Numerical Solution of Monge-Ampere Equation

M. Bouchiba and F. Ben Belgacem

Presented by V. Kiryakova

We show that the numerical solution, of the fully non linear Monge-Ampre equation in two dimension, can be obtained by resolving an optimisation problem implying the resolution of a quasilinear Dirichlet problem. A gradient method is used. We give a no classical method to compute the gradient.

Key Words Monge-Ampre, finite elements, gradient method.

1. Introduction

In this paper we give a numerical solution of the following Monge-Ampre problem:

\[
\begin{cases}
\text{det} [D^2 u] = f^2(x, u) & x \in \Omega \\
u|_{\Gamma} = 0, u \text{ convex on } \Omega.
\end{cases}
\] (P_I)

Where \(\Omega\) is a smooth convex and bounded domain in \(\mathbb{R}^2\), \([D^2 u]\) is the Hessian of \(u\) and \(f \in C^2(\bar{\Omega} \times \mathbb{R})\), \(f > 0\) on \(\bar{\Omega} \times \mathbb{R}\), and \(\frac{\partial f}{\partial s}(x, s) \geq 0\).

The problem \((P_I)\) has a unique strictly convex solution \(u_I \in C^2(\bar{\Omega}) \cap W^{1,\infty}(\Omega)\) (see[1]).

We propose a variationnal method for the approximation of the solution \(u_I\) of \((P_I)\) as in [2]. We show that \((P_I)\) is equivalent to the following problem:

\[
(P_{II}) \min_{g \in V} J(g),
\]

with

\[
J(g) = \frac{1}{2} \int_{\Omega} [\text{det} [D^2 u(g)] - f^2(x, u(g))]^2 dx
\]
where \(u(g) \) is solution of the Dirichlet problem

\[
P_g \begin{cases} -\Delta u + 2f(., u) = -g \\ u|_{\Gamma} = 0 \end{cases}
\]

and we show that \(u_I = u(\tilde{g}) \), where \(\tilde{g} = \text{Arg}(\text{min}J(g)) \).

In section 2 we prove the equivalence between \((P_I)\) and \((P_{II})\) and we use a Galerkin-finite elements to approximize the solution \(u(g) \) of \((P_g)\). In section 3 we give a non classical method to compute the gradient of the functional \(J \). In the end we give a numerical test.

2. An equivalent problem

Let us consider the following assumptions

- \((H_1)\) \(f \in C^2(\overline{\Omega} \times \mathbb{R}) \cap W^{2,\infty}(\overline{\Omega} \times \mathbb{R}) \).
- \((H_2)\) \(f(x, s) \geq c_0 > 0, \forall s \in \mathbb{R}_-, \forall x \in \Omega \).
- \((H_3)\) \(\frac{\partial f}{\partial s}(x, s) > 0, \forall s \in \mathbb{R}_-, \forall x \in \Omega \).
- \((H_4)\) \(s \mapsto f(., s) \) is convex \(\forall s \in \mathbb{R}_- \).

2.1. The Problem \((P_{II})\)

Let \(\lambda_1 \) and \(\lambda_2 \) be the eigenvalues of the matrix \([D^2u]\). We have

\[
\begin{cases} \lambda_1 + \lambda_2 = \Delta u_I, \\ \lambda_1 \lambda_2 = f(., u_I). \end{cases}
\]

Then \(\lambda_1 \) and \(\lambda_2 \) are the solutions of

\[
X^2 - \Delta u_I X + f^2(., u_I) = 0.
\]

So

\[
(\Delta u_I)^2 - 4f^2(., u_I) \geq 0.
\]

Since \(u_I \) is convex and \(f > 0 \) we should have

\[
\Delta u_I - 2f \geq 0.
\]

If we put

\[
(2.1) \quad \tilde{g} = \Delta u_I - 2f,
\]
it is clear that u_I is solution of the following problem
\begin{equation}
\mathcal{P}_g \left\{ \begin{array}{l}
-\Delta u + 2f(\cdot, u) = -\tilde{g} \\
u|\Gamma = 0
\end{array} \right.
\end{equation}
To compute \tilde{g}, we consider the functional
\begin{equation}
J(g) = \frac{1}{2} \int_{\Omega} \left[\det[D^2 u(g)] - f^2(x, u(g)) \right]^2 dx
\end{equation}
where $u(g)$ is the solution of the Dirichlet problem
\begin{equation}
\mathcal{P}_g \left\{ \begin{array}{l}
-\Delta u + 2f(\cdot, u) = g \\
u|\Gamma = 0.
\end{array} \right.
\end{equation}
We recall the following result:

Theorem 2.1. Under assumptions (H_3) and $g \in L^2(\Omega)$ the quasilinear elliptic problem (\mathcal{P}_g) has a unique solution $u(g) \in H^1_0(\Omega)$. (see[4]).

We have the following result:

Theorem 2.2. Problems (\mathcal{P}_I) and (\mathcal{P}_{II}) are equivalents
Proof. By (2.2) we have $u_I = u(\tilde{g})$ so $J(\tilde{g}) = 0$.

Let \bar{g} a solution of (\mathcal{P}_{II}) then $J(\bar{g}) = 0$ so
\begin{equation}
\left\{ \begin{array}{l}
\det[D^2 u(\bar{g})] = f, \\
u(\bar{g})|\Gamma = 0.
\end{array} \right.
\end{equation}
Since $\Delta u(\bar{g}) = 2f + \bar{g} > 0$ and $\det[D^2 u(\bar{g})] > 0$ we have $u(\bar{g})$ is strictly convex and from the uniqueness of solution for (\mathcal{P}_I) we get $u(\bar{g}) = u_I$.

Remark 2.3 From the previous section we can deduce that the computation by finite elements method of u_I is possible by resolving (\mathcal{P}_g) if one has \bar{g} for this purpose we resolve (\mathcal{P}_{II}).

3. **The numerical resolution of (\mathcal{P}_{II})**

To numerical resolve (\mathcal{P}_{II}) we start linearizing (\mathcal{P}_g) by considering a sequence of linear problems which are resolved by finite elements method. To compute \bar{g} we use a gradient method.

3.1. **Resolution of the problem (\mathcal{P}_g)**

3.1.1. **Linearisation of the problem (\mathcal{P}_g)**

We assume that
\[g \in H^1_+(\Omega) = \{ v \in H^1(\Omega) / v \geq 0 \} \]
We consider a sequence of linear problems: Let \(u^0 \) a solution of

\[
\mathcal{P}_0 \begin{cases}
-\Delta u^0 &= -g \\
u^0_{|\Gamma} &= 0.
\end{cases}
\]

We have, since \(g \geq 0 \), by standard maximum principle: \(u^0 \leq 0 \) and we have

\[
\|u^0\|_{H^1_0(\Omega)} \leq C\|g\|_2.
\]

Let us consider, for \(k = 1, \ldots, n \), the problem \(\mathcal{P}_k \) given by:

\[
\mathcal{P}_k \begin{cases}
-\Delta u^k + 2\frac{\partial f(.,u^{k-1})}{\partial s}u^k &= F(u^{k-1}) \\
u^k_{|\Gamma} &= 0,
\end{cases}
\]

where

\[
F(u^{k-1}) = -g + 2\frac{\partial f(.,u^{k-1})}{\partial s}u^{k-1} - 2f(.,u^{k-1}).
\]

Assume that \(u^k \leq 0 \) and \(u^k \in H^1_0(\Omega) \) for \(1 \leq k \leq n \), where \(u^k \) is the solution of \((\mathcal{P}_k)_{1 \leq k \leq n} \).

We consider the problem in \(u^{n+1} \):

\[
\mathcal{P}_{n+1} \begin{cases}
-\Delta u^{n+1} + 2\frac{\partial f(.,u^n)}{\partial s}u^{n+1} &= F(u^n) \\
u^{n+1}_{|\Gamma} &= 0
\end{cases}
\]

where

\[
F(u^n) = -g + 2\frac{\partial f(.,u^n)}{\partial s}u^n - 2f(.,u^n)
\]

Remark 3.1.

i) Since \(-g \leq 0\), \(u^n \leq 0 \), and \(f(.,u^n) \geq 0 \) we have with (H2) and (H3): \(F(u^n) \leq 0 \). So by the maximum principle \(u^{n+1} \leq 0 \).

ii) Since \(\Omega \) is a bounded domain of \(\mathbb{R}^2 \), by Sobolev imbedding theorem we have \(u^n \) and \(g \in L^4(\Omega) \). By assumption (H1) we have \(F(u^n) \in L^4(\Omega) \). So \(u^{n+1} \in W^{2,4}(\Omega) \cap W^{1,4}_0(\Omega) \).

iii) Using the coercivity of the variational formulation of \((\mathcal{P}_{n+1}) \) we have:

\[
\|u^{n+1}\|_{H^1} \leq C\|F(u^n)\|_2 \leq C(\Omega, \|g\|_2, \|f\|_\infty, \|\partial_s f\|_\infty).
\]
3.1.2 The Convergence

We need the following lemma

Lemma 3.2. Let L_n be the linear operator

$$L_n(\omega) = -\Delta \omega + 2 \frac{\partial f}{\partial s}(., u^n)\omega$$

if we note $\omega_n = u(g) - u^n$, where u^n is the solution of (\mathcal{P}_n) and $u(g)$ of (\mathcal{P}_g).

Then $\exists \theta \in]0, 1[\text{ such that}$

$$L_n(\omega_{n+1}) = -\frac{\partial^2 f}{\partial s^2}(., u^n + \theta \omega_n)\omega_n^2$$

Proof. We have

$$\begin{cases}
-\Delta u(g) + f(., u(g)) = -g \\
-\Delta u^{n+1} + \frac{\partial f}{\partial s}(., u^n)u^{n+1} = F(u^n)
\end{cases}$$

subtracting, with Taylor formula and $\theta \in]0, 1[$, gives

$$-\Delta \omega_{n+1} + 2 \frac{\partial f}{\partial s}(., u^n)\omega_{n+1} = 2g(., u^n) - 2f(., u(g)) + 2 \frac{\partial f}{\partial s}(., u^n)\omega_n$$

$$= -\frac{\partial^2 f}{\partial s^2}(., u^n + \theta \omega_n)\omega_n^2.$$

Consider now the sequence $(u^n)_{n \in \mathbb{N}}$. We have the following:

Proposition 3.3.

$$u(g) \leq \cdots \leq u^{n+1} \leq u^n \leq \cdots \leq u^0 \leq 0.$$

Proof.

(1) We first show that $u^{n+1} - u^n \leq 0$ Let $\omega_0 = u^1 - u^0$, we have

$$\begin{cases}
-\Delta u^1 + 2 \frac{\partial f}{\partial s}(., u^0)u^1 = F(u^0) \\
-\Delta u^0 = -g
\end{cases}$$

subtracting gives

$$-\Delta \omega_0 + 2 \frac{\partial f}{\partial s}(., u^0)\omega_0 = -2f(., u^0) \leq 0,$$
then by the maximum principle \(\omega_0 \leq 0 \). Subtracting \((P_{n+1})\) and \((P_n)\) we obtain under assumption \((H_4)\) and Lemma 3.3

\[
-\Delta \omega_n + 2 \frac{\partial f}{\partial s}(., u^n)\omega_n = -\frac{\partial g}{\partial s^2}(., u^{n-1} + \theta \omega_{n-1})\omega_{n-1}^2 \leq 0.
\]

By maximum principle we have \(\omega_n \leq 0 \).

(2) We show now that, \(u(g) \leq u^n \), \forall n.

By Lemma 3.3, we see that the function \(\omega_{n+1} = u(g) - u^{n+1} \) satisfy

\[
-\Delta \omega_{n+1} + 2 \frac{\partial f}{\partial s}(., u^n)\omega_{n+1} = -\frac{\partial^2 f}{\partial s^2}(., u^{n} + \theta \omega_{n})\omega_{n}^2 \leq 0
\]

and then \(\omega_{n+1} \leq 0 \).

Remark 3.4. Assumption \(H_3 \) with (3.6) and (3.8) implies that \(P_g \) has a solution which is giving by

\[
u(g) = \inf (u^n).
\]

Remark 3.5. Let \(E_{n+1} = u^{n+1} - u(g) \) the error between the solution of \((P_{n+1})\) and the solution of \((P_g)\). By Lemma 3.3, we have

\[
-\Delta E_{n+1} + 2 \frac{\partial f}{\partial s}(., u^n)E_{n+1} = \frac{\partial^2 f}{\partial s^2}(., u^n - \theta E_n)E_n^2
\]

so we obtain

\[
\|E_{n+1}\|_{H^1} \leq C\|E_n\|^2_{H^1}
\]

which implies that the convergence is quadratic.

3.2. Computation of the gradient of \(J \).

To compute the gradient of the functional \(J \) considered in (2.3), we consider the weak solution of \((P_g)\), and we assume that \(T_h \) is a triangulation of \(\Omega \). Thus \(J \) can be written

\[
J(g) = \frac{1}{2} \sum_{\ell=1}^{N} \int_{K_\ell} [\det[D^2u(g)] - f^2(x, u(g))]^2 dx
\]

where \(N \) is the number of triangles \(K_\ell \) and \(u(g) \) is given by :

\[
u(g) = \sum_{i=1}^{N_0} E_i(g) \varphi_i
\]

3.2. Computation of the gradient of \(J \).

To compute the gradient of the functional \(J \) considered in (2.3), we consider the weak solution of \((P_g)\), and we assume that \(T_h \) is a triangulation of \(\Omega \). Thus \(J \) can be written

\[
J(g) = \frac{1}{2} \sum_{\ell=1}^{N} \int_{K_\ell} [\det[D^2u(g)] - f^2(x, u(g))]^2 dx
\]

where \(N \) is the number of triangles \(K_\ell \) and \(u(g) \) is given by :

\[
u(g) = \sum_{i=1}^{N_0} E_i(g) \varphi_i
\]
Numerical Solution of Monge-Ampere Equation

with \((\varphi_i)_{i=1,\ldots,N_0}\) the basic functions of Galerkin-finite elements of order two.

If

\[
\varphi_{il}(x,y) = \alpha_{il}x^2 + \beta_{il}y^2 + \gamma_{il}xy + \delta_{il}x + \eta_{il}y + \tau_{il}, \quad i = 1 \cdots 6
\]

are the basic functions on \(K_\ell\), we have:

\[
det[D^2u(g)]_{|K_\ell} = 4\left(\sum_{i=1}^{6} E_i(g)\alpha_{il}\right)\left(\sum_{j=1}^{6} E_j(g)\beta_{jl}\right) - \left(\sum_{k=1}^{6} E_k(g)\gamma_{kl}\right)^2
\]

and

\[
J(g) = \frac{1}{2} \sum_{\ell=1}^{N} (A_\ell D^2_{\ell}(g) - 2B_\ell(g)D_\ell(g) + C_\ell(g))
\]

where

\[A_\ell = \text{Area}(K_\ell), \quad B_\ell(g) = \int_{K_\ell} f^2(x,u(g(x)))dx\]

and

\[C_\ell(g) = \int_{K_\ell} f^4(x,u(g(x)))dx\]

So if we write

\[
g = \sum_{m=1}^{N_h} g_m \varphi_m
\]

we have:

\[
\frac{\partial J}{\partial g_m} = \sum_{\ell=1}^{N} \left\{(A_\ell D_\ell(g) - B_\ell(g)) \frac{\partial D_\ell(g)}{\partial g_m} - D_\ell(g) \frac{\partial B_\ell(g)}{\partial g_m}(g) + \frac{1}{2} \frac{\partial C_\ell(g)}{\partial g_m}\right\}
\]

with

\[
\frac{\partial B_\ell(g)}{\partial g_m} = \int_{K_\ell} \frac{\partial f^2}{\partial s}(.u(g))\Phi_{m,\ell}dx
\]

\[
\frac{\partial C_\ell(g)}{\partial g_m} = \int_{K_\ell} \frac{\partial f^4}{\partial s}(.u(g))\Phi_{m,\ell}dx.
\]

Where

\[
\Phi_{m,\ell}(x) = \sum_{i=1}^{6} \frac{\partial E_i(g)}{\partial g_m}\varphi_{il}(x)
\]
and
\[
\frac{\partial D_i(g)}{\partial g_m} = 4 \left(\sum_{i=1}^{6} \frac{\partial \mathcal{E}_i(g)}{\partial g_m} \alpha_i \right) \left(\sum_{j=1}^{6} \mathcal{E}_j(g) \beta_j \right) + 4 \left(\sum_{i=1}^{6} \mathcal{E}_i(g) \alpha_i \right) \left(\sum_{j=1}^{6} \frac{\partial \mathcal{E}_j(g)}{\partial g_m} \beta_j \right) - 2 \left(\sum_{k=1}^{6} \mathcal{E}_k(g) \gamma_{kl} \right) \left(\sum_{k=1}^{6} \frac{\partial \mathcal{E}_k(g)}{\partial g_m} \gamma_{kl} \right)
\]
(3.20)

So to compute the gradient of J we need
\[
\frac{\partial \mathcal{E}_i(g)}{\partial g_m} \mid i = 1, \cdots, N_h^0, \ m = 1, \cdots, N_h
\]
(3.21)

We consider then equation (2.4) and after partial derivation we have by (3.15)
\[
\begin{cases}
-\Delta \omega_m + 2 \frac{\partial f}{\partial s} (\cdot, u(g)) \omega_m = -\varphi_m, \\
\omega_{m\mid\Gamma} = 0.
\end{cases}
\]
(3.22)

Where $\omega_m = \frac{\partial u(g)}{\partial g_m}$. Note too using (3.11) that
\[
\frac{\partial u(g)}{\partial g_m} = \sum_{i=1}^{N_h^0} \frac{\partial \mathcal{E}_i(g)}{\partial g_m} \varphi_i
\]
and (3.22) give
\[
\omega_m = \sum_{i=1}^{N_h^0} \eta_i^m \varphi_i.
\]
(3.23)

So resolving (3.22) by the use of the finite elements method we obtain with (3.23)
\[
\frac{\partial \mathcal{E}_i(g)}{\partial g_m} = \eta_i^m \ i = 1, \cdots, N_h^0 \ m = 1, \cdots, N_h.
\]
(3.24)

4. Numerical test

In order to test this method, we have chosen, an example of problem (\mathcal{P}_1) which we know its explicit solution. The latter is chosen in order to be compared to the computed solution.
Example 4.1. We take Ω the unit disk and
\[f((x, y), u) = 4(3 + 2\log(1 + u))(1 + u)^2. \]
It’s clear that f verifies all assumptions (H_1), (H_2), (H_3) and (H_4). The solution of (P_I) is the following
\[u_I(x, y) = e^{(x^2 + y^2 - 1)} - 1. \]
In Fig. 4.1 and Fig. 4.2 we present the computed solution obtained by applying this method at 10 iterations compared to the exact solution u_I.

References

Figure 4.1. Graphs of u_I and the computed solution $u = u(x, y)$.

Figure 4.2. The contour plot of u_I and the computed solution.