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The spherical representations of the roselike curves being generated by hy(t;n,m,r,«)
and ep(t;n,m,r,a), the dual developable ruled roselike and hyperbolic surfaces and their graphs
are given. It is well-known that the roses are generated by natural mechanism on the plane.
Translation operations of curves and surfaces in generally from any Euclidean space E" to the
real sphere are given originally in this paper. The dual ruled or developable ruled surfaces
are obtained by the unit spherical representations of the planar or any dimensional Euclidean
space curves and surfaces.

Let 3(s) be the arclength reparametrization of £(t) = (a(t), 8(t), ¥(t)). Then, we may
construct the dual developable ruled surface 3(t,() = 3(t) A 8*(t) + ¢ B(t), ¢ €IR.

Let A(s) be the arclength reparametrized spherical curve obtained from the curve hy
(t;n,m,r,a). Then, we may obtain the dual ruled roselike surface A(t,{) = A(t) A A*(t) +
¢ AW), ¢ €IR.

Let x(t) be the spherical curve derived from the hyperbolic curve (acht, bsht, 0),
a,b€IR. Then, we may write the equation X (t,{) = x(t) A x*(t) + ¢ x(t), as the dual developable

ruled surface.

1. Introduction

1.1. Key Words: Hypotrochoid, epitrochoid, hypocycloid, epicycloid,
roselike curve, spherical representation, reparametrization, dual number, dual
sphere.

1.2. Reference Note: There exitsts a vast reference on the subjects,
for examle, references from [1] to [13] on roses, references from [14] to [20] on
dual spherical motions and references from [21] to [26] on differential geometry.
Hall, [13], presents trochoids, roses, and thorns in a clear way. Hacisalihoglu,
[17] and [18], explains the dual spherical motions very detaily. Aminov, [25] and
[26], presents the old and the contemporary geometric results I have used some
of them in this paper.
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In section 2 the fundamental definitions and well-known results about hy-
potrochoids, hypocycloids, epitrochoids, epicycloids, and pedals are presented.
In section 3 we give the definitions and the results of spatial motions and devel-
opable ruled surfaces. In section 4 some general results about dual developable
ruled roselike surfaces related with the arclength reparametrized curve §(t) of
the roselike curve ¢ (t) being generated by ep (t; 3,1,2,0) are derived. The
scope of this manuscript is to obtain some general instantaneous invariants of
dual spherical motions and the dual developable ruled roselike surfaces. One
figure about the rose being generated by ep (t; 3,1,2,0) and its spherical image
is given. Finally we give the graphs of the dual developable ruled roselike and
hyperbolic surfaces. I gratefully acknowledge the writer Hall who have written
in this paper’s reference [13] for his usefull and contemporary suggestions.

2. Trochoids, hypotrchoids, hypocycloids, epitrochoids, epicy-
cloids, roses, pedals, and thorns

2.1. Definition. From the references [1] to [13] we may write the
following definitions: “Pedals” will be used instead of “leaves” when describing
roselike curves. As for the thorns, we shall see that there are indeed curves with
a definite thorny appearance that are closely related to mathematical roses.

If two tangent circles have their centers on the same side of the common
tangent line, and one circle remains fixed while the other is rolled around it
without slipping, a hypotrochoid is traced by any point on a diameter or ex-
tended diameter of the rolling circle. If two tangent circles have their centers on
opposite sides of the common tangent line, and one circle remains fixed while
the other is rolled around it without slipping, an epitrochoid is traced by any
point on a diameter or extended diameter of the rolling circle. A hypocycloid is
a hypotrochoid for which the tracing point is on the circumference of the rolling
circle, and an epicyloid is an epitrochoid for which the tracing point is on the
circumference of the rolling circle. The term trochoid is used to refer to either
a hypotrochoid or an epitrochoid. Either radius, but not both, can be infinite,
so that cycloids and trochoids obtained by rolling a circle along a straight line,
and also certain spirals and involutes are covered by the nomenclature, but in
this paper we shall assume both radii are finite.

Since the graph of a trochoid depends on four parameters that are fixed
and one that is variable, all these quantities will be part of the notation. The
hypotrochoid denoted by hy (t;n,m,r,«) is generated by a rolling (moving) circle
of radius n, with rm the distance from the center of the rolling circle to the
tracing point. Assume the center of the fixed circle is at the origin and denote
the initial position of the tracing point (and the center of the rolling circle) by
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the angle a, measured from the positive x-axis. The corresponding epitrochoid
will be denoted by ep (t;n,m,r,«). If t is the counterclockwise angle from the
positive x-axis to the line joining the centers of the two circles, using e = cost
+ i sint, the parametric equations are easily derived.

2.2. The Parametric Equation of Hypotrochoid.

hy (tin,m,r,a) = {x[t]y[t]},

where
x [t] = (n —m) cos (t + &) + rm cos (”_mm b oz)
and

y [t] = (n — m) sin (t + &) — rm sin (% — a)

2.3. The Parametric Equation of Epitrochoid.

ep (tnmr,a) = {x [t]y[t]},
where
x [t] = (n + m) cos (t + @) — rm cos (M + oz)
and
y [t} = (n + m) sin (t + @) — rm sin (%77”” + a)

2.4. The Parametric Equations of The First Positive Pedal. The
first positive pedal of a curve C with respect to P is the locus of points where
straight lines through P meet tangents to C at right angles. A point on the
pedal is the foot of the perpendicular from P to a tangent line — hence gives the
name. The normal pedal of C with respect to P uses the normal line instead of
the tangent line. If C is given parametrically by x = f (t) and y = g (t), and P
is the origin, then the parametric equations of the first positive pedal are:

g'(t) (f() g'(t) — f'(t) g(t)) y(t) = IO (@) @) = (@) g(b)
(f'#)* + (g (f'(®)* + (¢'(t))?

These formulas used above may be found in the references [3] and [13].

z(t) =

3. Spatial motions and developable ruled surfaces

The formulas, definitions, and general results we have written in the
following may be found in the references from [14] to [21].

3.1. Definition. If, a,a* € IR, and ¢? = 0, then the combination A (¢)
= a + ea* is called a dual number. Hence ¢ is the dual unit. Dual numbers may
be considered as polynomials in €, €2 = 0. Dual numbers form an algebra, not a
field. The numbers ea* are called pure dual numbers. It is clear that (ca*) (ca*)
= 0. €a* has not an inverse in the algebra. But the other laws of the algebra
of dual numbers are the same as the laws of the algebra of complex numbers.
Hence dual numbers form a ring over the real number field. For example, two
dual numbers A(e) and B(e) are added componentwise. A(e)+B(e) = (a + b)
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+ ¢ (a* + b*), and they are multiplied by A(e).B(e)= ab + ¢ (a*b + ab*). For
the equality of A(e) and B(e) we write A(e) = B(e) & a = b, and a* = b*.
An oriented line in IR 3 may be given by two points on it, x and y, if P is any
nonzero parameter, the parametrized equation of the line is y = x + Pa, and
the moment of the vector a with respect to the origin Oisa* =xAa=1y A a.
This means that the direction vector a of the line, and its moment vector a* are
independent of the choice of the points of the line. The two vectors a and a* are
not independent of one another, they satisfy the equations, a?> = 1, and a.a* = 0.
The six components a;, a! (i = 1,2,3) of a and a* are Pliickerian homogeneous line
coordinates. This means that the two vectors a and a* determine the oriented
line. A point z is on the line of vectors a, a* if and only if z A a = a*. The set
of oriented lines in IR? is in one — to — one correspondence with pairs of vectors
in IR 3, and so we may expect to represent it as a certain six — dimensional set
in IR® of sixtuples of real numbers. We may take the space D? of triples of dual
numbers with coordinates Xj(g) = x1 + ez, Xo(e) = x9 + ez, X3(e) = x3 +
ex%. Each line in IR? is represented by the dual vector in D3. Consider A(e) =
a + ea*. A(e) is a dual unit vector, that is, A(e).A(e) = a.a + 2ea. a* = 1 if
we carry over the formal definition of the products of vectors to dual space. We
may give the following theorems without proof.

3.2. Theorem. The oriented lines in IR are in one—to—one correspon-
dence with the points of the dual unit sphere A(e).A(e) = 1 in D?, references

[14], {17], [18].

3.3. Theorem. The Euclidean motions in IR® are represented in D3
by the dual orthogonal matrices x = (1;;), za* = I, where, z;; are dual numbers,

references [14], [18], [19].

3.4. Theorem. The siz-parameter group of motions is the commutative
product of the three — parameter group of rotations, and the three — parameter
group of translations, references [18], [20], [22].

According to standard base in IR? we may write u = uje; + uses + uges,
uy = ugre] + upees + upzes.

3.5. Definition. If we write (u,uf) = (ui, ug, us, uy;, uge, Uss), then
u;,up;, (1=1, 2, 3), are called normed nonhomogeneous Pliickerian vector or
line coordinates. For g > 0 if we write v = g u instead of u, and v; = g u
instead of w then < v, vy >= 0, where vj = xAv. The six components of
the couple of (v, v§) = (gui, gua, gus, gus;, Suhy, guss) are called unnormed
homogeneous Pliickerian vector or line coordinates. The six, u;, uj;, i=1, 2,
3), normed nonhomogeneous Pliickerian line coordinates may be considered to
be the element (uy, ug, us, uf;, ufy, uls) in IRS, references [18], [19], [20].
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3.6. Definition. If x€IR? and x#0, then the norm |z(e)|| of x(e)
= x + ex* is defined by /z(e).z(c). Hence we have

*

lz(e)] = =] + e“n = lz(o)| (1%"”7;;)

[z [E

If the relations z.x =1 and z.z* = 0 hold simultaneously, then the
dual vector z(e) is called a dual unit vector. It is clear that for any dual vector

%, x # 0, is always a dual unit vector.

z(e) = x + ex*, the vector u(e) =

3.7. Definition. If z(¢) = z + ez is any dual unit vector and
P = x A z*, then the vectors x, x* are called Pliickerian vectors, where A
denotes the vectorical product.

The Pluckerian vectors x, z* determine the line L containing them
considered as orientable or a spear. We also call L the carrier of the spear,
and x the spear vector. With respect to 0, the vector z* is usually called the
moment of the spear. Let L be the set of all oriented lines in IR3, then it is

evident that L & x(¢) = x + ex*

4. Dual spherical motions and dual developable ruled surfaces
of hypotrochoids, epitrochoids and hyperbole

4.1. Definition. The sphere determined by z% + 22 + 22 = 1

and zi12] + z2x5 + zzxi = 0 is called the dual unit sphere with 0 as its
center. If we denote the real spheres by S2, S?, ..., S without pole points, and
the dual sphere by S?(¢) without pole points in IR?, IR3, ..., IR” and in IR?(¢),
respectively, it is clear that there are one-to—one correspondence between them,
that is, as topologically and as topologic continually we may write S? = S2(e).

4.2. Definition. If X(t,e) be a differentiable curve on the dual unit
sphere, depending on a t time parameter, it defines a differentiable family of
straight lines, then it is called a ruled surface of 3-dimensional space.

4.3. Definition. For a dual point X (&) on the dual unit sphere we

may write 23: zi(e) ei(e) = 23: z;i(e) ri(e) . Let
' i=1

=1
Xi(¢e) z1(e)
X(e) = | Xao(e) | and z(e) = | z2(e)
X3(e) 3(¢)

be the position vectors of X(g) and x(¢) with respect to E(e) = {e1(¢),e2(¢),e3(e)}
and R(e) = {ri(e),r2(¢),r3(¢)}. Then we may write:
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zi(e)=(ei(e).ri(e)) ri(e)+(ei(e).ra(e)) ra(e) +(eile).r3(e)) r3(e), i =1,2,3.
Taking e;(e).rx(¢) = i, and using the dual matrix
Ale) = ay(e) = (k) + e (aj) = A + eA”
we may write
X(e) = A(e)z(e) = (A +eA*) (z +ex*) = Az + ¢ (Az* + A%z + 2A*z")
X(E) = X + X",

If the matrix A(t,e) = A(t) + A*(¢) is a periodic function of the time
parameter t, that is, A (t + 2m,e) = A (t,e) the motion K/K’' is called a
closed motion, otherwise it is called an open motion. During the closed or open
motion K/K', the orbits of the fixed points of K are closed or open curves on
K’, then the corresponding ruled surfaces are closed surfaces or open surfaces in
K', where K’ is the fixed space in the motion.

4.4. Spherical images of the curves hypotrochoids, epitrochoids,
hypocycloids, epicycloids, pedals and hyperbole

Consider the curve ep (t; n,m,r,a) expressed in 2.3. Then, it is easy to
see that ep (t; 3,1,2,0) = (4 cost — 2 cosdt, 4 sint — 2 sin4t). Let S? be the
unit sphere x? + y2 + (z — 1)2= 1 with center (0,0,1), radius = 1, and tangent
to xy plane at the origin (0,0,0), without the pole point (0,0,2). Let (a,b,0) be
any point of the roselike curve being generated by ep (t; 3,1,2,0). Hence, we
may write the straight line passing through the points (0,0,2) and (a,b,0) by the

equation £ = ¥ = 22;2 Let («,8,y) be the intersection of the line and the

unit sphere without the pole point (0,0,2). If we use the point («,3,y) in the

straight line equation, then we may write § = % = 51, a = 22_'); , b=

% , and a? + b = % The equation of the unit sphere S? satisfies
the point («,83,y). Then, we have o® + 2 + (y—1)? = 1, anda? + (% =
7 (2 — 7). From these equations we may write a? + b?> = 24_%, or adding 4 to

each sides, a? + b? + 4 = %. From the previous results we may have

a(2-7) 4a b(2—7) 4b

* = 2 T2+ 4 A= 2 T2+ + 47
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2 (a®> + V)

Using the components of the roselike curve being generated by ep (t;
3,1,2,0) in the above equations, then it is easy to verify that we may write the
spherical image of the curve,

_ _(2cost — cos 4t 2sint — sindt 5 — 4 cos 3t
£ = (b = ( 3 —2cos 3t 7 3 — 2 cos 3t ’3—2cos3t>'

The graph of the transformation is given in the following figure.

’)l:

) fv: '”«.,x (D 0,1) o
! Ao N * -
‘ ,f’ L 3 P o (=2,0,0
“g:;b;"" ) :M ﬁ,j[/
©o-20 N& L. 020 y
7 =
(0,-4,0) L o (0.4.0)
7
reX
7 /<\.
~ (2.0,0)
//
= ”"(4,0,0)

The rose being generated by ep (t; 3,1,2,0) and its spherical image.

For the spherical curve & = (a(t), B(t), v(t)), it is possible to obtain
a curve 8 = (B1(s),02(s),03(s)) parametrized by arclength which has the same
trace as £. In fact, let

t
s =s(t) :Of||§’ (t)|| dt, t,to€ the domain of the curve £. Since & = ||¢'||  # 0,

the function s = s(t) has a differentiable inverse function s~! of s. Now set 3
= ¢o t. Clearly, |5 (s)|| = ||& (¢). %‘ = 1. This shows that 8 has the
same trace as & and is parametrized by arclength. It is usual to say that (3 is
a reparametrization of £ by arc length. This fact allows us to extend all local
concepts defined to the curve . Thus, we say that the curvature k(t) of £ at t
is the curvature of a reparametrization § of ¢ by arclength at the corresponding
point s = s(t). This is clearly independent of the choice of (. It is often
convenient to use t as a parameter istead of s in the reparametrized curve (.

4.5. Theorem. Let 3(t) be the arclength reparametrization of & (t)
= (a(t),B(t), v(t)). Then, we may construct the dual developable ruled surface
B(tC) =B(t) N B*(t) + ¢ B(t), where A denotes the vectorical product.
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Proof. Firstly, we must compute the dual curve

* _ _ 2 cost—cos 4t 2sint—sin 44 2 — 2 cos 3t
ﬁ(t)—OM/\ﬁ(t)— (0’0’1)/\( 3—2cos 3t 3—2cos3t’3—200s3t)
€1 €2 €3
B (t) = 0 0 1
2 cost—cos 4t 2sint—sin 4t 2 —2 cos 3t
3 — 2 cos 3t 3 — 2 cos 3t 3 — 2 cos 3t
/B* (t)_ _2sin t —sin 4t 2 cos t — cos 4t 0
- 3—2cos 3t 3—2cos 3t

where A denotes the vectorical product. Then, the dual unit curve is written by

the equation.

ﬂ(ts): 2 cost—cos 4t 2 sin t —sin 4t 2 — 2 cos 3t
) 3—2cos 3t > 3—2cos3t * 3—2cos 3t

-I—s( 2sint — sin 4t 2 cos t — cos 4t >
3 —2cos 3t ' 3 — 2cos 4t ’

where €2 = 0, that is, ¢ is the dual unit. The figure of the dual developable
ruled roselike surface B(t,e) = B(t) A [*(t) + ¢ B(t) is the following:

The dual developable ruled roselike surface related with ep (t; 3, 1, 2, 0),
B (6,0) = B(t) A B*(t) + ¢ B(t), ¢ €IR.

4.6. Theorem. Let \(t) be the arclength reparametrized spherical
curve obtained from the curve hy (t;n,m,r,a). Then, we may also obtain the
dual developable ruled roselike surface A(t,() = \(t) A X*(t) + ( A(t), where
A denotes the vectorical product.

Proof. If we use the previous explanations, the proof is evidence.

4.7. Theorem. Let z(t) be the spherical curve derived from the hy-
perbolic curve (acht, bsht, 0), a,b€IR. Then, we may write the equation X(t,)
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= z(t) N z*(t) + Cx(t), ( €IR as the dual ruled surface, where N\ denotes the
vectorical product.

Proof. The proof is given in the explanations of 4.8 and 4.9:

4.8. Spherical image of the hyperbolic curve (acht, bsht, 0)

(x.y,2)
(0,0,1)

-
——
_———
—~——

&(t) = (acht, bsht, 0)

Consider the hyperbolic curve (asect, btgt, 0), or (acht, bsht, 0). Let S?
be the unit sphere x>+y?+(z — 1) = 1, with center (0,0,1), radius = 1, and
tangent to xy plane at the origin (0,0,0), without the pole point (0,0,2). Let
(acht, bsht, 0) be any point of the hyperbolic curve. Then we may write the
equation of the straight line passing through the points (0,0,2) and (acht, bsht,
0) by 2L = A = 22;2 From the last equation we may write acht =

2 2
%,bsht = 22Ty27 and a’ch?t 4+ b?sh?t = 4%_45’2). If we put the values x,y
in the equation of S? we have @ (2-2)% + % (2-2)% = 2(2-2),

dacht _ Absht _ 2(a2ch2t+b%sh2t) .
T+t Y T wamireswrra d 2 = Ggmrpgerry that s,
the spherical image of the hyperbole is

xr =

¢ = 4acht 4bsht 2(a?ch®t + b?sh?t)
~ \a2ch?t + b2sh2t + 4’ a2ch?t + b2sh?t +4° a2ch?t + b2sh?t +4 )

If we write a = 1 and b = 2, we have

£t) = 4cht 8 sht  2(1 + 5sh?t)
 \ 54+ 5sh2t’ 54 5sh?t’ 54 bsh2t
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We may write the curve £(t) as an arclength reparametrized curve. The
line moving parallel to Oz axis and support to the arclength reparametrized
spherical £(t) curve derives the developable ruled surface which appears in the
following figure. In reality, the developable surface is equivalent to the dual de-
velopable ruled surface X(t,{) = £(t) A &*(t) + ((0,0,1) where £*(t) is the dual
curve of the spherical representation £(t), ¢ €IR , and A denotes the vectorical
product.

The dual developable ruled surface X(t,() = £(t) A £*(t) + ¢(0,0,1), ¢ €IR.

4.9. The dual curve £*(t) of the curve £(t).
To find the dual curve £*(t) used in the above expressions we must com-
pute the vectorial product OM A&, such that

4cht 8sht —3 + 5sh’t

&0 = \55am 5402 5oz ) GO
€1 €2 e3
&) = 0 0 1
4cht 8sht —34+55h2t

5+5sh2t  5+bsh’t 5+5sh2t
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8sht 4cht >

*t — _
&) ( 5+ bsh?t’ 5+ Hsh2t’

Hence, the equation of the dual spherical unit curve is

4cht 8sht —3 + 5sh’t
X(t7 5) - ) )
54 5sh2t’ 5+ 5sh2t’ 5+ bsh2t
8sht 4eht
- I ) 0 I 2 = 0
“( 5+ bsh?t’ b+ bshit ) ¢

where € is the dual unit. The figure of the dual spherical ruled surface is the
following,.

The dual ruled hyperbolic surface X (¢,{) = &(t) A EX(t) + ¢ £(t), ¢ €IR.

The dual unit spherical ruled surfaces of the pedal curves may be written
as easyly as in the previous methodes and ways. For example, the real unit

spherical representation of the pedal curve (x(t),y(t),0) in the definition 2.4 is

( 4z2(t) 4y2(t) 2(z2 (1) +y2 () )
22()+y2(t)+47 22(t)+y2 (1) +4° 2(t)+y? (1) +4 /-
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