New Series Vol. 21, 2007, Fasc. 1-2

The Lifts of a Derivation Determined by D_{K_XY} and Their Applications

A. $Gezer^1$ and A. A. $Salimov^2$

Presented by P. Boyvalenkov

The main purpose of the present paper is to define a derivation D_{K_XY} determined by a tensor field $K_XY \in \mathfrak{S}^1_1(M_n)$, where

$$(K_X Y)Z = L_X(\nabla_Y Z) - \nabla_Y (L_X Z) - \nabla_{[X,Y]} Z$$

and to discuss relations between lifts of D_{K_XY} and lifts of already known.

AMS Subj. Classification: 53C07, 53B05, 55R100

Key Words: Tensor, bundle, complete lift, Lie derivation

1. Introduction

Let M_n be n- dimensional differentiable manifold of class C^{∞} , $T_q^p(M_n)$ its tensor bundle of type (p,q), and π the natural projection $T_q^p(M_n) \to M_n$. Let x^j , j=1,...,n be local coordinates in neighborhood U of a point x of M_n . Then a tensor t of type (p,q) at $x \in M_n$ which is an element of $T_q^p(M_n)$ is expressible in the form $(x^j, t_{j_1...j_q}^{i_1...i_p}) = (x^j, x^{\bar{j}})$, $x^{\bar{j}} = t_{j_1...j_q}^{i_1...i_p}$, $\bar{j} = n+1,...,n+n^{p+q}$, whose $t_{j_1...j_q}^{i_1...i_p}$ are components of t with respect to the natural frame ∂_j . We may consider $(x^j, x^{\bar{j}})$ as local coordinates in a neighborhood $\pi^{-1}(U)$ of $T_q^p(M_n)$.

To a transformation of local coordinates of $M_n: x^{j'} = x^{j'}(x^j)$, there corresponds in $T_q^p(M_n)$ the coordinates transformation

$$\begin{cases} x^{j'} = x^{j'}(x^j) \\ x^{\bar{j}'} = t^{i'_1 \dots i'_p}_{j'_1 \dots j'_q} = A^{i'_1}_{i_1} \dots A^{i'_p}_{i_p} A^{j_1}_{j'_1} \dots A^{j_q}_{j'_q} t^{i_1 \dots i_p}_{j_1 \dots j_q} = A^{(i')}_{(i)} A^{(j)}_{(j')} x^{\bar{j}}, \end{cases}$$

where

$$A_{(i)}^{(i')}A_{(j')}^{(j)} = A_{i_1}^{i'_1}...A_{i_p}^{i'_p}A_{j'_1}^{j_1}...A_{j'_q}^{j_q}, \quad A_{i_1}^{i'_1} = \frac{\partial x^{i'}}{\partial x^{i}}, \quad A_{j'_1}^{j_1} = \frac{\partial x^{j}}{\partial x^{j'}}$$

The Jacobian of (1.1) is given by the matrix

$$(1.2) \qquad \left(\frac{\partial x^{J'}}{\partial x^{J}}\right) = \begin{pmatrix} \frac{\partial x^{j'}}{\partial x^{j}} & \frac{\partial x^{j'}}{\partial x^{j}} \\ \frac{\partial x^{\bar{j'}}}{\partial x^{j}} & \frac{\partial x^{\bar{j'}}}{\partial x^{\bar{j}}} \end{pmatrix} = \begin{pmatrix} A_{j}^{j'} & 0 \\ t_{(k)}^{(i)} \partial_{j} (A_{(i)}^{(i')} A_{(j')}^{(k)}) & A_{(i)}^{(i')} A_{(j')}^{(j)} \end{pmatrix},$$

where $J=(j,\bar{j}),\ J=1,...,n+n^{p+q},\ t_{(k)}^{(i)}=t_{k_1...k_q}^{i_1...i_p}.$

We denote by $\mathbb{S}_q^p(M_n)$ the module over $F(M_n)$ of C^∞ tensor fields of type (p,q) ($F(M_n)$ is a ring of real-valued C^∞ functions on M_n). If $\alpha \in \mathbb{S}_p^q(M_n)$, it is regarded, in a natural way, by contraction, as a function in $T_q^p(M_n)$, which we denote by $i\alpha$. If α has the local expression $\alpha = \alpha_{i_1...i_p}^{j_1...j_q} \partial_{j_1} \otimes ... \otimes \partial_{j_q} \otimes dx^{i_1} \otimes ... \otimes dx^{i_p}$ in a coordinate neighborhood $U(x^i) \subset M_n$, then $i\alpha = \alpha(t)$ has the local expression $i\alpha = \alpha_{i_1...i_p}^{j_1...j_q} t_{j_1...j_q}^{i_1...i_p}$ with respect to the coordinates $(x^i, x^{\bar{\imath}})$ in $\pi^{-1}(U)$.

2. Complete Lifts of Derivations

Let $A \in \Im_q^p(M_n)$. Then there is a unique vector field $^VA \in \Im_0^1(T_q^p(M_n))$ such that for $\alpha \in \Im_p^q(M_n)$

$${}^{V}A(\imath\alpha) = \alpha(A)o\pi = {}^{V}(\alpha(A)),$$

where ${}^V(\alpha(A))$ is the vertical lift of the function $\alpha(A) \in F(M_n)$. We call VA the vertical lift of $A \in \Im_q^p(M_n)$ to $T_q^p(M_n)$ (see [1]). The vertical lift VA has components of the form

$${}^{V}A = \left(\begin{array}{c} {}^{V}A^{j} \\ {}^{V}A^{\bar{j}} \end{array} \right) = \left(\begin{array}{c} 0 \\ A^{i_{1}\dots i_{p}}_{j_{1}\dots j_{q}} \end{array} \right)$$

with respect to the coordinates $(x^j, x^{\bar{j}})$ in $T_q^p(M_n)$.

Let $\varphi \in \mathfrak{I}^1_1(M_n)$. We define a vector field $\gamma \varphi$ in $\pi^{-1}(U)$ by [2]

(2.1)
$$\begin{cases} \gamma \varphi = \left(\sum_{\lambda=1}^{p} t_{j_{1} \dots j_{q}}^{i_{1} \dots m_{m} i_{p}} \varphi_{m}^{i_{\lambda}} \right) \frac{\partial}{\partial x^{\overline{j}}}, & (p \geq 1, \ q \geq 0) \\ \tilde{\gamma} \varphi = \left(\sum_{\mu=1}^{q} t_{j_{1} \dots m_{m} j_{q}}^{i_{1} \dots i_{p}} \varphi_{j_{\mu}}^{m} \right) \frac{\partial}{\partial x^{\overline{j}}}, & (p \geq 0, \ q \geq 1) \end{cases}$$

with respect to the coordinates $(x^j, x^{\bar{j}})$ in $T^p_q(M_n)$. From (1.2) we easily see that the vector fields $\gamma \varphi$ and $\tilde{\gamma} \varphi$ defined in each $\pi^{-1}(U)$ determine respectively global vertical vector fields in $T^p_q(M_n)$. We call $\gamma \varphi$ (or $\tilde{\gamma} \varphi$) the vertical-vector lift of the tensor field $\varphi \in \Im^1_1(M_n)$ to $T^p_q(M_n)$. From (2.1), we see that, $\gamma \varphi$ and $\tilde{\gamma} \varphi$ have respectively components

(2.2)
$$\gamma \varphi = \begin{pmatrix} 0 \\ \sum_{\lambda=1}^{p} t_{j_{1} \dots j_{q}}^{i_{1} \dots m \dots i_{p}} \varphi_{m}^{i_{\lambda}} \end{pmatrix}$$

(2.3)
$$\tilde{\gamma}\varphi = \begin{pmatrix} 0 \\ \sum_{\mu=1}^{q} t_{j_1...i_p}^{i_1...i_p} \varphi_{j_{\mu}}^{m} \end{pmatrix}$$

with respect to the coordinates $(x^j, x^{\bar{j}})$ in $\pi^{-1}(U) \subset T_q^p(M_n)$.

We now put $F(M_n) = \sum_{p,q=0}^{\infty} \Im_q^p(M_n)$, which is the direct sum of all tensor

modules in M_n . A map $D: F(M_n) \to F(M_n)$ is a derivation in M_n , if

- a) D is linear with respect to constant coefficients,
- b) For all p, q, $D\Im_q^p(M_n) \subset \Im_q^p(M_n)$,
- c) For all tensor fields T_1 and T_2 in M_n

$$D(T_1 \otimes T_2) = (DT_1) \otimes T_2 + T_1 \otimes (DT_2),$$

d) D commutes with contraction.

For a derivation D in M_n , there exists a vector field P in M_n such that

$$(2.4) Pf = Df, f \in F(M_n)$$

If we put

$$D(\partial_i) = Q_i^h \partial_h$$

in each coordinate neighborhood U of M_n , then the pair (P^h, Q_i^h) is called the components of the derivation D in U [3, p.26].

Let α be an element of $\mathfrak{F}_p^q(M_n)$ with local expression $\alpha = \alpha_{i_1...i_p}^{j_1...j_q} \partial_{j_1} \otimes ... \otimes \partial_{j_q} \otimes dx^{i_1} \otimes ... \otimes dx^{i_p}$. Then we see that $D\alpha$ have components of the form

$$D\alpha: (P^{m}\partial_{m}\alpha_{i_{1}...i_{p}}^{j_{1}...j_{q}} + \sum_{\mu=1}^{q}\alpha_{i_{1}...i_{p}}^{j_{1}...m...j_{q}}Q_{m}^{j_{\mu}} - \sum_{\mu=1}^{q}\alpha_{i_{1}...m...i_{p}}^{j_{1}...j_{q}}Q_{i_{\lambda}}^{m})$$

in M_n , P^h being the components of $P \in \mathfrak{F}_0^1(M_n)$ given by (2.4).

Let D be a derivation in M_n . Then there is a unique vector field ${}^cD \in \mathfrak{S}^1_0(T^p_q(M_n))$ such that for $\alpha \in \mathfrak{S}^q_p(M_n)$ [1].

$$^{c}D(\imath\alpha) = \imath(D\alpha).$$

We call cD the complete lift of D to $T^p_q(M_n)$. cD has components

(2.5)
$${}^{c}D = \begin{pmatrix} p^{j} \\ \sum_{\mu=1}^{q} t_{j_{1}...m...j_{q}}^{i_{1}...i_{p}} \varphi_{j_{\mu}}^{m} - \sum_{\lambda=1}^{p} t_{j_{1}...j_{q}}^{i_{1}...m...i_{p}} \varphi_{m}^{i_{\lambda}} \end{pmatrix}$$

with respect to the coordinates $(x^j, x^{\bar{j}})$ in $T_q^p(M_n)$ [2].

Let L_V denote Lie derivation with respect to V. Then, from

$$L_V \alpha_{i_1 \dots i_p}^{j_1 \dots j_q} = V^m \partial_m \alpha_{i_1 \dots i_p}^{j_1 \dots j_q} - \sum_{\lambda=1}^q (\partial_m V^{i_\lambda}) \alpha_{i_1 \dots i_p}^{j_1 \dots m_{\dots j_q}} + \sum_{\mu=1}^p (\partial_{i_\mu} V^m) \alpha_{i_1 \dots m_{\dots i_p}}^{j_1 \dots j_q}$$

we see that the Lie derivation L_V is having components $L_V: (V^h, -\partial_i V^h)$. Using (2.5), we have

$$^{c}(L_{V}) = ^{c}V$$

where ${}^{c}V$ is the complete lift of vector field V to $T_{q}^{p}(M_{n})$ [4]:

$$(2.6) cV = \begin{pmatrix} cV^{j} \\ cV^{\bar{j}} \end{pmatrix} = \begin{pmatrix} V^{j} \\ \sum_{\lambda=1}^{p} t_{j_{1}\dots j_{q}}^{i_{1}\dots m\dots i_{p}} \partial_{m} V^{i_{\lambda}} - \sum_{\mu=1}^{q} t_{j_{1}\dots m\dots j_{q}}^{i_{1}\dots i_{p}} \partial_{j_{\mu}} V^{m} \end{pmatrix}.$$

Let now ∇ be affine connection in M_n and ∇_V denote covariant derivation with respect to V. By similar devices, we see that the derivation ∇_V having components

$$\nabla_V: (V^h, V^s \Gamma^h_{si})$$

and

$$^{c}(\nabla_{V}) = {^{c}V} - \gamma(\breve{\nabla}V) + \tilde{\gamma}(\breve{\nabla}V)$$

where ∇ is a new affine connection in M_n defined by

In particular, if ∇ is a symmetric affine connection, then

$$(2.8) c(\nabla_V) = {}^{H}V,$$

where HV is the horizontal lift of the vector field $V\in \Im_0^1(M_n)$ to $T_q^p(M_n)$ [4]:

$${}^{H}V = \left(\frac{V^{J}}{V^{s}(\sum_{\mu=1}^{q} \Gamma^{m}_{sj_{\mu}} t^{i_{1}\dots i_{p}}_{j_{1}\dots m\dots j_{q}} - \sum_{\lambda=1}^{p} \Gamma^{i_{\lambda}}_{sm} t^{i_{1}\dots m\dots i_{p}}_{j_{1}\dots j_{q}})}\right).$$

3. Derivations D_{K_XY} and Formulas on Lie Derivations

When a derivation D in M_n satisfies the condition Df=0 for any $f\in F(M_n)$, D determines an element $\varphi\in\Im^1_1(M_n)$ in such a way that $DX=\varphi X$, $\forall X\in\Im^1_0(M_n)$. In such a case, D is denoted by D_φ and called the derivation determined by φ . From $D_\varphi f=0$ and $D_\varphi X=\varphi X$, we easily verify that the D_φ has local components

(3.1)
$$D_{\varphi}:(0,\varphi_{i}^{h}), P^{h}=0, Q_{i}^{h}=\varphi_{i}^{h},$$

where φ_i^h are local components of φ in M_n . Then from (2.2), (2.3), (2.5) and (3.1), we have

$$^{c}(D_{\varphi}) = \left(\begin{array}{c} 0 \\ \sum_{\mu=1}^{q} t_{j_{1}\dots m\dots j_{q}}^{i_{1}\dots i_{p}} \varphi_{j_{\mu}}^{m} - \sum_{\mu=1}^{q} t_{j_{1}\dots j_{q}}^{i_{1}\dots m\dots i_{p}} \varphi_{m}^{i_{\lambda}} \end{array}\right) = \tilde{\gamma}\varphi - \gamma\varphi$$

or

$$^{c}(D_{\varphi}) = \tilde{\gamma}\varphi - \gamma\varphi$$

The Lie derivative $L_X \nabla$ of symmetric affine connection ∇ with respect to $X \in \mathfrak{S}^1_0(M_n)$ is, by definition, an element of $\mathfrak{S}^1_2(M_n)$ such that

$$(L_X \nabla)(Y, Z) = L_X(\nabla_Y Z) - \nabla_Y (L_X Z) - \nabla_{[X,Y]} Z$$

for any $Y, Z \in \mathfrak{F}^1_0(M_n)$. We now denote by $K_X Y$ the tensor field of type (1.1), defined by

$$(3.2) (K_x Y)Z = (L_X \nabla)(Y, Z) = [L_X, \nabla_Y] Z - \nabla_{[X,Y]} Z$$

This (3.2) reduces to

$$(3.3) K_X Y = [L_X, \nabla_Y] - \nabla_{[X,Y]}$$

which is an equation in terms of derivations. If we take the complete lifts of both sides in (3.3), we have

(3.4)
$$\tilde{\gamma}(K_X Y) - \gamma(K_X Y) = {}^{c}(D_{K_X Y}) = {}^{c}[L_X, \nabla_Y] - {}^{c}(\nabla_{[X,Y]})$$

Taking account of [2]

$$[{}^{c}D_{1}, {}^{c}D_{2}] = {}^{c}[D_{1}, D_{2}]$$

for any derivations D_1 and D_2 . From (3.4), we have

$$\tilde{\gamma}(K_X Y) - \gamma(K_X Y) = {}^c(D_{K_X Y}) = [{}^c(L_X), {}^c(\nabla_Y)] - {}^c(\nabla_{[X, Y]})$$
$$= [{}^cX, {}^HY] - {}^H[X, Y]$$

Thus we have

Theorem 1.

$$\begin{bmatrix} {}^{c}X, {}^{H}Y \end{bmatrix} = {}^{H}[X, Y] + \tilde{\gamma}(K_{X}Y) - \gamma(K_{X}Y)$$

for any $X, Y \in \mathfrak{F}_0^1(M_n)$, where K_XY denotes the tensor field of type(1.1) defined by (3.2).

An infinitesimal transformation defined by vector field $X \in \Im_0^1(M_n)$ is said to be an infinitesimal affine transformation with affine connection ∇ , if $L_X \nabla = 0$. Then, from (3.2) and Theorem 1 we have

Theorem 2. Let X be an infinitesimal affine transformation in M_n . Then

$$\left[{}^{c}X,{}^{H}Y\right]={}^{H}\left[X,Y\right].$$

Let ∇ is a Riemannian connection in M_n and $\nabla X=0$. Then $L_Xg=0$, i.e. X is a infinitesimal isometry or a Killing vector field. We next have $L_X\nabla=0$ as a consequence of $L_Xg=0$. Since $^cX=^HX$ ($\nabla X=0$), we have

Theorem 3. Let X be a vector field with vanishing Riemannian covariant derivative. Then

$$\left[{}^{H}X,{}^{H}Y\right]={}^{H}\left[X,Y\right],$$

i.e. the operation of taking the horizontal lift $H: \mathfrak{S}_0^1(M_n) \to \mathfrak{S}_0^1(T_q^p(M_n))$ is a homomorphism.

Theorem 4. Let $X, Y \in \mathfrak{F}_0^1(M_n)$ and $F, G \in \mathfrak{F}_1^1(M_n)$, let R and K_XY denote the curvature tensor field of the connection ∇ and the tensor field of type (1.1) defined by (3.2), respectively. Then

(a).
$$\left[\tilde{\gamma}F - \gamma F, \tilde{\gamma}G - \gamma G\right] = \tilde{\gamma}\left[F, G\right] - \gamma\left[F, G\right]$$

(b).
$$[{}^{c}X, \tilde{\gamma}F - \gamma F] = \tilde{\gamma}(L_X F) - \gamma(L_X F)$$

(c).
$$[{}^HX, \tilde{\gamma}F - \gamma F] = \tilde{\gamma}(L_XF + (\nabla X)F - F(\nabla X)) - \gamma(L_XF + (\nabla X)F - F(\nabla X))$$

Proof. (a). We can easily verify that

$$[D_F, D_G] = D_{[F,G]}$$

for any $F, G \in \mathfrak{F}_1^1(M_n)$, where [F, G] = FoG - GoF. If we take the complete lift of both sides of (3.5), we have

$$[\tilde{\gamma}F - \gamma F, \tilde{\gamma}G - \gamma G] = [^{c}(D_{F}), ^{c}(D_{G})] = ^{c}[D_{F}, D_{G}]$$
$$= ^{c}(D_{[F,G]}) = \tilde{\gamma}[F, G] - \gamma[F, G]$$

(b). We consider a derivative $[L_X, D_F] = L_X D_F - D_F L_X$. Since

$$[L_X, D_F] f = L_X D_F f - D_F L_X f = -D_F (X f) = 0$$

for any $f \in F(M_n)$, we denote by $D_{[L_X,D_F]}$ the derivation defined by $[L_X,D_F] \in \mathfrak{F}_1^1(M_n)$. Then from equation

$$[L_X, D_F] = D_{[L_X, D_F]}$$

We have

(3.6)
$$[{}^{c}X, \tilde{\gamma}F - \gamma F] = {}^{c}[L_X, D_F] = {}^{c}(D_{[L_X, D_F]})$$

Taking account of

$$(L_X F)Y = L_X(D_F Y) - D_F(L_X Y) = L_X(FY) - F(L_X Y),$$

we have $L_X F = [L_X, D_F]$. Then from (3.6) we have

$$[{}^{c}X, \tilde{\gamma}F - \gamma F] = {}^{c}(D_{[L_{X}, D_{F}]}) = {}^{c}(D_{L_{X}F}) = \tilde{\gamma}(L_{X}F) - \gamma(L_{X}F)$$

(c). From
$$(a)$$
, (b) , (2.7) and (2.8) , we have

$$[{}^{H}X, \tilde{\gamma}F - \gamma F] = [{}^{c}X + \tilde{\gamma}(\nabla X) - \gamma(\nabla X), \tilde{\gamma}F - \gamma F]$$

$$= [{}^{c}X, \tilde{\gamma}F - \gamma F] + [\tilde{\gamma}(\nabla X) - \gamma(\nabla X), \tilde{\gamma}F - \gamma F]$$

$$= [{}^{c}X, {}^{c}(D_{F})] + [{}^{c}(D_{(\nabla X)}), {}^{c}(D_{F})]$$

$$= \tilde{\gamma}(L_{X}F) - \gamma(L_{X}F) + \tilde{\gamma}[(\nabla X), F] - \gamma[(\nabla X), F]$$

$$= \tilde{\gamma}(L_{X}F + (\nabla X)F - F(\nabla X)) - \gamma(L_{X}F + (\nabla X)F - F(\nabla X))$$

Acknowledgment: This paper is supported by The Scientific & Technological Council of Turkey. pr. No: 105T551.

References

- [1] Ledger A., Yano K., Almost complex structures on tensor bundle, J. Dif. Geom. 1, (1967), 355-368.
- [2] Cengiz N., Salimov A.A., Complete lifts of derivations to tensor bundles, *Bol. Soc. Mat. Mexicana* 8 (2002), (3), 75-82.
- [3] Yano K., and Ishihara S., Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York (1973).
- [4] Salimov A.A., A new method in the theory of liftings of tensor fields in a tensor bundle, *Russian Math. (Iz, Vuz)* **38** (1994), (3), 67-73.

Department of Mathematics, Faculty of Arts and Sciences, Atatürk University, 25240, Erzurum, Turkey E-mail: gezeraydin@hotmail.com Received 08.09.2005