Mathematica Balkanica

New Series Vol. 20, 2006, Fasc. 2

Fixed Point Theorems for Mappings Satisfying Implicit Relations on Two Metric Spaces

V. Popa ¹ and M. Telci ²

Presented by V. Kiryakova

In this paper, two fixed point theorems on two metric spaces are proved. These results generalize theorems of Fisher [1] and Popa [2].

AMS Subj. Classification: 54H25.

 $\ensuremath{\textit{Key Words}}\xspace.$ Fixed point, implicit relations, complete metric space, compact metric space.

1. Introduction

The following related fixed point theorem was proved by Fisher [1].

Theorem 1. Let (X,d) and (Y,ρ) be complete metric spaces. If T is a mapping of X into Y and S is a mapping of Y into X satisfying the inequalities

(1)
$$\rho(Tx, TSy) \leq c \max\{d(x, Sy), \rho(y, Tx), \rho(y, TSy)\},\$$

(2)
$$d(Sy, STx) \leq c \max\{\rho(y, Tx), d(x, Sy), d(x, STx)\}$$

for all x in X and y in Y, where $0 \le c < 1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, Tz = w and Sw = z.

Recently, by using the functions, Telci [3] proved a generalized of Theorem 1.

Let \mathcal{F} be the set of all real functions $f: \mathbb{R}^3_+ \to \mathbb{R}_+$ satisfying the following properties:

(i) f is upper semi-continuous in each coordinate variable,

(ii) If either $u \leq f(v, 0, u)$ or $u \leq f(v, u, 0)$ for all $u, v \geq 0$, then there exists a real constant $0 \leq c < 1$ such that $u \leq cv$.

Theorem 2. [3] Let (X,d) and (Y,ρ) be complete metric spaces, let T be a mapping of X into Y and let S be a mapping of Y into X satisfying the inequalities

(3)
$$\rho(Tx, TSy) \leq f(d(x, Sy), \rho(y, Tx), \rho(y, TSy)),$$

$$(4) d(Sy, STx) \leq g(\rho(y, Tx), d(x, Sy), d(x, STx))$$

for all x in X and y in Y, where $f, g \in \mathcal{F}$. Then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, Tz = w and Sw = z.

In this paper, two new generalization of Theorems in [1] are proved for mappings satisfying implicit relations on two metric spaces.

2. Implicit Relations.

We will also denote by $\widetilde{\mathcal{F}}$ the set of all real functions $F:R_+^4\to R$ such that :

 (F_1) : F is continuous in each coordinate variable,

(F₂): If either $F(u, v, u, 0) \leq 0$ or $F(u, v, 0, u) \leq 0$ for all $u, v \geq 0$, then there exists a real constant $0 \leq h < 1$ such that $u \leq hv$.

Example 1. $F(t_1, t_2, t_3, t_4) = t_1 - k \cdot \max\{t_2, t_3, t_4\}$ where $0 \le k < 1$. F₁: Obviously.

 F_2 : Let u > 0 and F(u, v, u, 0) = u - k. $\max\{v, u, 0\} \le 0$. If $u \ge v$, then $u(1-k) \le 0$, a contradiction. Thus u < v and $u \le kv = hv$, where h = k. Similarly, if $F(u, v, 0, u) \le 0$, then $u \le hv$. If u = 0, then $u \le hv$.

Example 2. $F(t_1, t_2, t_3, t_4) = t_1^2 - c \cdot \max\{t_2t_3, t_2t_4, t_3t_4\}$ where $0 \le c < 1$.

 F_1 : Obviously.

 F_2 : Let u > 0 and $F(u, v, u, 0) = u^2 - c$. $\max\{vu, 0, 0\} = u(u - cv) \le 0$. Then $u \le cv = hv$, where h = c. Similarly, if $F(u, v, 0, u) \le 0$, then $u \le hv$. If u = 0 then $u \le hv$.

Example 3. $F(t_1, t_2, t_3, t_4) = t_1 \max\{t_3, t_4\} - ct_2 \max\{t_2, t_4\}$ where $0 \le c < 1$.

 F_1 : Obviously.

 F_2 : Let u > 0 and $F(u, v, u, 0) = u \max\{u, 0\} - cv \max\{v, 0\} \le 0$. Then $u \le vc^{1/2} = hv$, where $h = c^{1/2}$. Now let $F(u, v, 0, u) = u \max\{0, u\} - cv \max\{v, u\} \le 0$. If $u \ge v$, then $u^2 \le cvu \le cu^2$, a contradiction. Thus u < v which implies $u \le vc^{1/2} = hv$. If u = 0, then $u \le hv$.

Example 4. $F(t_1, t_2, t_3, t_4) = t_1^2 - [at_1t_2 + bt_1t_3 + ct_1t_4 + dt_2^2]$ where $a, b, c \ge 0$,

0 < d and a + b + c + d < 1.

 F_1 : Obviously.

 F_2 : Let u>0 and $F(u,v,u,0)\leq 0$. Then $(1-b)u^2-auv-dv^2\leq 0$. If v=0, then $(1-b)u^2\leq 0$, a contradiction. Let $f(t)=(1-b)t^2-at-d$, where t=u/v. Then f(0)<0 and f(1)=1-(a+b+d)>0. If $0< h_1<1$ is a root of the equation f(t)=0, then $f(t)\leq 0$ for $t\leq h_1$ and $u\leq h_1v$. Similarly, $F(u,v,0,u)\leq 0$ implies $u\leq h_2v$, where $0< h_2<1$. Thus $u\leq hv$, where $h=\max\{h_1,h_2\}$. If u=0, then $u\leq hv$.

Example 5. $F(t_1, t_2, t_3, t_4) = t_1^3 - [at_1^2t_2 + bt_1t_3t_4 + ct_2t_3t_4]$ where $0 \le a < 1$.

 F_1 : Obviously.

 F_2 : Let u > 0 and $F(u, v, u, 0) = u^3 - au^2v \le 0$, then $u^2(u - av) \le 0$ which implies $u \le av = hv$, where $0 \le h < 1$. If $F(u, v, 0, u) \le 0$, then $u \le hv$. If u = 0, then $u \le hv$.

Remark 1. The condition (ii) implies condition (F_2) for $F(t_1, t_2, t_3, t_4) = t_1 - f(t_2, t_3, t_4)$. Indeed if $u, v \ge 0$ and $F(u, v, u, 0) = u - f(v, u, 0) \le 0$, then $u \le f(v, u, 0)$ which implies, by (ii), that $u \le cv = hv$, where h = c and $0 \le h < 1$. Similarly, $F(u, v, 0, u) \le 0$ implies $u \le hv$.

3. Fixed points on two complete metric spaces.

Theorem 3. Let (X,d) and (Y,ρ) be complete metric spaces, let T be a mapping of X into Y and let S be a mapping of Y into X satisfying the inequalities

(5)
$$F(\rho(Tx, TSy), d(x, Sy), \rho(y, Tx), \rho(y, TSy)) \le 0,$$

(6)
$$G(d(Sy, STx), \rho(y, Tx), d(x, Sy), d(x, STx)) \le 0$$

for all x in X and y in Y, where $F, G \in \widetilde{\mathcal{F}}$. Then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, Tz = w and Sw = z.

Proof. Suppose x is an arbitrary point in X. We define sequences $\{x_n\}$ in X and $\{y_n\}$ in Y by

$$x_n = (ST)^n x, \quad y_n = T(ST)^{n-1} x$$

for n = 1, 2,

We note that if $d(x_n, x_{n+1}) = 0$ and $\rho(y_n, y_{n+1}) = 0$ for some n, then $x_n = z$ is a fixed point of ST and $y_n = w$ is a fixed point of TS. We therefore suppose that $x_n \neq x_{n+1}$ and $y_n \neq y_{n+1}$ for all n.

Let $h = \max\{h_1, h_2\}$ where h_1 and h_2 are real constants satisfying the condition (F_2) for F and G respectively.

Using inequality (5), we have

$$F(\rho(Tx_{n-1}, TSy_n), d(x_{n-1}, x_n), 0, \rho(y_n, y_{n+1})) = F(\rho(y_n, y_{n+1}), d(x_{n-1}, x_n), 0, \rho(y_n, y_{n+1})) \le 0,$$

which implies, by (F_2) , that

(7)
$$\rho(y_n, y_{n+1}) \le hd(x_{n-1}, x_n).$$

Similarly, using inequality (6), we have

$$G(d(Sy_n, STx_n), \rho(y_n, y_{n+1}), 0, d(x_n, x_{n+1})) = G(d(x_n, x_{n+1}), \rho(y_n, y_{n+1}), 0, d(x_n, x_{n+1})) \le 0,$$

which implies, by (F_2) , that

(8)
$$d(x_n, x_{n+1}) \le h\rho(y_n, y_{n+1}).$$

It now follows from inequalities (7) and (8) that

$$d(x_n, x_{n+1}) \le h\rho(y_n, y_{n+1}) \le h^2 d(x_{n-1}, x_n).$$

Hence, by induction we get

$$d(x_n, x_{n+1}) \le h\rho(y_n, y_{n+1}) \le h^{2n} d(x, x_1),$$

for n = 1, 2, ... Since c < 1, it follows that $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences with limits z in X and w in Y.

Using inequality (5), we have

$$F(\rho(Tz, TSy_{n-1}), d(z, x_{n-1}), \rho(y_{n-1}, Tz), \rho(y_{n-1}, y_n)) = F(\rho(Tz, y_n), d(z, x_{n-1}), \rho(y_{n-1}, Tz), \rho(y_{n-1}, y_n)) \leq 0.$$

Letting n tend to infinity and using (F_1) , we have

$$F(\rho(Tz, w), 0, \rho(w, Tz), 0) \le 0,$$

and it follows that w = Tz by (F_2) .

Using inequality (6), we have

$$G(d(Sw, STx_{n-1}), \rho(w, y_n), d(x_{n-1}, Sw), d(x_{n-1}, x_n)) = G(d(Sw, x_n), \rho(w, y_n), d(x_{n-1}, Sw), d(x_{n-1}, x_n)) \le 0.$$

Letting n tend to infinity and using (F_1) , we have

$$G(d(Sw, z), 0, d(z, Sw), 0) \le 0,$$

and it follows that z = Sw by (F_2) .

Thus STz = Sw = z, TSw = Tz = w, and so ST has a fixed point z and TS has a fixed point w.

To prove uniqueness, suppose that ST has a second fixed point z' and TS has a second fixed point w'. Then using inequality (5), we have

$$F(\rho(Tz, TSw'), d(z, Sw'), \rho(w', w), 0) = F(\rho(w, w'), d(Sw, Sw'), \rho(w', w), 0) \le 0,$$

which implies, by (F_2) , that

(9)
$$\rho(w, w') \le hd(Sw, Sw').$$

Further, applying inequality (6), we have

$$G(d(STSw, STSw'), \rho(TSw, TSw'), d(Sw', Sw), 0) = G(d(Sw, Sw'), \rho(w, w'), d(Sw', Sw), 0) \leq 0,$$

which implies, by (F_2) , that

(10)
$$d(Sw, Sw') \le h\rho(w, w').$$

It now follows from inequalities (9) and (10) that

$$\rho(w, w') \le hd(Sw, Sw') \le h^2 \rho(w, w')$$

and so w = w' since h < 1. The fixed point w of TS must therefore be unique.

Now STz' = z' implies TSTz' = Tz' and so Tz' = w. Thus

$$z = STz = Sw = STz' = z'$$
.

proving that z is the unique fixed point of ST. This completes the proof of the theorem.

Corollary 1. [1] Theorem 1.

Proof. Follows from Theorem 3 and Example 1.

Corollary 2. [2] Let (X,d) and (Y,ρ) be complete metric spaces, let T be a mapping of X into Y and let S be a mapping of Y into X satisfying the inequalities

$$d(Sy, STx) \max\{d(x, Sy), d(x, STx)\} \le c_1 \rho(y, Tx) \max\{\rho(y, Tx), d(x, STx)\},$$

 $\rho(Tx, TSy) \max\{\rho(y, Tx), \rho(y, TSy)\} \le c_2 d(x, Sy) \max\{d(x, Sy), \rho(y, TSy)\}$

for all x in X and y in Y, where $0 \le c_1, c_2 < 1$. Then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, Tz = w and Sw = z.

Proof. Follows from Theorem 3 and Example 3.

Corollary 3. [2] Let (X,d) and (Y,ρ) be complete metric spaces, let T be a mapping of X into Y and let S be a mapping of Y into X satisfying the inequalities

$$d^2(Sy, STx) \le c_1 \max\{\rho(y, Tx)d(x, Sy), \rho(y, Tx)d(x, STx), d(x, Sy)d(x, STx)\},\$$

$$\rho^2(Tx, TSy) \le c_2 \max\{d(x, Sy)\rho(y, Tx), d(x, Sy)\rho(y, TSy), \rho(y, Tx)\rho(y, TSy)\}$$

for all x in X and y in Y, where $0 \le c_1, c_2 < 1$. Then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, Tz = w and Sw = z.

Proof. Follows from Theorem 3 and Example 2.

Corollary 4. Let (X,d) be a complete metric space. If S and T are mappings of X into itself satisfying the inequalities

(11)
$$F(d(Tx, TSy), d(x, Sy), d(y, Tx), d(y, TSy)) \le 0,$$

(12)
$$G(d(Sy, STx), d(y, Tx), d(x, Sy), d(x, STx)) \le 0$$

for all x, y in X, where $F, G \in \tilde{\mathcal{F}}$, then ST has a unique fixed point z and TS has a unique fixed point w. Further, Tz = w and Sw = z and if z = w, then z is the unique fixed point of S and T.

Proof. The existence of z and w follows from the Theorem 3. If z=w, then z is of course a common fixed point of S and T.

Now suppose that T has a second fixed point z'. Than applying inequality (11) we have

$$F(d(Tz', TSz), d(z', Sz), d(z, Tz'), d(z, TSz)) = F(d(z', z), d(z', z), d(z', z), 0) \le 0.$$

which implies, by (F_2) , that $d(z',z) \leq hd(z',z)$ and then d(z',z) = 0. Similarly z is the unique fixed point of S.

4. Fixed points on two compact metric spaces.

Now let $\widetilde{\mathcal{F}}^*$ denote the set of all functions $F: R_+^4 \to R_+$ satisfying the following condition;

$$(F_2)^*$$
: If either $F(u, v, u, 0) < 0$ or $F(u, v, 0, u) < 0$ for all $u, v \ge 0$, then $u < v$.

Theorem 4. Let (X,d) and (Y,ρ) be compact metric spaces, let T be a continuous mapping of X into Y and let S be a continuous mapping of Y into X satisfying the inequalities

(13)
$$F(\rho(Tx, TSy), d(x, Sy), \rho(y, Tx), \rho(y, TSy)) < 0$$

for all x in X and y in Y with $x \neq Sy$, where $F \in \widetilde{\mathcal{F}}^*$ and

(14)
$$G(d(Sy, STx), \rho(y, Tx), d(x, Sy), d(x, STx)) < 0$$

for all x in X and y in Y with $y \neq Tx$, where $G \in \widetilde{\mathcal{F}}^*$. Then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, Tz = w and Sw = z.

Proof. The function $\psi: X \to R_+$ defined by $\psi(x) = d(x, STx)$ is continuous on X. Since X is compact, there exists a point u in X such that

$$\psi(u) = d(u, STu) = \min\{d(x, STx); x \in X\}.$$

Now suppose that $Tu \neq TSTu$. Then $u \neq STu$.

Using inequality (14) and condition $(F_2)^*$ we have, since $Tu \neq TSTu$,

$$G(d(STu, STSTu), \rho(Tu, TSTu), 0, d(STu, STSTu)) < 0,$$

and it follows that

(15)
$$d(STu, STSTu) < \rho(Tu, TSTu).$$

But using inequality (13) and condition $(F_2)^*$ we have, since $u \neq STu$,

$$F(\rho(Tu, TSTu), d(u, STu), 0, \rho(Tu, TSTu)) < 0,$$

and it follows that

(16)
$$\rho(Tu, TSTu) < d(u, STu).$$

We now deduce from inequalities (15) and (16) that

$$\psi(STu) = d(STu, STSTu) < d(u, STu) = \psi(u),$$

and this gives us a contradiction. So Tu = TSTu. If putting Tu = w and Sw = z, then we get

$$ST(STu) = S(TSTu) = STu = Sw = z$$

and

$$w = Tu = TS(Tu) = T(STu) = Tz$$

Thus, Sw = z is a fixed point of ST and Tz = w is a fixed point of TS.

To prove uniqueness, suppose that ST has a second distinct fixed point z'. Then applying inequality (14) and we have, since $Tz \neq Tz'$,

$$G(d(STz, STz'), \rho(Tz, Tz'), d(z', z), 0) = G(d(z, z'), \rho(Tz, Tz'), d(z', z), 0) \le 0,$$

which implies, by $(F_2)^*$ that

(17)
$$d(z, z') < \rho(Tz, Tz').$$

Further, applying inequality (13) we have, since $z \neq z' = STz'$,

$$F(\rho(Tz,TSTz'),d(z,z'),\rho(Tz',Tz),0)<0,$$

which implies, by $(F_2)^*$ that

(18)
$$\rho(Tz, Tz') < d(z, z').$$

It now follows from inequalities (17) and (18) that

$$d(z, z') < \rho(Tz, Tz') < d(z, z'),$$

which is a contradiction and so the fixed point z must be unique.

Similarly, w is the unique fixed point of TS. This completes the proof of the theorem.

From Theorem 4, we obtain the following corollary which was proved by Fisher [1].

Corollary 5. [1] Let (X, d) and (Y, ρ) be compact metric spaces, let T be a continuous mapping of X into Y and let S be a continuous mapping of Y into X satisfying the inequalities

$$\rho(Tx, TSy) < \max\{d(x, Sy), \rho(y, Tx), \rho(y, TSy)\},\$$

for all x in X and y in Y with $x \neq Sy$ and

$$d(Sy, STx) < \max\{\rho(y, Tx), d(x, Sy), d(x, STx)\}\$$

for all x in X and y in Y with $y \neq Tx$. Then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, Tz = w and Sw = z.

Corollary 6 . Let (X,d) be a compact metric space. If S and T are continuous mappings of X into itself satisfying the inequalities

(19)
$$F(\rho(Tx, TSy), d(x, Sy), \rho(y, Tx), \rho(y, TSy)) < 0$$

for all x, y in X with $x \neq Sy$, where $F \in \widetilde{\mathcal{F}}^*$ and

(20)
$$G(d(Sy, STx), \rho(y, Tx), d(x, Sy), d(x, STx)) < 0$$

for all x, y in X with $y \neq Tx$, where $G \in \widetilde{\mathcal{F}}^*$, then ST has a unique fixed point z in X and TS has a unique fixed point w in X. Further, Tz = w and Sw = z and if z = w, then z is the unique fixed point of S and T.

References

- [1] B. Fisher. Fixed point on two metric spaces, Glasnik Mat., 16(36), 1981, 333-337.
- [2] V. Popa. Fixed point on two complete metric spaces, *Univ. u Navom Sadu Sb. Rad. Prirod.-Mat. Fak. Ser. Mat.*, **21**(1), 1991, 83-93.
- [3] M. Telci. Fixed point on two complete and compact metric spaces, Applied Mat. and Mec., 22(5), 2001, 564-568.

Received 07.05.2002

Valeriu Popa,
Department of Mathematics and Physics,
University of Bacău,
5500 Bacău, Romania.
e-mail: vpopa@stiinte.ub.ro

Mustafa Telci,
Department of Mathematics,
Trakya University,
22030, Edirne, Turkey.
e-mail: mtelci@trakya.edu.tr