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On the Superconvergent Spline Collocation Methods
for the Fredholm Integral Equations on Surfaces

Sanda Micula', G. Micula?

In this paper a special collocation method arising from certain choices of the collocation
node points and certain types of triangulation, for the Fredholm integral equations on surfaces
is presented. The approximating solution is a special polynomial spline function of two variables
on the surfaces and the proposed approximating method has the superconvergent properties.
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1. Introduction

Integral equations are an important subject within applied mathematics.
They are used as mathematical models for many and diverse phenomena and
processes. Also, integral equations occur as reformulations of other mathemat-
ical problems, such as partial differential equations with boundary conditions.
Such reformulations were leading to the very efficient approximating approach
known as boundary element method.

In this paper, a numerical spline collocation method is presented and
analyzed for the solution of Fredholm integral equations of the second kind of
the form
(1) u(P)— [W@K(P,Q)dsq = /(P), PeS

s
for a smooth or piecewise smooth bounded surface S in IR?, with kernel function
K(P,Q) to be absolutely integrable and to satisfy other properties which are
sufficient to imply the Fredholm Alternative Theorem (see Atkinson [2]) and f
continuos function u being the unknown solution.

In operator form this equation is

(2) (Z-K)u=f
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We investigate a certain type of collocation method based on piecewise
polynomial spline interpolation of the solution. Begining by triangulating S we
shall approximate the unknown function u(P) by polynomial spline functions
in a parametrization over the triangulation of S. The approximate form of the
solution is substituted into the equation and then the equation is forced to be
true at the collocation node points, leading to a system of linear equations for
determining the approximate solution.

When the surface S is smooth and the operator I is compact on C(S)
(see Atkinson [4] and Micula [8]), it is relatively easy to do an error analysis of
collocation. However, in most applications the surface S will only be piecewise
smooth, and in this case the analysis of collocation is more difficult. Also, a
lack of smoothness of the kernel function K (P, Q) may imply the K is no longer
compact, nor that any power of it is compact.

Another difficulty in the case where S is not smooth arises in the eval-
uation of the unit normal to the surface at points located on an edge or at a
corner of S. Also, there is a problem in defining the normal at the collocation
points which are common to more than one triangular face Ag, even for smooth
surfaces. To avoid all these problems, we consider only collocation methods
for which the collocation points are interior to each triangular face. This also
greatly simplifies the programming.

For some approximations of the solution, the function space needs to
be changed, namely C(S) must be enlarged to include piecewise polynomial
approximants. One way of doing this is by using the space L*°(S), the set of all
essentially bounded and Lebesgue measurable functions on S, with the essential
supremum norm || - ||eo-

We shall investigate special collocation method arising from certain choices
of the node points, and certain types of triangulation, which leads to supercon-
vergence for some collocation solution u, at the collocation nodes.

2. Interpolation, numerical integration on surfaces and colloca-
tion

We begin by giving some background knowledges of bivariate interpola-
tion theory needed in the description of collocation methods (see Atkinson [1],
[2]).

Let o denote the unit simplex in IR?, o := {(s,t) | 0 < s,t,5 +¢ < 1}.
Introduce u = 1—s—t. The coordinates (s, t,u) are called barycentric coordinates
on o.

Let g € C(o). We will approximate g by a polynomial interpolant p, :
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o — IR, of degree r,

(3) pr(s,t) = > cijs't!

4,70

itj<r
Since p, has f, = (r + 1)(r + 2)/2 (degrees of freedom), we will determine the
coefficients ¢; j; from f, interpolation conditions:

(4) pr(C_Ik;) = g(Qk)? k= 17"'7f7"

where the interpolation nodes will be chosen in the following way:

()

1+ (r—3)a 74+ (r—3j)a . L
Qi,j=< ( ) a] ( ]) >7 Za]ZOa Z+.7Sr
r r
These f, nodes form a uniform grid over o, and because we consider only nodes
that are interior to the triangular elements, we will work with 0 < a < 3" For

the given g € C(0), the formula

(6) pr(sit) = D g(aiy)liz(s,t)

0<i+5<r

define the unique polynomial of degree r that interpolates g at the nodes g; j,
where [; ; denote the corresponding Lagrange interpolation bases functions of
degree r obtained from the conditions l; (¢ ;) = 1, li j(gx) = 0, for I %= i or
k£ 3

Integrating the interpolation formula

(7) g(s,t) = > glaij)lij(s,t)
i+j<r
over o, we obtain the quadrature formula

() [ats.tidom 3 wigas)

0<i+j5<r

where w; j = / li j(s,t)do, the formula (8) has degree of precision at least .

To construct the interpolation and numerical integration on surface S,
we assume S to be a connected piecewise smooth surface in IR®. By this, we
mean S can be written as

(9) S=5USU..US;



158 S. Micula, G. Micula

with each S; the continuous image of a polygonal region in the plane

(10) Fj:R;j =38, j=1,.,J

onto
Generally, we will need to assume that the mappings F; are several times con-
tinuously differentiable.
To create triangulations for S, we first triangulate each R; and then map
this triangulation onto S;.
Let {A] | k=1,..,n;} be a triangulation of R;, and then define

Aiz,k = Fj(Ai,k)
This yields a triangulation of S, which we refer to collectively as T, = {Aq, ..., Ay}
and we suppose that 7, is a conforming triangulation (see Micula [8], p.15).

~ Let Ay be some element from 7y, and let it correspond to some Ay, say
Ap C Rj and Ay = Fj(Ag). Let {0g1,0k2,0k3} denote the vertices of Ay.

Define my, : o 1;1>Ak by
onto
(11) mg(s,t) = Fj(udg1 + tog o+ stk 3), (s,t) €0, u=1—-s—1

Now we can define interpolation and numerical integration over a tri-
angular surface element Ay by means of a similar formula over o. Recall the
uniform grid over o defined in (5), which we refer to collectively as {qi, ..., ¢, }.
For g € C(S), restrict g to some A € T, and define

fr
(12) (Png)(mi(s,t)) = Zg(mk(Qi))li(57t)7 P = my(s,t) € Ag

Now we present the general framework for the collocation and iterated
collocation methods for the equation (2).

Let X be a Banach space, let {X,, | m > 1} be a sequence of finite
dimensional subspaces. Let P, : X — X, be a linear operator with

(13) Prnu=1u, u€ X,
In attempting to solve the problem (2), we will approximate it by solving
(14) Pi(L = Kt = P f, um € Xi,

This is the form in which the method is implemented as it leads directly to
equivalent finite linear systems. To make an error analysis, we rewrite (14) in
the equivalent form

(15) (Z —PnK)upm = Pmf, um € X
We have the following result:
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Theorem 1. [8, p.16] Let X be a Banach space, K : X — X a bounded
operator with T — IC : X L X, Assume that

onto

(16) IK = PnK|| — 0 as m — oo

Then for all sufficiently large m, say m > N, the operator (I — P, K)~! exists
as a bounded operator from X to X. Moreover, it is uniformly bounded

(17) sup |[(Z = PmK) 7Y < oo.
m>N

For the solutions of (2) and (15)

(18) U — Uy, = (T — PpK) " (u — Ppu)
and
1 _
(19) m“u — Prtal| < [t = wml| < (T = Prmk0) | - [l — Pru|

This leads to ||u—un,|| converging to zero at exactly the same speed as ||[u—Ppul|.

Of course, because Pp,u — v asm — oo, u € X and £ : X — X is
compact, it follows
(20) IK—=PnK|| — 0as m — oo

For the iterated collocation method, consider the iteration
(21) uF Y = 4 ku®, B =0,1,...

If w,, is the solution of the collocation equation (15), define the iterated
collocation solution by

Then
and
(24) (I - Kpm)ﬂm = f

Combining (15) and (24), we obtain v — 4, = K(u — u,,) and
(25) [l = A || < NI - llw = um|

which proves that the convergence of i, to u is at least as rapid as that of u,,
to u.
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Also, we see that (Z — P,,, k)" exists if (Z — KP,,) " exists.

In order to solve the equation (2) using a collocation method based on
a piecewise polynomial spline interpolation operator (12) we need to use the
enlarged space L*°(S) which include piecewise polynomial spline approximation
Prg.

The following theorem holds:

Theorem 2. [8,p.20] Assume S is a smooth surface in R® satisfying (9) and
(10) with each F; € C™2. Assume that equation (1) is uniquely solvable for
all functions f € C(S). Assume K : L®(S) — C(S) is compact and u €
CT™tY(S). Then for all sufficiently large n, say n > ng, the operators T — P,K
are invertible on C(S) and have uniformly bounded inverses. Moreover, for the
true solution u of (1) and the solution u, of (15)

(26) e = tnlloo < | (@ = Pk) ™| - llu = Prtl
Furthermore, if f € CTTY(S), then
(27) [ = tnlloo < O(R™), n > ng

Remarks.
1. This theorem can be easly generalized to piecewise smooth surfaces.
2. It is clear that the accurasy of collocation method based on piece-
wise polynomial spline interpolation depends on the degree of precision of the
interpolation formula.

3. Superconvergent collocation methods

Consider the integral equation (1).
Let T, = {A1,...,Ar} be a triangulation of S and my : ¢ — Ay be
defined as in (11). Recall the interpolation formula

fr
(28) g9(s,t) =Y glg;)lj(s,t), geC(S)
j=1
Let ;
(29) Png(mk(*s?t)) = Zg(mk(Qj))lj(‘S?t)? P = mk(‘s?t) € Ak
j=1

with the nodes {q1,...,qy, } and {l1,...,Is,} given by (5) and (6).
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Define a collocation method using (29). Substitute

fr
un(P) = Zun(vk,j)lj(sat)a Pemk(sat)EAk
J=1
(30) Vi = mk(qj), k=1,...,n

into (1). This leads to the linear system

n fr
un(v;) — ZZun(vk,j)/K(ui,mk(s,t))zj(s,t).

=1 j=1
(31) |(Dsmy X Dymy)(s,t)|do = f(vi), i=1,...,nf:

We have shown in Theorem 2. that under suitable assumptions this method has
the error
(32) lu — uplloo < O(hH-l)

where h is the mesh size of the triangulation 7,. Sometimes at the collocation
node points, the collocation method converges more rapidly than over all S, in
which case (o) — i (01)

max |u(v;) — Uy (v;
(33) lim S=n

n—o0 lu — un|lo

=0

Such methods are superconvergent at the collocation node points.

Let us examine more carefully the terms in (33). For simplicity, we work
with the solution 4, of the iterated collocation equation (24). This should cause
no problems, since we know that the convergence of 4, to u is at least as rapid
as that of the solution of the collocation equation (15) to u, and the inverses
for the collocation equation and iterated collocation equation are related by the
identities

(Z-KP,) ' = I4+KZ-P,K)'P,
(34) (Z-P.K)' = IT+P,(T-KP,) 'K

Moreover, @(v;) = uy,(v;) at all collocation nodes.
By looking at the linear system associated with

(35) (Z —KPp)(u—1,) = K(u — Ppu)
we have
(36) max |u(v;) — G, (v;)| < ¢ max |K(Z — Pp)u(v;)]

1<i<nf, 1<i<nf,
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(see [4, p. 449]). So, now we can focus on finding errors for K(Z — P, )u(v;).
First, we need some assumptions for the interpolation over o. Recall that
for g € C (o), we are considering interpolation of degree r over o:

fr

(37) 9(s,t) = (Lo9)(s,8) = D 9(a;)l;(s,t)
j=1

This leads to the numerical integration formula

(38) /g(s,t)da ~ / Log(s, t)do

1
which has a degree of precision of at least . Assume there is a value 0 < ap < =

such that for g; and [; defined with & = «, the formula (38) is exact for all
polynomials in o1, 09, where 07 = s+t — s> — st — 2, 09 = st — st — st?, of
degree < r + 1, i. e. has degree of precision r + 1. For the remainder of this
section, we will assume o = «y.
Now, let 7 C IR? be a planar triangle with vertices {v1, v2,v3} and define
the mapping m, : ¢ — 7 as in (11). For g € C(7), define
fr
(39) Lrg(z,y) =Y g(mr(g;))i(s,t)
Jj=1
which is a polynomial of degree r in the parametrization variables s and ¢,
interpolating g at the nodes {m.(q1),...,m-(qy,)}.
Define a numerical integration formula over 7 by

(10) [ stwwir = [ £ogwyir

By our earlier assumption on «g, this has degree of precision at least r + 1. In
what follows, for differentiable functions g, we will use the notation

O g(z,y)

k —

0<i<k

We have the following result.

Lemma 1. Let 7 be a planar right triangle and assume the two sides which form
the right angle have length h. Assume o = og. Let g € C™%(1),® € C'(7).
Then

(42) / B(,y)(T - Lr)g(z,y)dr

T

max { |DT+1g|, |Dr+2g|}
T

<ch+? [/(|q>| +|D®|)dr

T

where ¢ denotes a generic constant.
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Proof. Let p;(x,y) denote Taylor expansions of g around a suitable
point in 7, of degree i, for 4 = r, r + 1. Then, since g € C"2(7), we have that

(43) g = pilloo < A" | D" glloo, i=rr+1

with || - || denoting the uniform norm on C(7). From (43) it follows that

lpr+1 = Prllce < Mlg = Prailloo + 19 = Prlloo < Chr+2||Dr+2g||oo + Chr+2||Dr+2g||oo

(44) +ch™ D glloo = ch™ (R D™ gllo0 + (1D gl o)
Since ® € C*(7), there is a constant ®, such that
(45) [® — Polloc < ch DO

To shorten the notation, let L’T =7 — L;. We can write
(16) [ @Lgdr = [ ®L(g—pra)dr+ [(@ = 8L oy 11— py)ir

To see why (46) is true, note first that
(47) Lopr =0

since formula (11) has degree of precision r. Also, by our assumption that for
a = «ap, formula (38) has degree of precision r + 1, we have that

(48) /(I)Oﬁ;pr+1d7' =0

Then, using these facts, (46) follows from expanding the right side and
simplifying. Taking norms in (46) and using the bounds in (43), (44), and (45),

we have

/ <I>[,/ng7'

< L [ (@l + chllC) - o7
(49) (RID™ gl + 1D gll) - [ ID@Jd7
The term on the right of (49) is bounded by

e+ [ [l |D<1>r>dT] max {|D"+g), D72}

T
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which proves (42). [

This result can be extended to general triangles, but then the derivatives
of g and ® will involve the mapping m. from (11). Let h(7) denote the diameter
of 7 and h*(7) the radius of the circle inscribed in 7 and tangent to its sides.
Define

(50) r(r) = 110

G)

Assume that for our triangulations 7, = {A, }, n > 1, we have

(51) sup[ max_ 7(Ap )| < oo

n |Anx€Tn

Condition (51) prevents the triangles A, j from having angles which approach
0 as n — o0o. Then, Lemma 1. can be generalized to arbitrary triangles as
follows

Corollary 1. Let 7 be a planar triangle of diameter h, let g € C"™2(7) and
® € Cl(7). Assume a = ag. Then

(52)

/@(x,y)(z—ﬁr)g(x,y)dr{g C(T(T))hr-&-Q [/(|<I>|+|D<I>|)d7‘ m‘?x {|Dr+lg|’ |Dr+29|}

T

where c(r(7)) is some function of r(7), with r(7) from (50).

Proof. Let 7 be a right triangle. Then using a mapping of the form
(11) , mz : T — 7, we can write

(53)/‘P(x,y)(f—ﬁf)g(:ﬂ,y)dTZ|(Dsmk X Dtmk)M‘I’(mf(s,t))(f—ﬁf)g(mf(sat))df

T T

which shows that this case can be reduced to the case where 7 is a right
triangle whose two sides which form the right angle have length h, keeping in
mind that the derivatives of ® and g will depend on 7(7). Note that in this case
Dsmy. x Dymy. 1s a constant. n

We want to apply the above results to the individual subintegrals in

(54) Ku(vi) = /K(Uiamk(57t))u(mk(57t)) |(Dsmy, x Dymy)(s,t)| dr
k=1,

Let
9(@,y) = ulmy(s,t))[(Dsmy x Dymy)(s,t)|

(55) q)(xay) = K(Uiamk(svt))
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Then, with the definition of £, given in (39), the term in the right side of (36),
|K(Z — P,,)u(v;)| can be bounded by

(56) > | [ @@ (@ - Logla.ydr

In the following, by g € C*(S) we mean g € C(S) and g € C¥(S;) (i.e
go F; € C¥(Rj)), j =1,...,J, for R; and F; as in (9) and (10).

Theorem 3. Assume the hypotheses of Theorem 2. with each parametrization
function F; € C™3, assume u € C"2(S) and K € C'(S) with respect to Q.
Assume the triangulation T, of S satisfies (51). Then

R . r+2
(57) 1§Hilga¢)ffr |u(vi) — G (v;)] < ch

Proof. Following (36), we will bound

| max, [K(T =Py )u(vi)
using (56). On each triangle Ay, apply Lemma 1. or Corollary 1.. (c(r(7)) of
Corollary 1. will be denoted ¢ to simplify the notation.) Since v € C"+2(S) and
K € C'(S) with respect to @, we have that

(58) DQK|,|D'ul, i=r+1,r+2
are bounded.
Then, by (56)
n
- O < 7"—1—2/
(59) | ax, IK(Z - P,)u(vi)] < kz_:lch / dr
N k

Since there are n = O(h~2) triangles, and the integral in the right side of (59)
is the area of Ay, which is O(h?), (59) leads to

(60) | ax IK(Z — P, )u(vi)| < ch

By (36), this proves (57). [

So, for @ = «ay, the collocation method defined by (29) is superconvergent.
These results can still be improved, sometimes, using symmetric triangles.
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