets of X we put

$$\begin{split} A^c &= X \setminus A \ \text{ and } \ \mathcal{A}^c = \{A^c : A \in \mathcal{A}\}, \\ A^+ &= \{F \in 2^X : F \subset A\}. \end{split}$$

We consider the following two topologies on 2^X (compare with [17], [13]):

- 1. the Z^+ -topology whose basic sets are of the form $(A^c)^+$, where A is a finite subset of X, and
- 2. the F^+ -topology (known as the upper Fell topology [7] or co-compact topology) having basic sets of the form $(A^c)^+$ with A a compact set in X.

Let \mathcal{A} and \mathcal{B} be sets whose elements are families of subsets of an infinite set X. Then (see [18], [12]):

 $S_1(\mathcal{A}, \mathcal{B})$ denotes the selection principle:

^{*}Supported by MNTR of Serbia, grant N⁰ 1233

For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(b_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, $b_n \in A_n$, and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

 $S_{fin}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis:

For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(B_n : n \in \mathbb{N})$ of finite sets such that for each $n \in \mathbb{N}$, $B_n \subset A_n$, and $\bigcup_{n \in \mathbb{N}} B_n$ is an element of \mathcal{B} .

The symbol $G_1(\mathcal{A}, \mathcal{B})$ [18] denotes an infinitely long game for two players, ONE and TWO, which play a round for each positive integer. In the *n*-th round ONE chooses a set $A_n \in \mathcal{A}$, and TWO responds by choosing an element $b_n \in A_n$. TWO wins a play $(A_1, b_1; \dots; A_n, b_n; \dots)$ if $\{b_n : n \in \mathbb{N}\} \in \mathcal{B}$; otherwise, ONE wins.

An open cover \mathcal{U} of a space X is an ω -cover [8] (resp. k-cover [16]) if X does not belong to \mathcal{U} and every finite (resp. compact) subset of X is contained in a member of \mathcal{U} . Therefore, we assume that spaces we consider are non-compact. We shall also suppose that all covers are countable. An open cover \mathcal{U} of X is called a γ -cover [8] if it is infinite and each $x \in X$ belongs to all but finitely many elements of \mathcal{U} . Notice that it is equivalent to the assertion: Each finite subset of X belongs to all but finitely many members of \mathcal{U} . In a natural way we introduce a stronger notion.

Definition 1.1. An open cover of a space X is called a γ_k -cover of X if each compact subset of X is contained in all but finitely many elements of \mathcal{U} and X is not a member of the cover.

For a topological space X we denote:

- 1. Ω the family of ω -covers of X;
- 2. \mathcal{K} the family of k-covers of X;
- 3. Γ the family of γ -covers of X;
- 4. Γ_k the family of γ_k -covers of X.

Let us observe that we have

$$\Gamma_k \subset \Gamma \subset \Omega, \quad \Gamma_k \subset \mathcal{K} \subset \Omega.$$

In [8], Gerlits and Nagy introduced the following notion: a space X is a γ -space (or a γ -set) if each ω -cover \mathcal{U} of X contains a countable family $\{U_n : n \in \mathbb{N}\}$ which is a γ -cover of X. They have also proved that the γ -set

property of a space X is equivalent to the statement that X satisfies the selection property $S_1(\Omega, \Gamma)$. It was shown in [12] that the γ -set property is equivalent also to the selection hypothesis $S_{fin}(\Omega, \Gamma)$.

A space X is said to be Fréchet-Urysohn if for each $A \subset X$ and each $x \in \overline{A}$ there is a sequence $(x_n : n \in \mathbb{N})$ in A converging to x. X is strongly Fréchet-Urysohn if for each sequence $(A_n : n \in \mathbb{N})$ of subsets of X and each point $x \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$ there is a sequence $(x_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, $x_n \in A_n$ and $(x_n : n \in \mathbb{N})$ converges to x.

For a Tychonoff space X $C_p(X)$ denotes the space of all continuous real-valued functions on X endowed with the pointwise topology. Gerlits and Nagy [8] have shown the following result (see also [1]).

Theorem 1.1. For a Tychonoff space X the following statements are equivalent:

- (a) $C_p(X)$ is a Fréchet-Urysohn space;
- (b) $C_p(X)$ is a strongly Fréchet-Urysohn space;
- (c) X is a γ -set.

The investigation of the same kind for function spaces $C_k(X)$ of continuous real-valued functions on X with the compact-open topology has been done in [16] and [15].

In [18], it was proved:

Theorem 1.2. For a space X the following two statements are equivalent:

- (a) X is a γ -set.
- (b) ONE has no winning strategy in the game $G_1(\Omega, \Gamma)$ on X.

We shall prove here that similar results concerning γ -sets and their variations can be obtained in terms of special hyperspace topologies on 2^X . Let us mention that the Fréchet-Urysonh property in hyperspaces was studied in [3] and [9].

In Section 2 we consider the space 2^X with the Z^+ -topology. In Section 3 we define two classes of sets related to γ -sets and study some their properties. In Section 4 we study another class of spaces related to γ_k -covers.

2. γ -sets and the space $(2^X, \mathsf{Z}^+)$

The first our result in this section is similar to Theorem 1.1.

Theorem 2.1. For a space X the following statements are equivalent:

- (1) $(2^X, Z^+)$ is a Fréchet-Urysohn space;
- (2) $(2^X, Z^+)$ is a strongly Fréchet-Urysohn space;
- (3) Each open set $Y \subset X$ is a γ -set.

Proof. (1) \Rightarrow (3): Let Y be an open subset of X and let \mathcal{U} be an ω -cover of Y. Put $\mathcal{A} := \mathcal{U}^c$. Then $\mathcal{A} \subset 2^X$ and $Y^c \in Cl_{\mathsf{Z}^+}(\mathcal{A})$. Indeed, let $(F^c)^+$ be a Z^+ -neighborhood of Y^c . Then F is a finite subset of Y so that there is a $U \in \mathcal{U}$ such that $F \subset U$. Thus $Y^c \subset U^c \subset F^c$, i.e. $U^c \in (F^c)^+ \cap \mathcal{A}$. Therefore, $Y^c \in Cl_{\mathsf{Z}^+}(\mathcal{A})$. Since, by (1), $(2^X, \mathsf{Z}^+)$ is Fréchet-Urysohn, there is a sequence $(A_n : n \in \mathbb{N})$ in \mathcal{A} converging to Y^c . Let for each $n \in \mathbb{N}$, $U_n = A_n^c$ and show that $\{U_n : n \in \mathbb{N}\} \subset \mathcal{U}$ is a γ -cover of Y.

Let $y \in Y$. Then $(\{y\}^c)^+$ is a Z^+ -neighborhood of Y^c and thus there is $n_0 \in \mathbb{N}$ such that for each $n > n_0$ one has $A_n \in (\{y\}^c)^+$. This implies $y \in A_n^c = U_n$ for all $n > n_0$, which means that $\{U_n : n \in \mathbb{N}\}$ is a selector for \mathcal{U} . Hence (3) holds.

- $(3)\Rightarrow (1)$: Let \mathcal{A} be a subset of 2^X and let $S\in Cl_{\mathsf{Z}^+}(\mathcal{A})$. Then $\mathcal{U}:=\mathcal{A}^c$ is an ω -cover of the open set $S^c\subset X$, as can be easily shown. Applying (3) to S^c and \mathcal{U} we find a countable family $\{U_n:n\in\mathbb{N}\}\subset\mathcal{U}$ which is a γ -cover of S^c . We claim that the sets $A_n=U_n^c,\ n\in\mathbb{N}$, form a sequence in \mathcal{A} which Z^+ -converges to S. Suppose that $(F^c)^+$ is a Z^+ -neighborhood of S. Then F is a finite subset of S^c , hence there exists $n_0\in\mathbb{N}$ such that $F\subset U_n$ whenever $n>n_0$. It follows that for each $n>n_0$ we have $A_n\in(F^c)^+$, i.e. that $(A_n:n\in\mathbb{N})$ really converges to S and $(2^X,\mathsf{Z}^+)$ is a Fréchet-Urysohn space.
- (2) \Leftrightarrow (3): It is shown similarly by using the fact that the γ -set property is equivalent to $\mathsf{S}_1(\Omega,\Gamma)$.

It is natural to ask what happens if X is a γ -set, i.e. to find out a property of $(2^X, \mathsf{Z}^+)$ that is equivalent to X is a γ -set.

Theorem 2.2. If a space X is a γ -set, then each dense subset of $(2^X, \mathsf{Z}^+)$ is sequentially dense.

Proof. Let \mathcal{D} be a dense subset of $(2^X, \mathsf{Z}^+)$ and let $\mathcal{U} := \mathcal{D}^c$. Then \mathcal{U} is an ω -cover of X; it is proved similarly to the corresponding part of the proof (3) implies (1) in the previous theorem. Since X is a γ -set there is a set $\{U_n : n \in \mathbb{N}\} \subset \mathcal{U}$ which is a γ -cover of X. For each $n \in \mathbb{N}$, let $D_n = U_n^c$. We show that the set $\mathcal{S} := \{D_n : n \in \mathbb{N}\} \subset \mathcal{D}$ is sequentially dense in $(2^X, \mathsf{Z}^+)$.

Let $A \in (2^X, \mathbb{Z}^+)$. Suppose, to the contrary, that no sequence in \mathcal{S} converges to A. Let $(D_{n_m} : m \in \mathbb{N})$ be a sequence in \mathcal{S} . Then there is a

neighborhood $(F^c)^+$ of A such that the set $M = \{m \in \mathbb{N} : D_{n_m} \notin (F^c)^+\}$ is infinite. It means that infinitely many sets U_{n_m} from \mathcal{U} do not contain F. Therefore, \mathcal{U} is not a γ -cover of X and we have a contradiction.

3. γ_k -sets and the space $(2^X, \mathsf{F}^+)$

To get results for the space $(2^X, \mathsf{F}^+)$ similar to Theorem 2.1 we introduce the following two classes of spaces similar to the class of γ -sets. A space X is said to be a γ_k -set if each k-cover \mathcal{U} of X contains a countable set $\{U_n : n \in \mathbb{N}\}$ which is a γ_k -cover of X. Call X a γ'_k -set if it satisfies the selection hypothesis $\mathsf{S}_1(\mathcal{K},\Gamma_k)$.

We begin by a characterization of γ'_k -sets.

Theorem 3.1. For a space X the following are equivalent:

- (1) X satisfies $S_{fin}(\mathcal{K}, \Gamma_k)$;
- (2) X satisfies $S_1(\mathcal{K}, \Gamma_k)$, i.e. X is a γ'_k -set;
- (3) ONE does not have a winning strategy in the game $G_1(K, \Gamma_k)$ played on X.

Proof. We have to prove only non-trivial cases (1) implies (2) and (2) implies (3).

 $(1) \Rightarrow (2)$: Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of (countable) k-covers of X; suppose that for each $n \in \mathbb{N}$, $\mathcal{U}_n = \{U_{n,m} : m \in \mathbb{N}\}$. For each $n \in \mathbb{N}$, let \mathcal{V}_n denote the family of sets of the form $U_{1,k_1} \cap U_{2,k_2} \cap \cdots \cap U_{n,k_n}$. Then $(\mathcal{V}_n : n \in \mathbb{N})$ is a sequence of k-covers of X. Since X satisfies $S_{fin}(\mathcal{K}, \Gamma_k)$ choose for each $n \in \mathbb{N}$ a finite subset \mathcal{W}_n of \mathcal{V}_n such that $\bigcup_{n \in \mathbb{N}} \mathcal{W}_n$ is a γ_k -cover of X. (Note that some \mathcal{W}_n 's can be empty.)

As $\bigcup_{n\in\mathbb{N}} \mathcal{W}_n$ is infinite and all \mathcal{W}_n 's are finite, there exists a sequence $m_1 < m_2 < \cdots < m_p < \cdots$ in \mathbb{N} such that for each $i \in \mathbb{N}$ we have $\mathcal{W}_{m_i} \setminus \bigcup_{j < i} \mathcal{W}_{m_j} \neq \emptyset$. Choose an element $W_{m_i} \in \mathcal{W}_{m_i} \setminus \bigcup_{j < i} \mathcal{W}_{m_j}$, $i \in \mathbb{N}$, and fix its representation $W_{m_i} = U_{1,k_1} \cap U_{2,k_2} \cap \cdots \cap U_{m_i,k_{m_i}}$ as above.

Since each infinite subset of a γ_k -cover is also a γ_k -cover, we have that the set $\{W_{m_i}: i \in \mathbb{N}\}$ is a γ_k -cover of X. For each $n \leq m_1$ let $U_n \in \mathcal{U}_n$ be the n-th coordinate of W_{m_1} in the chosen representation of W_{m_1} , and for each $n \in (m_i, m_{i+1}], i \geq 1$, let $U_n \in \mathcal{U}_n$ be the n-th coordinate of $W_{m_{i+1}}$ in the above representation of $W_{m_{i+1}}$. Observe that each $U_n \supset W_{m_{i+1}}$. Therefore, we obtain a sequence $(U_n : n \in \mathbb{N})$ of elements, one from each \mathcal{U}_n , which form a γ_k -cover of X and show that X satisfies $S_1(\mathcal{K}, \Gamma_k)$.

 $(2) \Rightarrow (3)$: Let σ be a strategy for ONE in $\mathsf{G}_1(\mathcal{K}, \Gamma_k)$ and let the first move of ONE be a k-cover $\sigma(\emptyset) = \{U_{(1)}, U_{(2)}, \cdots, U_{(n)}, \cdots\}$. Suppose that for each finite sequence s of natural numbers of length $\leq m$, U_s has been already defined. Then define $\{U_{(n_1,\dots,n_m,k)}: k \in \mathbb{N}\}$ to be the set

$$\sigma(U_{(n_1)}, U_{(n_1,n_2)}, \cdots, U_{(n_1,\cdots,n_m)}) \setminus \{U_{(n_1)}, U_{(n_1,n_2)}, \cdots, U_{(n_1,\cdots,n_m)}\}.$$

Because each compact subset of X belongs to infinitely many elements of a k-cover, we have that for each s a finite sequence of natural numbers, the set $\{U_{s \frown (n)} : n \in \mathbb{N}\}$ is a k-cover. Apply (2) and for each s choose $n_s \in \mathbb{N}$ such that $\{U_{s \frown (n_s)} : s$ a finite sequence of natural numbers $\}$ is a γ_k -cover of X. Inductively define a sequence $n_1 = n_{\emptyset}$, $n_{k+1} = n_{(n_1, \dots, n_k)}$, for $k \ge 1$. Then

$$U_{(n_1)}, U_{(n_1,n_2)}, \cdots, U_{(n_1,\cdots,n_k)}, \cdots$$

is a γ_k -cover, and because it is actually a sequence of moves of TWO in a play of the game $\mathsf{G}_1(\mathcal{K},\Gamma_k)$, σ is not a winning strategy for ONE.

Proposition 3.2. The class $S_1(\mathcal{K}, \Gamma_k)$ is an inverse invariant of perfect irreducible mappings.

Proof. Let $f: X \to Y$ be a perfect irreducible mapping from a space X onto a space Y satisfying $\mathsf{S}_1(\mathcal{K},\Gamma_k)$ and let $(\mathcal{U}_n:n\in\mathbb{N})$ be a sequence of k-covers of X. Then $(f^\#(\mathcal{U}_n):n\in\mathbb{N})$ (where $f^\#(\mathcal{U}_n)=\{f^\#(U):U\in\mathcal{U}_n\}$ and $f^\#(U)=\{y\in Y:f^\leftarrow(y)\subset U\}\equiv Y\setminus f(X\setminus U)$) is a sequence of k-covers of Y as can be easily verified. Therefore, there is a sequence $(f^\#(U_n):n\in\mathbb{N})$ such that this collection is a γ_k -cover of Y and for each $n\in\mathbb{N},\,U_n\in\mathcal{U}_n$. Then $\{U_n:n\in\mathbb{N}\}$ is a γ_k -cover of X. Indeed, if K is a compact subset of X, then there is n_0 such that for all $n>n_0$, $f(K)\subset f^\#(U_n)$. So, for all $n>n_0$ we have $K\subset f^\leftarrow f^\#(U_n)\subset U_n$.

Theorem 3.3. A space X satisfies $S_1(\mathcal{K}, \Gamma_k)$ if and only if each finite power of X satisfies $S_1(\mathcal{K}, \Gamma_k)$.

Proof. Let X belongs to the class of spaces satisfying $S_1(\mathcal{K}, \Gamma_k)$ and let $(\mathcal{W}_n : n \in \mathbb{N})$ be a sequence of k-covers of X^m for a fixed natural number m. By a lemma in [4] for each $n \in \mathbb{N}$ there is a k-cover \mathcal{U}_n of X such that $\{U^m : U \in \mathcal{U}_n\}$ is a refinement of \mathcal{W}_n . Because $X \in S_1(\mathcal{K}, \Gamma_k)$, choose a sequence $(U_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, $U_n \in \mathcal{U}_n$ and $\{U_n : n \in \mathbb{N}\}$ is a γ_k -cover of X. For each $n \in \mathbb{N}$, let W_n be an element in \mathcal{W}_n with $(U_n)^m \subset W_n$. Then the sequence $(W_n : \in \mathbb{N})$ shows that X^m belongs to the class $S_1(\mathcal{K}, \Gamma_k)$. Let K be a compact subset of X^m . Then the union $\bigcup_{i \leq m} p_i(K) = C$ of its projections onto X is a compact subset of X and thus there is $n_0 \in \mathbb{N}$ such that $C \subset U_n$ for each $n > n_0$. Therefore, for each $n > n_0$ we have $K \subset C^m \subset (U_n)^m \subset W_n$.

Theorem 3.4. For a space X the following are equivalent:

- (a) $(2^X, F^+)$ is a strongly Fréchet-Urysohn space;
- (b) Each open set $Y \subset X$ is a γ'_k -set.

Proof. $(a) \Rightarrow (b)$: Let Y be an open subset of X and let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of k-covers of Y. Then $(\mathcal{A}_n \equiv \mathcal{U}_n^c : n \in \mathbb{N})$ is a sequence of subsets of 2^X and $Y^c \in \bigcap_{n \in \mathbb{N}} Cl_{\mathsf{F}^+}(\mathcal{A}_n)$. As $(2^X, \mathsf{F}^+)$ is strongly Fréchet-Urysohn, for each n choose an element $A_n \in \mathcal{A}_n$ such that the sequence $(A_n : n \in \mathbb{N})$ F^+ -converges to Y^c . For each $n \in \mathbb{N}$ put $U_n = A_n^c$. We prove that $\{U_n : n \in \mathbb{N}\}$ is a γ_k -cover of Y.

Let K be a compact subset of Y. The set $(K^c)^+$ is an F^+ -neighborhood of Y^c and thus $A_n \in (K^c)^+$ for all but finitely many n. So, for all but finitely many n we have $K \subset A_n^c = U_n$, i.e. $\{U_n : n \in \mathbb{N}\}$ is indeed a γ_k -cover of Y.

 $(b) \Rightarrow (a)$: Let $(\mathcal{A}_n : n \in \mathbb{N})$ be a sequence of subset of 2^X and let $S \in \bigcap_{n \in \mathbb{N}} Cl_{\mathsf{F}^+}(\mathcal{A}_n)$. Then for each $n \in \mathbb{N}$, $\mathcal{U}_n := \mathcal{A}_n^c$ is a k-cover of the set S^c open in X. Let us show the last assertion. Take a compact set C in S^c . Then $(C^c)^+$ is an F^+ -neighborhood of S so that $(C^c)^+$ meets \mathcal{A}_n in some B_n . It implies $C \subset B_n^c \in \mathcal{U}_n$, i.e. \mathcal{U}_n is a k-cover of S^c .

By assumption there are sets $U_n \in \mathcal{U}_n$, $n \in \mathbb{N}$, such that $\{U_n : n \in \mathbb{N}\}$ is a γ_k -cover of S^c . We prove that the sets $A_n = U_n^c$, $n \in \mathbb{N}$, form a sequence F^+ -converging to S and showing that $(2^X, \mathsf{F}^+)$ is strongly Fréchet-Urysohn. Suppose $(K^c)^+$ is an F^+ -neighborhood of S. Then K is a compact subset of S^c and since $\{U_n : n \in \mathbb{N}\}$ is a γ_k -cover of Y^c , there is $n_0 \in \mathbb{N}$ such that $K \subset U_n$ for $n > n_0$. It follows that for all $n > n_0$ we have $A_n \in (K^c)^+$, i.e. that $(A_n : n \in \mathbb{N})$ F^+ -converges to S. Therefore, $(2^X, \mathsf{F}^+)$ is a strongly Fréchet-Urysohn space.

Similarly we can prove the following result.

Theorem 3.5. For a space X the following are equivalent:

- (a) $(2^X, F^+)$ is a Fréchet-Urysohn space:
- (b) Each open set $Y \subset X$ is a γ_k -set.

We do not know the answer to the following question.

Problem 3.6. Is the γ'_k -set property equivalent to the γ_k -set property?

4. $\bigcup_{fin}(\Gamma_k, \mathcal{K})$

In [10] (see also [11]), Hurewicz introduced a covering property of a space X, nowadays called the *Hurewicz property* in this way: for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathcal{U}_n and each $x \in X$ belongs to $\cup \mathcal{V}_n$ for all but finitely many n. In [14] it was shown that this property is actually an S_{fin} -type property. In [18] a property weaker than the Hurewicz property and denoted by $U_{fin}(\Gamma, \Omega)$ was introduced (see also [12]), and in [2] it was studied in some details. In this section we shall consider the following class of spaces.

The symbol $\bigcup_{fin}(\Gamma_k, \mathcal{K})$ denotes the selection principle: For each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of γ_k -covers of X there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that each \mathcal{V}_n is a finite subset of \mathcal{U}_n , and either $\{\cup \mathcal{V}_n : n \in \mathbb{N}\}$ is a k-cover for X, or for some $n \in \mathbb{N}$, $X = \cup \mathcal{V}_n$.

We shall show now that this selection principle is of the S_{fin} type.

An open cover \mathcal{U} of a space X is said to be large if each point of X belongs to infinitely many elements of \mathcal{U} . A countable large cover \mathcal{U} of X is k-weakly groupable (see [4], [5]) if there is a partition of \mathcal{U} into infinitely many finite, pairwise disjoint subsets \mathcal{U}_n such that each compact subset of X is contained in $\cup \mathcal{U}_n$ for some $n \in \mathbb{N}$. Let Λ^{k-wgp} denote the family of k-weakly groupable large covers of a space.

Theorem 4.1. For a space X the following assertions are equivalent:

- (1) X has property $\bigcup_{fin}(\Gamma_k, \mathcal{K})$;
- (2) X has property $S_{fin}(\Gamma_k, \Lambda^{k-wgp})$;
- (3) For each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of γ_k -covers of X there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathcal{U}_n , \mathcal{V}_n 's are pairwise disjoint and for each compact set $K \subset X$ there exists some $n \in \mathbb{N}$ with $K \subset \cup \mathcal{V}_n$.

Proof. (1) \Rightarrow (2): Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of γ_k -covers of X. Because each infinite subset of a γ_k -cover is also a γ_k -cover one can suppose that \mathcal{U}_n 's are pairwise disjoint. Also, without loss of generality, one can assume that for each $n \in \mathbb{N}$, no finite subset of \mathcal{U}_n is a cover of X.

Apply (1) to find a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ of finite sets such that for each $n \in \mathbb{N}$, $\mathcal{V}_n \subset \mathcal{U}_n$ and $\{\cup \mathcal{V}_n : n \in \mathbb{N}\}$ is a k-cover of X. This implies that $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ is a large cover of X. Its partition $\{\mathcal{V}_n : n \in \mathbb{N}\}$ shows that $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ is actually k-weakly groupable.

 $(2) \Rightarrow (3)$: Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of γ_k -covers of X. As in (1) \Rightarrow (2) one can suppose that \mathcal{U}_n and \mathcal{U}_m are disjoint for distinct n and m, and else that all covers are countable. For $n \in \mathbb{N}$ let $\mathcal{U}_n = \{U_{n,k} : k \in \mathbb{N}\}$. Define new γ_k -covers \mathcal{V}_n , $n \in \mathbb{N}$, in the following way:

$$\mathcal{V}_n = \{U_{1,k} \cap U_{2,k} \cap \cdots \cap U_{n,k} : k \in \mathbb{N}\} \setminus \{\emptyset\}.$$

We again may suppose that $\mathcal{V}_n \cap \mathcal{V}_m = \emptyset$ for $m \neq n$.

Apply (2) to this new sequence $(\mathcal{V}_n : n \in \mathbb{N})$ to choose a sequence $(\mathcal{W}_n : n \in \mathbb{N})$ of finite sets such that for each $n \in \mathbb{N}$, $\mathcal{W}_n \subset \mathcal{V}_n$ (and so \mathcal{W}_n 's are pairwise disjoint) and $\bigcup_{n \in \mathbb{N}} \mathcal{W}_n$ is a k-weakly groupable large cover of X. This means that $\bigcup_{n \in \mathbb{N}} \mathcal{W}_n = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, where \mathcal{H}_n 's are finite, pairwise disjoint and each compact set K in X is contained in $\cup \mathcal{H}_n$ for some $n \in \mathbb{N}$.

Since sets W_n and \mathcal{H}_n are finite, there are $i \in \mathbb{N}$ such that $W_1 \cap \mathcal{H}_j = \emptyset$ for j > i. Let i_1 be the smallest such natural number. Define \mathcal{C}_1 to be the set of all $U_{1,k}$ such that $U_{1,k}$ is a term in the above representation of a member of \mathcal{H}_j for some $j \leq i_1$. Let $i_2 > i_1$ be the minimal natural number such that $W_2 \cap \mathcal{H}_j = \emptyset$ whenever $j > i_2$. Define \mathcal{C}_2 to be the set of all $U_{2,k}$, where $U_{2,k}$ is a term in the representation of an element of \mathcal{H}_j for some $j \leq i_2$. And so on.

We get the sequence $(C_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$ C_n is a finite subset of U_n , and consequently $C_n \cap C_m = \emptyset$ for $m \neq n$. We claim that the sequence $(C_n : n \in \mathbb{N})$ witnesses for $(U_n : n \in \mathbb{N})$ that X satisfies (3).

Let $K \subset X$ be a compact set. There exists some $n \in \mathbb{N}$ such that $K \subset \cup \mathcal{H}_n$. Pick the smallest k such that $n \leq i_k$. Then $(\mathcal{W}_1 \cup \cdots \cup \mathcal{W}_{k-1}) \cap \mathcal{H}_n = \emptyset$. That implies that each element H in \mathcal{H}_n has in its (above chosen) representation a set of the form $U_{k,j}$ (such elements are in \mathcal{C}_k) and therefore we have $\cup \mathcal{H}_n \subset \cup \mathcal{C}_k$. It follows $K \subset \cup \mathcal{C}_k$ and (3) holds.

$$(3) \Rightarrow (1)$$
: It is evident by the definition of $\bigcup_{fin}(\Gamma_k, \mathcal{K})$.

References

- [1] A. V. Arhangel's kii. Topological Function Spaces, Kluwer Academic Publishers, 1992.
- [2] L. Babinkostova, Lj.D.R. Kočinac, M. Scheepers. Combinatorics of open covers (VIII), *Topology Appl.* (to appear).
- [3] C. Costantini, Ĺ. Holá, P. Vitolo. Tightness, character and related properties of hyperspace topologies, preprint, 2002.
- [4] G. Di Maio, Lj.D.R. Kočinac, E. Meccariello. Applications of k-covers, preprint, 2002.

[5] G. Di Maio, Lj.D.R. Kočinac, E. Meccariello. Selection principles and hyperspace topologies, preprint, 2003.

- [6] R. Engelking. General Topology, PWN, Warszawa, 1977.
- [7] J. Fell. A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff spaces. *Proc. Amer. Math. Soc.*, **13**, 1962, 472–476.
- [8] J. Gerlits, Zs. Nagy. Some properties of C(X), I. Topology Appl., 14, 1982, 151-161.
- [9] J.-C. Hou. Character and tightness of hyperspaces with the Fell topology. *Topology Appl.*, **84**, 1998, 199–206.
- [10] W. Hurewicz. Über eine Verallgemeinerung des Borelschen Theorems. *Math. Z.*, **24**, 1925, 401–421.
- [11] W. Hurewicz. Über Folgen stetiger Funktionen. Fund. Math., 9, 1927, 193–204.
- [12] W. Just, A. W. Miller, M. Scheepers, P.J. Szeptycki. Combinatorics of open covers (II). *Topology Appl.*, **73**, 1996, 241–266.
- [13] Lj.D.R. Kočinac. The Reznichenko property and the Pytkeev property in hyperspaces, preprint, 2003.
- [14] Lj.D.R. Kočinac, M. Scheepers. Combinatorics of open covers (VII): Groupability. Fund. Math., 179, 2003, 131–155.
- [15] Shou Lin, Chuan Liu, Hui Teng. Fan tightness and strong Fréchet property of $C_k(X)$. Adv. Math. (China), 23, 1994, 234–237 (in Chinese); MR. 95e:54007, Zbl. 808.54012.
- [16] R. A. McCoy. Function spaces which are k-spaces. Topology Proc., 5, 1980, 139–146.
- [17] H. Poppe. Eine Bemerkung über Trennungsaxiome in Raumen von abgeschlossenen Teilmengen topologisher Raume. Arch. Math., 16, 1965, 197–198.
- [18] M. Scheepers. Combinatorics of open covers (I): Ramsey Theory. Topology Appl., **69**, 1996, 31–62.

Faculty of Sciences and Mathematics University of Niš Višegradska 33 18000 Niš, SERBIA e-mail: lkocinac@ptt.yu Received 30.09.2003