Mathematica Balkanica

New Series Vol. 21, 2007, Fasc. 3-4

Involutions in Q-Groups

M. R. Darafsheh and H. Sharifi

Presented by P. Boyvalenkov

A finite group whose irreducible complex characters are rational is called a \mathbb{Q} -group. In this paper we will find the structure of \mathbb{Q} -groups G which contain a CC-subgroup. We also study the Brauer-Fowler distance in relation with the set of involutions in G.

AMS Subj. Classification: 20C15

Key Words: Rational groups; strongly embedded subgroup; CC-subgroup

1. Introduction

Let G be a finite group and χ be a complex character of G. then χ is called a rational character if for every $x \in G$, $\chi(x) \in \mathbb{Q}$. If every irreducible complex character of a finite group G is rational then G is called a rational group or a \mathbb{Q} -group.

The symmetric group S_n and the Weyl groups of the complex Lie algebras are examples of \mathbb{Q} -groups, see [11]. Some important properties of \mathbb{Q} -groups can be found in [6] and [5]. In [4] we found the structure of all Frobenius \mathbb{Q} -groups. Berkovich and Zhmud in ([2], p. 59) give a nice description of \mathbb{Q} -groups.

Let K_1, \ldots, K_t be the conjugacy classes of G containing involutions. We set $M = K_1 \cup \ldots \cup K_t$ which is the set of all involutions in G and it is also denoted by Inv(G). In this paper we consider properties of G related to Inv(G). Specially we consider the Brauer-Fowler's distance and will prove that the distance of two involutions in a \mathbb{Q} -group G is greater than 1 if and only if a Sylow 2-subgroup of G is isomorphic either to \mathbb{Z}_2 or Q_8 . We also prove that a Sylow 2-subgroup of G is isomorphic to \mathbb{Z}_2 or Q_8 if and only if G contains a strongly embedded subgroup or equivalently G contains a G-subgroup. The notation used throughout this paper is standard, in particular the semi-direct product of groups G-subgroup of G-subgroup of G-subgroup of G-subgroup of G-subgroup.

the elementary abelian p-group of order p^n , and we write F(G) for the Fitting subgroup of G.

2. Some Properties of Q-groups

Let G be a group. We define the distance d on the set $G^\# = G - \{1\}$ as follow. We define d(x,x) = 0 for all $x \in G^\#$. For $x,y \in G^\#$, $x \neq y$, then define d(x,y) to be the shortest length of a chain $x = a_1, a_2, \ldots, a_n = y$ such that $a_i \in G^\#$ for all $1 \leq i \leq n$ and the consecutive terms of the chain commute. If there is no such a chain we set $d(x,y) = \infty$. This distance is called the Brauer-Fowler distance. It satisfies the triangle inequality. Two elements x,y of $G^\#$ are said to be connected if $d(x,y) < \infty$ otherwise they are called disconnected.

Before stating the results of this section, we mention some well-known properties about Q-group. These can be found in ([9], p. 537, satz 13.7).

Definition 1. An element $g \in G$ is said to be rational if it is conjugate to all generators of the cyclic group $\langle g \rangle$.

Property 1. A group G is a \mathbb{Q} -group if and only if every $g \in G$ is rational. Equivalently, $N_G(A)/C_G(A) \cong Aut(A)$ for every cyclic subgroup A of G.

Property 2. Every quotient of a Q-group is a Q-group

Property 3. All non-trivial Q-groups are of even order, therefore the set of involutions in a Q-group is not empty.

Now let G be a \mathbb{Q} -group and set M = Inv(G). We consider the Brauer-Fowler distance d on M. If for every two elements i and j in M we have $d(i,j) \leq 1$, then this means that the Sylow 2-subgroups of G are abelian and hence by [11] are isomorphic to an elementary abelian 2-group. In the following Lemma we consider the case d(i,j) > 1.

Lemma 1. Let G be a \mathbb{Q} -group and M = Inv(G). Then for every two distinct elements i and j of M we have d(i,j) > 1, if and only if a Sylow 2-subgroup of G is isomorphic to either \mathbb{Z}_2 or Q_8 .

Proof. Let i be an involution in G and Let P be a Sylow 2-subgroup of G containing i. Since for every pair of involutions $i \neq j$ we have assumed d(i,j) > 1, hence the only involution in $C_G(i)$ is i. Now Z(P) is an elementary abelian 2-group and $Z(P) \neq C_G(i)$ implying that $Z(P) = \langle i \rangle$. By ([9], satz 8.2) P is isomorphic either to a cyclic group or the generalized quaternion

group. If P is cyclic then $P \cong \mathbb{Z}_2$. If P is the generalized quaternion group, then $P = \langle x, y \mid x^{2^n} = 1, y^2 = x^{2^{n-1}}, y^{-1}xy = x^{-1} \rangle$ and P has order 2^{n+1} where $n \geq 2$. Let $A = \langle x \rangle$ be the cyclic subgroup of P with order 2^n . Then we must have $\frac{N_G(A)}{C_G(A)} \cong Aut(A)$, hence $|N_G(A)|_2 = |C_G(A)|_2 \times 2^{n-1}$, where $|n|_2$ denotes the 2-part of the positive integer n. Therefore $2^{n+1} \geq 2^n \times 2^{n-1}$ implying $n \leq 2$. Hence n = 2 and $P \cong Q_8$ proving the first part of the Lemma. Conversely assume a Sylow 2-subgroup of G is isomorphic either to \mathbb{Z}_2 or Q_8 . Let $i \in M$. If there is a $j \in C_G(i)$ different from i, then $i \in I$ is a fourgroup contained in a Sylow 2-subgroup of G which contradicts the structure of the Sylow 2-subgroups of G. Therefore $G_G(i) = \langle i \rangle$ and if there is $i \in I$ different from i, then $i \in I$ proving the Lemma.

Next we consider Q-groups containing a strongly embedded subgroup.

Definition 2. A subgroup H of a finite group G is said to be strongly embedded in G if the following two conditions are satisfied:

- 1) H is a proper subgroup of even order,
- 2) for any element $x \in G H$, the order of $H \cap H^x$ is odd.

For Example, a Frobenius group has such a subgroup. In the following, we will find the structure of a Sylow 2-subgroup of a \mathbb{Q} -group having a strongly embedded subgroup.

Theorem 1. Let G be a \mathbb{Q} -group having a strongly embedded subgroup. Then G is isomorphic to one of the following groups:

```
1) G \cong G' : \mathbb{Z}_2,
```

2) $G \cong E(p^n) : Q_8$.

Where $E(p^n)$ is an elementary abelian p-group of odd order p^n and G' is the commutator subgroup of G.

Proof. By ([12], p. 391) every Sylow 2-subgroup of G contains exactly one element of order 2 or there exists a proper normal subgroup L such that G/L is of odd order. But the second case is impossible because of Property 2. Now if every Sylow 2-subgroup of G contains exactly one involution then by using the same argument as used in the proof of Lemma 1 it can be shown that a Sylow 2-subgroup P of G is isomorphic to \mathbb{Z}_2 or Q_8 . If $P \cong \mathbb{Z}_2$ then by [8] case (1) holds. If $P \cong Q_8$ then by ([11], p. 35) case (2) holds.

3. O-groups with a CC-subgroup

First we characterize CC-subgroups of a Q-group and show that groups having a CC-subgroup are exactly Frobenius Q-groups.

Definition 3. A proper subgroup H of G is called a CC-subgroup of G if $C_G(x) \leq H$ for any $x \in H^{\#}$.

For finding the structure of \mathbb{Q} -groups with a CC-subgroup of even order, we use strongly embedded subgroups rather than using the classification of CC-subgroups.

Theorem 2. ([12], p. 407) The following conditions on a group G are equivalent:

- 1) The group G contains a strongly embedded subgroup.
- 2) The group G contains a subgroup K of even order such that $Inv(G) \nsubseteq K$ and $C_G(t) \subseteq K$ for any $t \in Inv(K)$.

Theorem 3. Let H be a CC-subgroup of even order of a \mathbb{Q} -group G. Then a Sylow 2-subgroup of H is isomorphic to either \mathbb{Z}_2 or Q_8 .

Proof. If $Inv(G) \subseteq H$, then we show $H \subseteq G$. In this case the subgroup K of G generated by Inv(G) is normal in G and hence $K \subseteq H$. If we let $C = \bigcap_{x \in G} H^x$, then $K \subseteq C \subseteq G$, hence C is a proper non-trivial subgroup of G. But since C is also a CC-subgroup of G, hence by [12] page 280, G would be a Frobenius group with kernel G. Since G has even order and G is a G-group of odd order. Therefore G = G implying that $G \subseteq H$ a contradiction to the fact that G is a proper subgroup of G.

Hence we must have $Inv(G) \nsubseteq H$. Now by Theorem 2, G contains a strongly embedded subgroup, hence by Theorem 1 every Sylow 2-subgroup of G contains exactly one involution. If $t \in H$ is an involution, then we may assume t is in the center of a Sylow 2-subgroup P of G. Since H is a CC-subgroup of G, hence $P \subseteq C_G(t) \subseteq H$ which implies that H contains a Sylow 2-subgroup of G and the Theorem is proved.

We use the classification of CC-subgroups of odd order for finding the structure of \mathbb{Q} -groups with such a CC-subgroup.

According to [7] a 2-Frobenius group G contains a normal series K < F < G such that F and G/K are Frobenius groups having kernels K and F/K respectively.

Theorem 4. (Theorem A in [1]) Let G be a finite group containing a non-normal CC-subgroup A of odd order. Then either G is a Frobenius group with complement A or we have one of the following cases:

- 1) If A is non-nilpotent, then $G \cong PSL(2,q)$, $q \equiv 3 \pmod{4}$ and A is solvable of odd order $|A| = \frac{q(q-1)}{2}$.
 - 2) If A is nilpotent then

- (i) G is a simple non-abelian group which is classified in ([1], p. 9-13, Tables 1-6),
- (ii) G is not simple and if H is the normal closure of A in G, then F(H) = F(G) and H/F(G) is a simple group of type (2) (i);
 - (iii) G is a 2-Frobenius group.

Theorem 5. Let H be a CC-subgroup of odd order in a \mathbb{Q} -group G. Then either all the composition factors of G are of order 2 or; $H \cong E(3^n)$ or $E(5^n)$.

Proof. We consider two cases.

Case 1 H is not a normal subgroup of G.

By Theorem 4 and Property 2, G cannot be a Frobenius group with complement H. By [3], PSL(2,3) is not a \mathbb{Q} -group and in other case PSL(2,q) is a simple group. But the only non-cyclic simple \mathbb{Q} -groups are $Sp_6(2)$ or $O_8^+(2)$ ([5] Theorem B.1). Therefore, case 1 and (2) (i) in Theorem 4 are impossible. Assume G is not simple. By ([5] Theorem B), a non-cyclic finite simple group is a composition factor of a \mathbb{Q} -group if and only if it is isomorphic to an alternating group or one of the following groups: $PSP_4(3)$, $SP_6(2)$, $O_8^+(2)$, $PSL_3(4)$ or $PSP_4(3)$. But none of these groups occur in tables of simple groups in ([1] p. 9-13). Therefore all the composition factors of G must be cyclic of prime order p, and since G is assumed to be a \mathbb{Q} -group we must have p=2. Thus case (2) (ii) in Theorem 4 is possible only if all the composition factors of G are of order 2. By properties 2 and 3 case (2) (iii) in Theorem 3 is not possible.

Case 2 H is a normal subgroup of G.

By ([10] p. 121) G is a Frobenius group with Frobenius kernel H and complement K which is a CC-subgroup. Because G/H is of even order, thus K must be a CC-subgroup of even order. By Theorem 3, $K \cong \mathbb{Z}_2$ or Q_8 . Since K is of even order, H is abelian ([10] p. 114, Lemma (7.21)). Because G/H is solvable then by [6] $\pi(G) \subseteq \{2,3,5\}$. Thus $\pi(H) \subseteq \{3,5\}$. if $g \in H$, then we may put $o(g) = 3^r 5^s$ where r and s are non-negative integers. Since H is a CC-subgroup of a \mathbb{Q} -group G we must have $C_G(g) = K$ and $N_G(\langle g \rangle)/C_G(\langle g \rangle) \cong Aut(\langle g \rangle)$. But $|Aut(\langle g \rangle)| = \varphi(o(g))$ must be a power of 2 from which we obtain $r, s \leq 1$. Therefore the order of every non-identity element of H is either 3, 5 or 15. If H has an element of order 15, say g, then from $N_G(\langle g \rangle)/C_G(\langle g \rangle) \cong Aut(\langle g \rangle)$ we deduce that $N_G(\langle g \rangle)/K$ has order $\varphi(15) = 8$, hence it must be isomorphic to Q_8 . But this is a contradiction because $Aut(\langle g \rangle)$ is an abelian group. Therefore H is elementary abelian 3 or 5-group and the Theorem is proved.

Theorem 6. Suppose d(i,j) > 6 for some $i, j \in M$. Then G contains an abelian CC-subgroup of odd order.

Proof. Let $i, j \in M$ and put x = ij. It is clear that $x^i = x^{-1}$. We will show that either $d(x,i) \geq 4$ or $d(x,j) \geq 4$. Otherwise, $d(x,i) \leq 3$ and $d(x,j) \leq 3$ and by the triangle inequality 6 < d(x,i) + d(x,j) = 3 + 3, which is impossible. We may assume that $d(x,i) \geq 4$. Let $H = C_G(x)$, then

$$H^{i} = C_{G}(x)^{i} = C_{G}(x^{i}) = C_{G}(x^{-1}) = C_{G}(x) = H$$

If $y \in H^{\#}$ then clearly $d(x,y) \leq 1$. By assumption and triangle inequality $4 \leq d(x,i) \leq d(x,y) + d(y,i) \leq 1 + d(y,i)$ implying $d(y,i) \geq 3$, that is $y^i \neq y$. Therefore, we may consider i as a fixed point free automorphism of order 2 of H. Thus H is an abelian subgroup of G of odd order (Burnside). On the other hand, for any $y \in H^{\#}$, $C_G(y)$ is an abelian subgroup of odd order such that $H \leq C_G(y)$. Since H is a maximal abelian subgroup of G, hence $H = C_G(x) = C_G(y)$ which shows that H must be a CC-subgroup of G.

Corollary 1. Suppose G is a \mathbb{Q} -group with a CC-subgroup, then G is a Frobenius \mathbb{Q} -group.

Acknowledgement

This research was done while the first author had a visiting position at the University of North Carolina at Charlotte, USA. The first author would like to thank the hospitality of the mathematics and statistics department of UNCC.

References

- Z. Arad and W. Herfort. Classification of finite groups with a CC-subgroup, Comm. Algebra, 32 (2004), No 6, 2087-2098.
- [2] Ya. G. Berkovich and E. M. Zhmud. Characters of Finite Groups, Part1, Transl. Math. Monographs 172, Amer. Math. Soc., Providence, Rhodes Island, 1997.
- [3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson. Atlas of Finite Groups, Oxford University Press, 1985.
- [4] M. R. Darafsheh and H. Sharifi. Frobenius Q-groups, Arch. Math. (Basel), 83 2004), 102-105.
- [5] W. Feit and G. H. Seits. On Finite rational groups and related topics, *Illinois J. Math.*, **33** (1988), No 1, 103-131.

- [6] R. Gow. Groups whose characters are rational-valued, *J. Algebra*, **40** (1976), 280-299.
- [7] K. W. Gruenberg and K. W. Roggenkamp. Decomposition of the augmentation ideal and of the relation modules of a finite group, *Proc. London Math. Soc.*, **31** (1975), 149-166.
- [8] M. Hayashi. On Generalization of Q-Groups, Springer-Verlag, Berlin, 1975.
- [9] B. Huppert. Endliche Gruppen, Vol 1, Springer-Verlag, New York, 1967.
- [10] I. M. Isaacs. Character Theory of Finite Groups, Academic Press, New York, 1976.
- [11] D. Kletzing. Structure and Representations of \mathbb{Q} -Groups, Springer-Verlag, Berlin, 1984.
- [12] M. Suzuki. Group Theory, Vol 2, Springer-Verlag, Berlin, 1982.
- [13] M. Suzuki. Two characteristic properties of (ZT)-groups, Osaka Math J., 15 (1963), 142-150.

Department of Pure Mathematics, Faculty of Mathematics, College of Science, University of Tehran, Tehran, IRAN

 $E ext{-}MAIL: darafsheh@ut.ac.ir$

Received 05.05.2007