Mathematica Balkanica

New Series Vol. 20, 2006, Fasc. 3-4

The Connectivity of Squares of Box Graphs

M.R.Adhikari and L.K.Pramanik

Presented by P. Boyvalenkov

The aim of the paper is to study the connectivity and the edge-connectivity of square of the box graph $[B(G)]^2$ of a graph G with the help of connectivity and the edge-connectivity of the graph G and its inserted graph I(G).

AMS Subj. Classification: Primary 05C40

Key Words: Box Graph, Inserted Graph, Connectivity, Edge-connectivity.

1. Introduction

We consider ordinary graphs (finite, undirected, with no loops or multiple edges). Let G be a graph with vertex set V_G and edge set E_G . Each member of $V_G \cup E_G$ will be called an element of G. A graph G is called trivial graph if it has a vertex set with single vertex and a null edge set. If e be an edge of a graph G with end vertices x and y, then we denote the edge e, by e = xy. We introduce the notions of box graph G(G), inserted graph G(G) and square of a box graph G(G) of a non-trivial graph G(G).

There are two major measures how highly connected a graph can be, namely the connectivity and edge-connectivity.

The connectivity k(G) of a graph G is the least number of vertices whose removal (along with all incident edges) disconnects G or reduces it to the trivial graph; a set of k(G) vertices satisfying this condition is called a minimal separating vertex set of G. Moreover G is n-connected if and only if $k(G) \geq n$.

On the other hand, the edge-connectivity $\lambda(G)$ of a graph G is the least number of edges whose removal disconnects G; and a set of $\lambda(G)$ edges satisfying this condition is called a minimal separating edge set of G. Moreover G is is m-edge-connected if and only if $\lambda(G) \geq m$.

In $\S 2$, we recall some definitions and results to be used in this paper and construct square of box graph $[B(G)]^2$ for a non-trivial graph G.

In §3, we investigate the connectivity relationships between a graph and square of its box graph. In particular, we show that if k(G) = n, $n \ge 1$, and $\lambda(G) = m$, then $\lambda([B(G)]^2) \ge 2m$, and $k([B(G)]^2) \ge n + 2 + [\frac{n-2}{3}]$, where [x] is the greatest integer not exceeding x.

2. Preliminaries

In this section at first we recall some definitions.

Definition 2.1 For a graph G, the square of G i.e, G^2 is a graph with the property that there always exists a one-one correspondence between its vertices and the vertices of G such that two vertices of G^2 are adjacent if the corresponding vertices of G are joined by a path of length one or two. [5]

Definition 2.2 A graph can be constructed by inserting a new vertex on each edge of G, the resulting graph is called Box graph of G, denoted by B(G). For an edge e of G, \overline{e} denote the vertex of B(G) corresponding to the edge e. [2]

The graph B(G) has the property that, there always exists a one-one correspondence between the vertices and the elements of G such that any two vertices of B(G) are adjacent if and only if the corresponding elements of G are an edge and an incident vertex. Obviously B(G) is a bipartite graph whose number of vertices is equal to the number of elements of G. Moreover if $V_G = \{v_1, v_2, ..., v_n\}$ and $E_G = \{e_1, e_2, ..., e_m\}$ then $V_{B(G)} = \{v_1, v_2, ..., v_n, \overline{e_1}, \overline{e_2}, ..., \overline{e_m}\}$.

Definition 2.3 Let I_G be the set of all inserted vertices in B(G). A graph I(G) with vertex set I_G is called the inserted graph in which any two vertices are adjacent if they are joined by a path of length two in B(G). Therefore if $E_G = \{e_1, e_2, ..., e_m\}$ then $I_G = V_{I(G)} = \{\overline{e}_1, \overline{e}_2, ..., \overline{e}_m\}$. [2]

Now we construct square of box graph $[B(G)]^2$ for a non-trivial graph G as follows (Fig. 1).

Here \bigotimes marked vertices are the newly inserted vertices of B(G). The graph $[B(G)]^2$ has the property that the graphs G, B(G) and I(G) are edge disjoint subgraphs of $[B(G)]^2$.

Now we recall here some results related to connectivity and edge-connectivity, to which we shall have occasion to refer in what follows. Characterizations of n-connected graphs and m-edge-connected graphs are presented bellow [4].

Theorem 2.4 A graph G is n-connected (m-edge-connected) if and only if between every pair of distinct vertices there exist at least n disjoint (m edge-disjoint) paths.

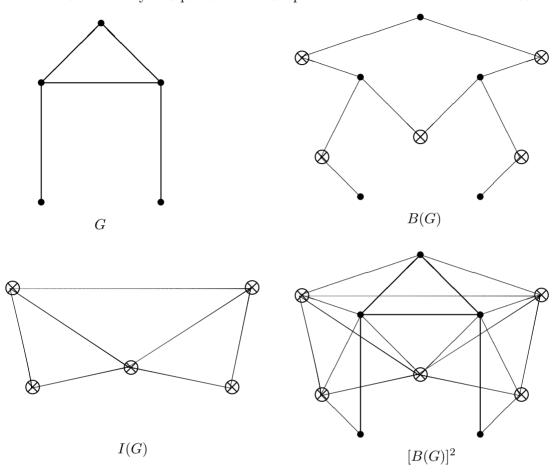


Figure 1

The next theorem is due to Adhikari and Pramanik [3].

Theorem 2.5 If
$$k(G_1) = n$$
 and $\lambda(G_2) = m$, then $k(I(G_1)) \ge n$ and $\lambda(I(G_1)) \ge 2n - 2$ while $k(I(G_2)) \ge m$ and $\lambda(I(G_2)) \ge 2m - 2$.

The next observation is due to Whitney [6]. We write min deg G to denote the smallest degree among the vertices of G.

Theorem 2.6 For any graph G, $k(G) \le \lambda(G) \le \min \deg G$.

The following lemmas may be proved as immediate consequence of definitions:

Lemma 2.7 $[B(X)]^2$ is a subgraph of $[B(A)]^2$ if and only if X is a subgraph of A.

Lemma 2.8 A necessary condition for $[B(G)]^2$ to be connected is that G is connected.

Lemma 2.9 For any grapg G and H, $[B(G \cap H)]^2 = [B(G)]^2 \cap [B(H)]^2$.

3. Connectivity and edge-connectivity of $[B(G)]^2$

Before we prove our first theorem we observe that G is connected if and only if $[B(G)]^2$ is connected; and that in $[B(G)]^2$ a vertex of G is adjacent to at least min deg G vertices of I(G).

Theorem 3.1 If G is m-edge-connected, than $[B(G)]^2$ is 2m-edge-connected.

Proof. If m=0, then theorem is clearly true. So assume $m\geq 1$. First we show between each pair x and y of distinct vertices of $[B(G)]^2$ belonging to I(G) there exist at least 2m edge-disjoint paths. Therefore by Theorem 2.5, there exist at least 2m-2 edge-disjoint paths in I(G). Let x and y correspond to the edges $e_1=ab$ and $e_2=cd$ respectively. If e_1 and e_2 have a vertex in common, that is, if for example d=b, then the paths (x,b,y) and (x,a,b,c,y) are two edge-disjoint x-y paths, and no edge of these paths belong to I(G). In case e_1 and e_2 have no-vertex in common, $m\geq 1$ implies that there exist at least one b-d path, say $(b=b_0,b_1,b_2,...,b_n=d)$ in G, where n is a positive integer. Then x-y paths $(x,b,b_1,b_2,...,b_{n-1},d,y)$ and $(x,a,b_1,b_2,...,b_{n-1},c,y)$ are edge-disjoint. Again no edge of these paths is in I(G). Hence the assertion follows.

Next suppose a set S, $|S| \leq 2m-1$, of edges disconnect $[B(G)]^2$. Remove S and denote the resulting graph by H. In H all vertices of I(G) must be in one of its component, say H_1 . Let H_2 be another component of H. All vertices of H_2 are vertices of G, moreover the number of vertices of H_2 is at least 2. This contradicts the inequality $|S| \leq 2m-1$, since in $[B(G)]^2$ there are at least 2 min deg G edges joining vertices of H_1 to vertices of H_2 , and by Theorem 2.6, $2m \leq 2$ min deg G.

Corollary 3.2 If G is m-connected, than $[B(G)]^2$ is 2m-edge-connected.

Proof. Since G is m-connected, then by Theorem 2.6, $k(G) \leq \lambda(G)$. This implies that G is m-edge-connected.

The equalities $k(K_{m+1}) = \lambda(K_{m+1}) = m$ and min deg $([B(K_{m+1})]^2) = 2m$ shows that the results of Theorem 3.1 and Corollary 3.2 are the best.

Theorem 3.3 If G is m-edge-connected, $m \geq 1$, than $[B(G)]^2$ is (m+1)-connected.

Proof. Suppose a set S consisting of s vertices of $[B(G)]^2$, $s \leq m$, disconnects $[B(G)]^2$. Let $S = S_1 \cup S_2$, where S_1 is the set of all elements of S which are vertices of I(G), and $S_2 = S - S_1$. If $|S_1| < m$, then the removal of S from I(G) results in a connected graph. This and the fact that a vertex of G in $[B(G)]^2$ is adjacent to at least m vertices of I(G) give rise to a contradiction. So $|S_1| = m$ and $|S_2| = 0$. But then every vertex of I(G) being adjacent to two vertices of S in $[B(G)]^2$ gives rise to a contradiction again. This completes the proof of the theorem.

The results of Theorem 3.3 is best possible, too. Identify two copies of K_{m+1} at one vertex y and denote the resulting graph by G. The vertex y is a cut-vertex of G and $\lambda(G) = m$. The subgraph I(G) of $[B(G)]^2$ has connectivity m. The m vertices which disconnect I(G) together with the vertex y, disconnect $[B(G)]^2$. Hence $k([B(G)]^2) = m + 1$. The graph in Fig. 1 illustrates this for m = 1.

Next, we note that a vertex of I(G) in $[B(G)]^2$ is adjacent with at least $2(\min \deg G - 1)$ other vertices of I(G).

Theorem 3.4 If G is m-connected, $m \ge 1$, than $[B(G)]^2$ is $(m+2+[\frac{m-2}{3}])$ -connected.

Proof. Since G is m-connected, then by Theorem 2.6, $k(G) \leq \lambda(G)$. This implies that G is m-edge-connected. Now by Theorem 3.3 $[B(G)]^2$ is (m+1)- connected. Hence for m=1, the theorem is true. So assume $m\geq 2$. Suppose there exist a set S consisting of $s=m+2+\left[\frac{m-2}{3}\right]$ or less vertices of $[B(G)]^2$ whose removal from $[B(G)]^2$ results in a disconnected graph H. Suppose $S_1\subset S$ consists of those vertices of S belonging to I(G) and $S_2=S-S_1$.

If $|S_1| \le m-1$, then the removal of S_1 from I(G) results in a connected graph. This together with the fact that in $[B(G)]^2$ each vertex of G adjacent to m vertices of I(G) contradicts the fact that H is a disconnected graph. Thus $|S_1| \ge m \ge 2$. Form this we conclude that

(1)
$$|S_2| = |S| - |S_1| \le s - m = 1 + \left\lceil \frac{m-2}{3} \right\rceil \le m-1$$

Since H is disconnected, $|S_2| \ge 2$. Hence:

(2)
$$2 \le |S_2| \le m-1$$
.

Therefore, the removal of S_2 from G results in a connected graph.

Now remove S from $[B(G)]^2$ and denote the connected subgraph containing all remaining vertices of G (and possibly some vertices of I(G)) by H_1 and let H_2 denote the rest of the resulting graph H. The graph H_2 contains at least one vertex, say x. The first inequality in (2) implies that

(3)
$$|S_1| \le m - 1 + \left\lceil \frac{m-2}{3} \right\rceil$$
.

From (3) and the note preceding Theorem 3.3 we get

(4)
$$2m - 2 - m + 1 - \left\lceil \frac{m-2}{3} \right\rceil \ge 1.$$

Hence x is adjacent to another vertex y of I(G) in H_2 . The vertices x and y correspond to two adjacent edges in G. These two edges are incident with three vertices in G which must belong to S_2 . Hence

(5)
$$|S_1| \le s - 3 = m - 2 + \left\lceil \frac{m-2}{3} \right\rceil$$
.

Again, from (5) and the note preceding the Theorem 3.3, we obtain

(6)
$$2m - 2 - m + 2 - \left\lceil \frac{m-2}{3} \right\rceil \ge 2.$$

Therefore, besides y the vertex x adjacent to another vertex z of I(G) in H_2 . The vertices x, y and z correspond to three edges X, Y an Z respectively of G. Since the edge X is adjacent to both Y and Z, one of the graphs in Fig. 2 must be subgraph of G.

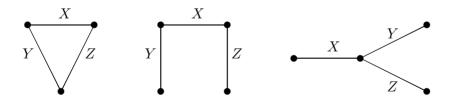


Figure 2

In each case there are at least 3m-6 edges in G, different from X, Y and Z which are adjacent to X, Y or Z. Hence, in addition to x, y, and z there

are at least 3m-6 vertices in I(G) which are adjacent to the vertices x, y or z. Therefore we have

(7)
$$3m - 6 - (s - 3) = 2m - 4 - \left\lceil \frac{m - 2}{3} \right\rceil \ge m - 2.$$

Now (7) implies that at least m-2 vertices of I(G) are left which are adjacent to x, y or z in H_2 . These vertices correspond to m-2 edges of G adjacent to X, Y or Z. These m-2 edges together with the edges X, Y and Z are adjacent with at least $\left[\frac{m-2}{3}\right]$ vertices of G which must belong to S_2 . Hence the set S contains at least $m+3+\left[\frac{m-2}{3}\right]$ vertices. Since this number is greater than S, the theorem must hold.

References

- [1] M.R. Adhikari, L.K. Pramanik and S. Parui. On Planar Graphs, *Rev. Bull. Cal. Math. Soc.*, **12**(1,2), 2004, 119–122.
- [2] M.R.Adhikari, L.K.Pramanik and S.Parui. On Box Graph and its Square, Rev. Bull. Cal. Math. Soc. 13(1,2), 2005.
- [3] M.R.Adhikari and L.K.Pramanik. The Connectivity of Inserted Graphs, J. Chung. Math. Soc., 18(1), 2005, 61-68.
- [4] C. Berge. The Theory of Graphs and its Application, New York, 1962.
- [5] F. Harary and I. C. Ross. The square of a tree, *The Bell System Tech. J.*, **39**, 1960, 641–647.
- [6] H. Whitney. Congruent graphs and the connectivity of graphs, *Amer. J. Math.*, **54**, 1932, 150–168.

Department of Pure Mathematics
University of Calcutta
35, Ballygunge Circular Road
Kolkata-700019, India.
E Mail: laxmikanta2002@yahoo.co.in
cms@cal2.vsnl.net.in

Received 06.04.2005