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A big number of 2D SA exists suitable for implementation of given regular p-nested

loop algorithm. Those SA-s could be significantly different, declared with theirs parameters,
regardless of their having or not having, same topological structure. If we want to chose the
best suitable SA, it is good to know their characteristics in advance, before its design and
synthesis. In literature (see [5] and [7]), we can find a definition of big number of space-time
characteristics (objective functions) SA and their determination procedure. The main interest
of this paper are some of this space and time characteristics.
The importance of this characteristics depends of boundary nested loop algorithms and matrix
transformation which enables synthesis of SA. We can’t exert influence of boundary nested loop
algorithm but it is possible to exert influence on matrix transformation. This privilege is en-
abled by the fact that the set of good matrix transformation correspond to the one of projection
directions. Regardless if this set is finite we try to make it smoller. Therefore, it is important
to intensify criteria of determining this subset so that the good matrix transformation which
synthesizes SA with bad characteristics will be automatical excluded.
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1. Systolic arrays characteristics

Each regular 3-nested loop algorithm can be characterized(in space presented)
by a pair (D;Pjn:), where D = [€,2¢,3¢;%] is a dependency matrix of dates,
Pt = {(4,5,k) |1 <i < Ny, 1 <j <Ny, 1<k < N3}is set of points where
the datas are calculated and N7, No and N3 are the points of boundaries.
The SA implementation can be obtained by a linear transformation

T a tiitiatis
(1.1) T = [ g ] =| S | = | tartestes
So t31t32t33
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I is the time component of T
+10 = ((523)T — (& 3)T) x (@) - (513)T) , Ti&,2 > 0(< 0) for each i=1,2,3.
S is the space component of T which practical mapps Pi,: into 2D SA. Both are
determined, ( see [1],(3],[4],[6] and [7]), from following conditions :
matrix T must be nonsingular, detT” # 0 , the corresponding allowed projec-
tion direction g = [,ulu2,u3]T is orthogonal to the projection plane, §1ﬁ =
0 and S’}[l = 0 , the connection between the PE’s in synthesized 2D SA must
be near-neighbor type, this requirement that elements of matrix Ag = S - D
have to be from the set {—1,0,1}, t”e{ 1,0,1},2<i:<3,1<7< 3
and two optlonal posmon vectors P1 and Pg from P;,; must not satisfy both
equality - P1 - P2 and S- Pl S - P2 .
Unfortunately the noticed conditions for the given projection direction g =
[p1p2p3)T do not determine uniform matrix S and valid transformation 7°. A1l
these matrix generates same SA but they can be significantly different in char-
acteristics. Because of that it is important to create the new conditions:

e Condition that the projection direction fi = [u1 paps)? is orthog-
onal to the projection plane, can be exchanged with stronger

(1.2) II=§1 ><§2 .
e In the case of planar 2D SA synthesis, for case p; € {—1,0, 1}, 4 =

1,2,3, we put on elements of matrix S one of two alternate conditions (respec-
tively for gy =1 and pp = £1 ) :

(1.3) tagtss + togtzz =0,
(1.4) to1t31 + togtsz =0 .
T
(1.5)
o > o0

(D -Pint) (A Ijint)
By standard projection procedure, after selection the valid transformation T for
given projection direction fi = [ pop3)T, synthesis of corresponding SA is on
the basis of mapping T : (D, Pint)— > (A, Pint)
Now, we give the procedures for determining basic space and time char-
acteristics, using results from papers [5],(6] and [7].
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Theorem 1.1.

(1.6) Q. = N1N3N3 if a; > N; for some 1 <1< 3
’ P~ ] NiN3N3 — (N; —a1)(N2 — a2)(N3 —a3) otherwise

Ty, |
gcd(Ti1, T2, Thz) '’
Ty, is the (1,i)-cofactor of matrix T, 1 < ¢ < 3. With ged(711, T12,T13) is notated

the bigest common divisor of numbers 711,712 and Ti3.
For determining array of 2D SA, in notation g, following result was used:

Theorem 1.2.

(1.7) a; = ‘

(1.8) ga = (N7 —1)(Ng—1)|T13|+ (N1 — 1) (N3 — 1)|T12| + (N2 = 1)(N3 — 1)|Ta |-

The lengths of SA in direction x and y, in notation l; and l,, are given with:

l, = max x — min x + 1,
(t,a:,y)EPi‘;u (t,:z:,y)GP;;u

l, = max — min + 1

y . Y .Y .
(t,z,y)EP;,, (t,z,y)EP;,,

For determining l, and [, , following result was used:

Theorem 1.3.

3
le. = 1+ 3 [t | (N; 1),

(1.9) i
ly =1+ Zl|t3jI(Nj—1)-

J:

The chip area of SA, in notation area, is defined with:

(1.10) area = lg -1y .

Definition 1.1. The number of input/output elements once SA, in
notation I/O is defined like the number of connection SA with encirclement.
Also, it is well known that the summary time like time necessary for realization
of given algorithm on synthetized SA is calculated on the base next:
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Theorem 1.4.

(111) Tiot = Tin + Teze + Tout;
(1.12) Tore = max t — min ¢t + 1.
(t,zy)ePy, (tzy)ePy,

tp , called flow period of processor can be calculated on the base next

Theorem 1.5

det(T)

1.13 t, = |—————| .
( ) P IQCd(T11T12T13)

Definition 1.2. Very important objective function for evaluation the
realization once given algorithm on obtained SA is space-time complexity

(1.14) AT =Q, - T e AT?’=Q, T?.

Block flow period once SA, in notation w ,is objective function impor-
tant in the case when we use same SA for consecutive solving multi number of
problems. For example, for M different problem identical volume we have

(1.15) Ty = T+ (M-1w .

2.Main result

Let a be a regular 3-nested loop algorithm with index space
Pt = {(4,5,k) | 1 <4< Ny, 1 <5< Ny, 1<k < N3} We define the following
subclasses of a.

Definition 2.1. If the computations in algorithm «, for some fixeq j,
can be executed with the permutations of variables for indexes i and k, we say
that o is a(i, k) adaptable and if the computations in algorithm «, for some
fixed i, can be executed with permutations of variables for indexes j and k, we
say that « is a(j, k) adaptable.

If a given algorithm «a is a(, k) and a(j, k) adaptable, we say that « is adaptable.

If the given algorithm is from some of defined classes, its adaptation tq
the given projection direction 7 = [u;puops]? can be given with linear mapping
H=(F,G), where F is 3x3 matrix which elements are in function of elements ¢
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vector fi and G is 3x1 vector with constant elements which provides that after
adaptation mapping

(2'1) H: Pp —> F_’int

the space Pj,; is again in coordinate systems first octant. We will now define
the mapping H.

Definition 2.2. Suppose that a given algorithm is of type a(j, k). If
allowable projection direction is in the form /i = [1u2u3]” the mapping H=(F,G)
is defined by

1 00 0
(22) F = I 1 0 , G = g2
pz 0 1 93

where g2 and g3 are smallest integers determined so that for each [, j, k)7 € Pint
the following equations are valid : v = pgi+ge+j >0 and w = ugi+k+g3 > 0.
The elements v and W are defining on the base of next equation

U 1 7
(2.3) v|=F-| j|+G=| pi+j+ge
w k p3t+k+ g3

Definition 2.3. Suppose that a given algorithm is (i, k) type. If al-
lowed projection direction is in the form ji = [u; +1u3)7 than mapping H=(F,G)
is defined with

1 441 0 9
(2.4) F=|0 10|,6=1|0],
0 +pz 1 9

where g; and g3 are the smallest integers determined so that for each [z, 7, k]T €
Py, the following equations are valid : u =41+ pj+91 >0 and w= k£ p3j+
gs > 0.

The elements u and w are defined on the base of next equation

u i i+ a1
(2.5) v| =F-|j| +G = j
w k k£ p3j+ g3

Now, instead of mapping given with (2.1), we are using two mappings :



292 D.Randjelovi¢, I. and E. Milovanovié

H T
(2.6)

oO———> o0 o

> o

IDint Pint (Da f)int) (A, Pmt)

where elements of space P, are defined with (2.3) or (2.5), in dependence of

projection direction fi. Let’s now determine characteristics of these synthesized
SA.

Theorem 2.1 Suppose that a given algorithm « is a(j, k) ( or (a(i, k))
adaptable. The number of PEs, Q,, and geometric area, ga, in the 2D SA
obtained by the projection direction i = [lpopd ( or i= [u1 £ 1us]T) is

(2.7) Qp = N2N3,( or Qp = N1N3) ;
and
(2.8) ga = (N2 — 1)(N3 — 1), ( or go = (N7 — 1)(N3 — 1)) .

Proof. Let i = [lusus]?T. According to (2.6) and the form of matrix
H, see (2.2), we can see that the magnitude of parameter 2, and g, depends of
elements of matrix’s M

M = T (o] F —d
t1n ti2 ti3 1 00 t11 + potio + patiz iz i3
(2.9) = | ta1 too toz3 |- | e 1 O | = 0 22 to3
t31 t32 ts33 pus 0 1 0 t32 ts3

From (2.9) we have My; = M3 = 0 and My, = tootsz — toztze. According to
equality (1.3) we have M;1 = py = 1. With substitution T1; = Mi,;,7 = 1,2, 3
in Theorem 1.1 and 1.2 we could obtain needed result.

]

Corollary 2.1. Suppose that a given algorithm « is adaptable. The
number of PEs and geometric area in the 2D SA obtained by the projection
direction i = 1 £ 1u3)7T is

(210) Qp = Ngmin {Nl, NQ} ,
and

(2.11) da = (N3 - 1)min{N1 - 1,N2 - 1} .
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Theorem 2.2 Suppose that a given algorithm « is a(j, k) ( or (a(z, k))
adaptable. The chip area, area, in the 2D SA obtained by the projection direction
i = [£lpop] (or = [u £ 1u3]T) is

(2.12) area = Ny-N3 (orarea = Nj-N3).

Proof. To prove this Theorem we use procedure like in Theorem 2.1.
B

Corollary 2.2. Suppose that a given algorithm « is adaptable. The
chip area in the 2D SA obtained by the projection direction ji = [1 + 1us)T is

(2.13) ' area = Njz-min{Ny, No} .
Theorem 2.3 Suppose that a given algorithm « is a(j, k) ( or (a(i, k)))

adaptable. Teze n the 2D SA obtained by the projection direction

A= [luopd (or fi = [p1£1p3)T) is identical for SA obtained with non adaptable
algorithm given in chapter 1 this paper i.e.

3
(2.14) Teze = 1 + Z |t1j| : (N.'i - 1)'
Jj=1

Proof. According to (1.1) and 2.2 (2.4), we can see that

= (t11 + potiz + pu3tiz)i + tioj + tizk + goti12 + gstis,

Teze = 1+ | t1n + potio + patiz | (N1 — 1)+ | tia | (N2 — 1)+ [ t13 | (N3 — 1) ie.

(2.15) Tege = 14 |- | (N1 — 1)+ | t1z | (N2 — 1)+ | taz | (N3 — 1) .
On other side, according to (1.1) and 2.2 (2.4), we can see that

-7 tiz ti3
(2.16) M = ToF = 0 tog taog
0 t32 ts3

—

and on the basis (1.13) for t, = |II-

= 1, we have

3
Teze = 1 + thljl'(Nj'—l)'
Jj=1
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[ ]

Corollary 2.3. Suppose that a given algorithm « is adaptable;t, > 1

and obtained SA for projection direction i = [Lpopd (or i = [p1 £ 1us)T). In

two consecutive solvings in some process element SA ezists t, — 1 idle speeds.
3. 2D systolic arrays for matrix-matrix multiplication

Advantage of results obtained with using Theorem 2.1,2.2 and 2.3 and suitable
consequences, in relationship with known results from literature, we can see on
two rectangular matrix multiplication, A=(a;;) order Ny X N3 and B=(bx;) order

—

N3 x Ny. We determine projection direction i = [110]T,;L = [111]T and @ =
[211]7. We have chose them like representatives for synthesis three topological
different SA. We meet with those kinds of SA very often in the literature (see
[5] and [7]), and they are suitable for comparing with results from this paper.
Case N1 = Ny = N3 = N will be given in parenthesis.

For direction 7 = [110]7 we obtain orthogonal 2D SA (we mark this S A
with SV1). With standard procedure i.e. with procedure from chapter 1., the
synthesized array have following characteristics:

Qp = N3(N; + Na — 1), (2, = N2N - 1)),
ga= (N3 —1)(N1 + N2 — 1) , (ga = 2(N = 1)%),
area = N3(N; + N3 — 1) , (area = N(2N — 1)),
I/O =2(N; + Ny +2N3 — 1), (8N —2),
tp =2, |
Tin = Na—1, (N—=1) ; Tege = N14+No+N3—2, (3N —=2) ; Toue = N2—1, (N—1),

For projection direction i = [111]7 we obtain hexagonal 2D SA markeq
SV2, synthesized with standard procedure and N7 > N, , with characteristics:

Qp = N1(Na — 1) + No(N3 — 1) + N3(N2 — 1) + 1, (3N? — 3N + 1),
ga = (N1 = 1)(N2 — 1) + (N — 1)(N3 — 1) + (Vo — 1)(N3 — 1), (3(N = 1)*) |
area= (Ny + Nz = 1)(N1 + N3 — 1), ((2N —1)?),
1/O = 12N,
tp =3,
Tin = Na—1, (N—=1); Tege = N1+Na+N3—2, BN—=2); Tour = N2—1, (N—1),
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And also, for projection direction /i = [211]7 we obtain SA with crossing

(we mark this SA with SV3). Synthesized with standard procedure from chapter
1. this SA have following characteristics:

Qp, = 2NaN3 + (N1 —2)(Na + N3 — 1), () =4N? —5N +2),
ga = (N1 —1)(N2—1)+ (N1 —1)(N3 — 1)+ 2(N2 —1)(Na —1) , (g0 = 4(N —1)*)
area = (No + N3 — 1)(N; + No + N3 — 2) , (area = (2N —1)(3N —-2)) ,
I/O = 2(2Ny + 3N; + 3N3 — 5), (16N — 10),
ty=4,
Tin = [3N/2] — 1, Toge = Ny + Na + N3 — 2, (3N —2), Toz = N — 1.

Using the results of Theorems 2.1,2.2 and 2.3 i.e. when we are using the
procedure from chapter 2. based on 2.6, situation is completely different.
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For projection direction /i = [110]7 and i = [111]T-(N; > N, ), we have SA-s:
Qp = Namin {N1, N2} , (Q, = N?),
ga = (N3 = 1)(min{N —1,N2 =1} , (9a = (N = 1)?)
area = N3min {N1, N2} , (area = N2) ,
for i = [110]7 : I/O =2(2N; + N3), (6N),
for ji = [111]7 : I/O = 2(2N3 + 2N3 — 1), (8N — 2),
ty =1,
Tin =maz {Na, N3} —1, (N —=1); Tege = No+ N3 —1, (2N — 1) ; Tour = 0,

G Nz, Na#tp-m
NZ_{N2+1, N2=tp-m.

For projection direction i = [211]7 we obtain SA, in existing notation SV3 :

Q, = N1N3, (2, =N?),
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ga=(N1-1)(N3—1), (9a=(N-1)%,
area = N3(N1 + N3 — 1), (area= N(2N —-1)),
I/0 =2(3N; +2N3 —2), (10N —4),
ty=1,
Tin = [BN/2] = 1,Tege = N1 + No + N3 — 2, (3N —2), Toput = 0.

For ilustration, figures 1, 2, 3 show analysed SA-s for projection direction
i =[110]7, i = [111)T and i = [211]T respectively for case Ny = N = N3 =3
and when the parameters are defined with Theorems 2.1, 2.2 and 2.3.
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