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In this paper we develop the idea of quasi-periodic solutions to differential equations
and give some necessary conditions for existence of quasi-periodic solutions with a constant
and linear quasi-period to the differential equation of the fourth order (5).
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1. Introduction
We introduce the following definition.

Definition 1. We say that the function y = f(z), 2 € Dy CRisa
quasi-periodic one if there are functions w = w(z) and A = A(w) such that:

if x € Dy then x+w € Dy, and
flo+w) = \f()

The function w(zx) is called a quasi-period (QP) and X is called a quasi-
periodic coefficient (QPC) of the function y = f(x).

(1)

Example 1. The function f(z) = e” sinz is a quasi-periodic one with
QP w(z) =27 and QPC X = €7 since

Ve €R, f(x427) =" sin(z + 21) = e*e¥sina = 2" f(x)
Remark 1. In general A = A(z,w(x)) and in this case the existence

of the relation (1) is a very complex problem that implies, for example, the
following essential problems to the differential equations:
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— the problem of analytic solutions,

— the problem of oscillating solutions,

the problem of zeros of the solutions,
— the problem of extremum of the solutions.

If A =1 then w(x) is a function of "repeating values” of y = f(x).

If w = const and A = 1, then (1) is a definition of a periodic function in
a classical sense.

If A =0, then the part of repeating the zeros of the function is solved.

In this paper we consider the problem of quasi-periodicity for A = 1.

2. Problem formulation

Suppose that the function y = y(z) is given implicitly by the differential
equation
(2) F(a,y.y,...,y"™ a(2),b(x)....c(z)) =0
We want to find a rule w = w(z) for repeating the values of the solutions to

the equation (2), i.e. to find a function w = w(z) which satisfies both the
equation(2) and the relations

{ y(z +w) = y(z)

F(tv y(t)7 y,(t)v v ’y(n) (t)v a’(t)7 b(t)7 oo 7C(t))/t:a:+w =0

Equations (2) and (3) make a system which defines the functions y(z) and w(z).
Since the nature of the solutions to the equation (2) depends on its co-
efficients, we should determine some conditions for the coefficients that allow
repeating the values of the solutions (as a special case of the quasi-periodicity).
According to the above arguments, the problem is equivalent to the sys-

(3)

tem
Fla,y,y " ..., y"™, a(@),b@),... c(x) =0

F(ta y(t)v y/(t)v R 7y(n) (t)7 a(t)v s 7C(t))/t:x+w =0

y(a +w) =y()

Bl — o(m) —
oy +w) =y @), (m=1,..,n)

which generally leads to a nonlinear differential equation. Thus, solving such a
system is not a simple problem, especially for the differential equation of higher
order.

(4)
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If the equation (2) is linear, the system (4) is a simpler one and it is
linear in y(x) and its derivatives, but it is nonlinear in w(x).

Here we consider this problem in the case of a linear equation of the
fourth order.

Let (2) be the equation
(5) vV +a(z)y =0

where a(z) is a continuous function for z > x¢. It is known ([1]) that if

a(x) >0

©) 7Ox2a(x)dx =00

zo

then the solutions of (5) are all oscillating functions, which means that they are
also quasi-periodic functions and they generate an elliptic trigonometry of IV
order ([2]).

For (5) the system (4) has the form:

yV +a(x)y=0

yV(r+w) +alr+wylz+w)=0

y(@ +w) =y(z)

Y@ +w) - (1+e)=y(2)

y'(z+w) (1+w)+y(@+w) o =y"(2)

Y@ +w) 1+ ) +3y" (@ +w)(1 + )" +y (@ +w) - =y"(z)

yViz+w) - (14+w) +6y" (2 +w)(1+w)? " +3y" (x4 w) -+
+Hy" (x4 w) - (1 + " + o (x4 w) - WV =y (z)

If we eliminate y™ (2 +w), m = 1,2,3,4, when 1+ «’ # 0, we obtain
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the equation

—a(z + w)y(z)(1 + ')+

6wl/ 3y/(a:,)(‘d/l2 3y/l(x)wl/ wl/l . y/(x) "
5 Q+a) | 0+ G+ Qrw) Y (ﬂf)]+
3w//2 ; W y’(a:) 40" Y " y’(a:)
MR [y Oy | Tara P T aren] T
A = —aa)y(a)

which is a linear differential equation of III order in y(z), but it is a nonlinear
one of IV order in w(z).

If we rearrange (8) with respect to y and its derivatives, it will take the
form

y" [6(,0" 1+ w/)S] + y//[_ 1502 . (1+w)+4w” - (1+ w’)ﬂ—i—
(9) _|_y/ [1500"3 — 100" - WM™ - (1 _|_w/) + A (1 + w/)Z}_f_
+y [a(x) —alz+w) - (1+ w’)ﬂ (14+w)2=0

Since (9) is a nonlinear equation of IV order and it still depends on a(x) and
a(z + w), it follows that finding w(z), using (9), is not a trivial problem at all,
and in general it may be difficult to solve equation (9).

4. Main results
Here we consider some particular cases.

Lemma 1. Let y(x) be a quasi-periodic solution for (5) with QP
w(x) = kx + b, where k*> +b%>#0, k # —1. Then

(10) y(@)|a((k+ 1)z +b) - (1+ k) = a(@)] =0

Proof. For w(x) = kx + b the system (7) has the form:
y"V (@) + a(x)y(z) = 0

Y™ (1) + a(t)y(t) = 0/ (1k)yoto

y(t) = y(z)

y'V(t)- (1 + k) =y (2)
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Observing that 1+ k # 0, by eliminating y(¢), y'V (), y'V (x) we obtain (10). m
Using Lemma 1, we get the following assertion.
Proposition 1.  Let the equation (5) have a quasi-periodic solution
with a constant QP w =b. Then
1.1° y(2) = 0 (a trivial solution)

or

1.2° a(x) is a quasi-periodic function with the same period w = b as the solution
y()

Proof. If w(z) = b= konst, i.e. k=20, b# 0, then, from (10) we have

(11) y(@) - |a(x +b) = a(z)] =0

which is equivalent with y(z) =0 or a(xz + b) — a(z) = 0. [

Remark 2. Condition 1.2° in Proposition 1 is necessary, but it is not
sufficient for w(z) to repeat the values of the solutions to (5).

Example 2 Let a(z) = n*. Then the equation
(12) yV +nly =0

has a fundamental system of solutions ([2], [3])

n

T n Ly . 0N
Yy =ev2’ .cos —=x, Yy =e€ev2 -sin—=x

V2 V2

g n _n,

=e V2 .cos—=u, =e V2" .gin—
Y3 \/§ Yq \/§

which are oscillating functions. They are not periodic functions in a classical
sense, but they are quasi-periodic ones with the same QP

2o
w= ,
n

(13)

and QPC X\ = €™ £ 1 for 41,92 and \; = e 27 # 1 for y3, ys4. Hence, it follows

2v/2
that w = —Y—" does not repeat all of the values of functions (13) but only the

n
zeros of the functions.

Using Lemma 1, we can also prove the following proposition.
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Proposition 2. Let the equation (5) have a quasi-periodic solution with
a linear QP w(x) = kx + b,k # 0,k # —1, i.e.

(14) y(@+ (kx +1b)) = y(@).
Then
2.1° y(z) =0 ( a trivial solution);
or
2.2° a(x) is a quasi-periodic function with QP w(x) = kx + b k=#0,k=—1 and

1
QPO >\1 = m, i.e. it holds

(15) a((l+k)x+0) =

Example 3. The coefficient a(x) = (z — 1)? of the equation
(16) yV (@ - 12y =0

satisfies (15) for k = —2, b = 2 and it also satisfies (6). So, equation (16) has
oscillating solutions. One of its fundamental system of solutions is ([2]):

o nl:[l(Gk: +1)(6k +2)
y1=1+ nz_:l(—l)nk:o - —_—
0 ﬁ(Gk + 2)(6k + 3)
=(x—1 _1nk:0 x_16n+1
(17) Y2 ( ) + ;::1( ) B (6n n 1)' ( )

—12 & T (6% + 3)(6k + 4)

B= + nz::l(_l)n =0 (6n + 2)! (z —1)7+2
n—1

oy LRk

Yq = 31 + nz_:l(_l)n k=0 (6n - 3)' ({L‘ — 1)6n+3

Functions (17) are quasi-periodic, but they do not repeat all their values. Only
zeros of the functions are repeated by w = —2z + 2.
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3. Condition of ”repeating” extremum

Let y(z) € C? be a quasi-periodic function with QP w(z) € C? and QPC
A = 1. Let us assume that the conditions

y'(r0) =0, y"(x0) #0
are satisfied at the point x = xg. Then, it holds
y'(zo + w(xo))(1 + w'(z0)) =0
from where we obtain that if 1+ w'(xg) # 0, then

y" (w0 + w(20))(1 + W' (20))* = ¥ (x0).

Thus, we have the relation

Y (wo) - 9" (w0 + w(x0)) >0

From the above arguments, we have the following lemma.

Lemma 2. Let y(x) € C? be a quasi-periodic function with QP w(z)€ C?,
w(z) # —x +c. If y(z) has an extremum at the point x = xq, then it also has
an extremum of the same kind at the point xo + w(zg).

Using relations (7), (9) and Lemma 2, we obtain the following proposi-
tion.

Proposition 3. Let y(z) € C* be a quasi-periodic solution to the
equation (5) with QP w(x) € C*, and let y(x) have an extremum at the point
x = xg. At the point xo+ w(xo) the solution y(x) has an extremum of the same
kind as at the point x = xq, if it holds

y" (o) [60" (o) - (1 +w'(20))°]
3" (20) | — 150"2(20) + 4w (20) - (1 + W' (20))] (1 + ' (20))

(o) [alxo) — alwo +w(z0)) - (1 +w'(20))"] (1 +w!(20))* = 0
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