Mathematica Balkanica

New Series Vol. 21, 2007, Fasc. 3-4

Open Images of Metrizable Families ¹

Ekaterina P. Mihaylova

Presented by St. Nedev

First countable families and complete A-families are defined. It is shown that they are the open images of metrizable families (defined by M. Choban) and complete metrizable families, respectively. Selection theorems for set-valued mappings $\theta: Y \to 2^X$ are derived, for the case when the family of all images of the points of Y by θ constitute a complete A-family in X.

AMS Subj. Classification: 54C10, 54C60, 54C65, 54E99.

Key Words: first countable family, complete A-family, metrizable family, set-valued mapping, selection.

1. Metrizable families

Let X be a topological space and ρ be a pseudometric on X. Denote by X/ρ the set of all equivalence classes of X of the type $H(x,\rho)=\{y\in X: \rho(x,y)=0\}$ and by $\widetilde{\rho}$ a metric on X/ρ such that $\widetilde{\rho}(h_1,h_2)=\rho(\pi_\rho^{-1}(h_1),\pi_\rho^{-1}(h_2))$ for every $h_1,h_2\in X/\rho$ where $\pi_\rho:X\to X/\rho$ is the natural projection. Notice that if the pseudometric ρ is continuous then π_ρ is a continuous mapping onto the metric space $(X/\rho,\widetilde{\rho})$.

Put $O_{\rho}(x,\varepsilon) = \{ y \in X : \rho(y,x) < \varepsilon \}$ for $\varepsilon > 0$.

Definition 1.1. Let A be a family of subsets of X. The triple (X, A, ρ) is called a metrizable family if the following conditions are valid:

MF1) $H(x, \rho) \cap L = \{x\}$ for every $L \in \mathcal{A}$ and $x \in L$;

MF2) For every $L_0 \in \mathcal{A}$, $x_0 \in L_0$ and an open subset U of X such that $x_0 \in U$, there exist $\varepsilon > 0$ and an open subset V of X such that $x_0 \in V$ and $O_{\rho}(x_0, \varepsilon) \cap L \subseteq U$ provided $L \cap V \neq \emptyset$, $L \in \mathcal{A}$.

¹Partially supported by contract from 2007 with SR of Sofia University

Proposition 1.2. Let the triple (X, A, ρ) satisfies condition MF1 of Definition 1.1. Then it is a metrizable family if and only if it satisfies the following condition:

MF2*) For every $L_0 \in \mathcal{A}$, $x_0 \in L_0$ and an open subset U of X such that $x_0 \in U$, there exist $\varepsilon > 0$ and an open subset V of X such that $x_0 \in V$ and $O_{\rho}(x,\varepsilon) \cap L \subseteq U$ provided $x \in L \cap V$, $L \in \mathcal{A}$.

Proof. Suppose first, that the triple (X, \mathcal{A}, ρ) is a metrizable family, $L_0 \in \mathcal{A}, x_0 \in L_0$ and U is an open subset of X such that $x_0 \in U$. Thus, there exist $\varepsilon > 0$ and an open subset V of X such that $x_0 \in V$ and $O_{\rho}(x_0, \varepsilon) \cap L \subseteq U$ provided $L \cap V \neq \emptyset$, $L \in \mathcal{A}$. Put $\varepsilon_1 = \frac{\varepsilon}{3}$ and $V_1 = V \cap O_{\rho}(x_0, \varepsilon_1)$. Suppose $L' \in \mathcal{A}$ and $x' \in L' \cap V_1$. Take $x_1 \in O_{\rho}(x', \varepsilon_1) \cap L'$. Then $\rho(x', x_1) < \varepsilon_1$ and $\rho(x', x_0) < \varepsilon_1$, hence $\rho(x_1, x_0) < 2\varepsilon_1 < \varepsilon$. From $x' \in L' \cap V_1$ and $V_1 \subseteq V$ follows that $L' \cap V \neq \emptyset$. MF2 implies $x_1 \in O_{\rho}(x_0, \varepsilon) \cap L' \subseteq U$. Thus $O_{\rho}(x', \varepsilon_1) \cap L' \subseteq U$. Therefore, MF2* holds for the triple (X, \mathcal{A}, ρ) .

Suppose now, that the triple (X, \mathcal{A}, ρ) satisfies MF2*, $L_0 \in \mathcal{A}$, $x_0 \in L_0$ and U is an open subset of X such that $x_0 \in U$. Thus, there exist $\varepsilon > 0$ and an open subset V of X such that $x_0 \in V$ and $O_{\rho}(x, \varepsilon) \cap L \subseteq U$ provided $x \in L \cap V$, $L \in \mathcal{A}$. Put $\varepsilon_1 = \frac{\varepsilon}{3}$ and $V_1 = V \cap O_{\rho}(x_0, \varepsilon_1)$. Then ε_1 and V_1 are the satisfying condition MF2 ones.

Remark 1.3. Proposition 1.2 shows that Definition 1.1 for metrizable family is equivalent to the original one, given by M. M. Choban in [1], which is a generalization of the one given by Geiler in [5] for a uniform space X.

Definition 1.4. (see [1]) Let (X, A, ρ) be a metrizable family of subsets of a space X. The set $L \in A$ is complete if the metric space (L, ρ) is complete. The metrizable family (X, A, ρ) is called complete if every $L \in A$ is complete.

Proposition 1.5. Let $(X_n, \mathcal{A}_n, \rho_n)$ be metrizable families, where the pseudometrics ρ_n are bounded by 1, for $n \in \mathbb{N}$, $X = \prod \{X_n : n \in \mathbb{N}\}$, $\rho : X \times X \to \mathbb{R}^+$ be a pseudometric on X such that $\rho(x, y) = \sum \{\frac{1}{2^n} \cdot \rho_n(x_n, y_n) : n \in \mathbb{N}\}$ for every $x = \{x_n : n \in \mathbb{N}\} \in X$, $y = \{y_n : n \in \mathbb{N}\} \in X$ and $A = \{\prod \{L_n : n \in \mathbb{N}\} : L_n \in \mathcal{A}_n \text{ for every } n \in \mathbb{N}\}$. Then (X, \mathcal{A}, ρ) is a metrizable family. Moreover, the family (X, \mathcal{A}, ρ) is complete provided all families $(X_n, \mathcal{A}_n, \rho_n)$ are complete.

Proof. To prove that MF1 holds take $L = \prod \{L_n : n \in \mathbb{N}\} \in \mathcal{A}$, $x = \{x_n : n \in \mathbb{N}\} \in L$ and $y = \{y_n : n \in \mathbb{N}\} \in H(x, \rho) \cap L$. Hence $\rho_n(x_n, y_n) = 0$ for every $n \in \mathbb{N}$. Thus $y_n \in H(x_n, \rho_n) \cap L_n = \{x_n\}$ for every $n \in \mathbb{N}$.

To prove that MF2 holds take $L = \prod \{L_n : n \in \mathbb{N}\} \in \mathcal{A}, x = \{x_n : n \in \mathbb{N}\} \in L$ and $U = \prod \{U_n : n \in \mathbb{N}\}$ an open subset of X where $x_{j_i} \in U_{j_i}$ and U_{j_i} is an open subset of X_{j_i} for $i \in \{1, ..., r\}$ and $U_n = X_n$ for $n \in \mathbb{N} \setminus \{j_1, ..., j_r\}$. Thus

there exist $\varepsilon_i > 0$ and V_{j_i} an open subset of X_{j_i} such that $x_{j_i} \in V_{j_i}$ for every $i \in \{1, ..., r\}$ as in MF2. Put $\varepsilon = min\{\frac{1}{2^{j_1}} \cdot \varepsilon_1, ..., \frac{1}{2^{j_r}} \cdot \varepsilon_r\}$ and $V = \prod\{V_n : n \in \mathbb{N}\}$ where $V_n = X_n$ for $n \in \mathbb{N} \setminus \{j_1, ..., j_r\}$. Then V is an open subset of X and $x \in V$. Take $L' = \prod\{L'_n : n \in \mathbb{N}\} \in \mathcal{A}$ such that $L' \cap V \neq \emptyset$ and $y \in O_\rho(x, \varepsilon) \cap L'$. Then $V_{j_i} \cap L'_{j_i} \neq \emptyset$ for $i \in \{1, ..., r\}$ and $y_{j_i} \in O_{\rho_{j_i}}(x_{j_i}, \varepsilon_i) \cap L'_{j_i} \subseteq U_{j_i}$ for $i \in \{1, ..., r\}$ therefore $y \in U$.

Since the Cartezian product of complete metric spaces is a complete metric space, the proof is complete.

2. Special families of subsets

2.1. Definitions and notations

Let \mathcal{A} be a family of subsets of the topological space X such that $\bigcup \mathcal{A} = X$. Let $(\gamma, p) = \{\gamma_n = \{U_\alpha : \alpha \in A_n\}, \ p_n : A_{n+1} \to A_n : n \in \mathbb{N}\}$ be an wA-sieve of X (i.e. γ_n is an open cover of X and $U_\alpha = \bigcup \{U_\beta : \beta \in p_n^{-1}(\alpha)\}$ for every $\alpha \in A_n$ and $n \in \mathbb{N}$).

Definition 2.1. A sequence $\mathbf{a} = \{\alpha_n \in A_n : n \in \mathbf{N}\}$ is called an s-sequence if $p_n(\alpha_{n+1}) = \alpha_n$ for every $n \in \mathbf{N}$.

Definition 2.2. An s-sequence $\mathbf{a} = \{\alpha_n \in A_n : n \in \mathbf{N}\}$ is called a b-sequence of X at the couple (L_0, x_0) where $L_0 \in \mathcal{A}$ and $x_0 \in L_0$ if the following hold:

 $BS1) \{x_0\} = \bigcap \{L_0 \cap U_{\alpha_n} : n \in \mathbf{N}\};$

BS2) for every open subset V of X such that $x_0 \in V$ there exist $m \in \mathbb{N}$ and an open subset W of X such that $x_0 \in W$ and $L \cap U_{\alpha_m} \subseteq V$ provided $W \cap L \neq \emptyset$, $L \in \mathcal{A}$.

Condition 2.3. (For a quartet $(X, \mathcal{A}, \gamma, p)$.) For every $L \in \mathcal{A}$, $m \in \mathbb{N}$, $\beta \in A_m$ and $x \in L \cap U_{\beta}$ there exists a b-sequence $\mathbf{a} = \{\alpha_n : n \in \mathbb{N}\}$ of X at (L, x) such that $\alpha_m = \beta$.

Condition 2.4. (For a quartet $(X, \mathcal{A}, \gamma, p)$.) For every $L \in \mathcal{A}$, $x \in L$ and an s-sequence $\mathbf{a} = \{\alpha_n : n \in \mathbf{N}\}$ such that $x \in \bigcap \{U_{\alpha_n} : n \in \mathbf{N}\}$ follows that \mathbf{a} is a b-sequence of X at (L, x).

Definition 2.5. A subset $L \in \mathcal{A}$ is called complete relatively to the wA-sieve (γ, p) if for every s-sequence $\mathbf{a} = \{\alpha_n : n \in \mathbf{N}\}$ such that $L \cap U_{\alpha_n} \neq \emptyset$ for every $n \in \mathbf{N}$ follows that $\bigcap \{L \cap U_{\alpha_n} : n \in \mathbf{N}\} \neq \emptyset$.

Condition 2.6. (For a quartet $(X, \mathcal{A}, \gamma, p)$.) Every $L \in \mathcal{A}$ is complete relatively to the wA-sieve (γ, p) .

- **Definition 2.7.** The quartet $(X, \mathcal{A}, \gamma, p)$ is called first countable family if it satisfies Condition 2.3.
- **Definition 2.8.** The quartet $(X, \mathcal{A}, \gamma, p)$ is called A-family if it satisfies Condition 2.4.
- **Definition 2.9.** The quartet $(X, \mathcal{A}, \gamma, p)$ is called complete A-family if it satisfies Conditions 2.4 and 2.6.
- Remark 2.10. If $(X, \mathcal{A}, \gamma, p)$ is an A-family then it is a first countable family.
- Remark 2.11. For a quartet $(X, \mathcal{A}, \gamma, p)$ put $\mathcal{A}(x) = \bigcup \{L \in \mathcal{A} : x \in L\}$ for $x \in X$. If $\mathbf{a} = \{\alpha_n : n \in \mathbf{N}\}$ is a b-sequence of X at (L_0, x_0) for some $L_0 \in \mathcal{A}, x_0 \in L_0$ then $\{U_{\alpha_n} : n \in \mathbf{N}\}$ is a base of $\mathcal{A}(x_0)$ at x_0 .
- Remark 2.12. For a quartet $(X, \mathcal{A}, \gamma, p)$ and a b-sequence $\mathbf{a} = \{\alpha_n : n \in \mathbb{N}\}$ of X at (L_0, x_0) for some $L_0 \in \mathcal{A}$, $x_0 \in L_0$ follows that \mathbf{a} is a b-sequence of X at (L_1, x_0) for every $L_1 \in \mathcal{A}$ such that $x_0 \in L_1$ and L_1 is a T_1 -subspace of X.
- Remark 2.13. If $(X, \mathcal{A}, \gamma, p)$ is a first countable family and $L \in \mathcal{A}$ then L is a first countable (i.e. satisfies the first Axiom of countability) T_1 -space. (It follows from condition BS1 for a b-sequence).

2.2 Constructions

Let $(X, \mathcal{A}, \gamma, p)$ be a first countable family where $(\gamma, p) = \{\gamma_n = \{U_\alpha : \alpha \in A_n\}, \ p_n : A_{n+1} \to A_n : n \in \mathbf{N}\}$. Put $\mathbf{A} = \prod \{A_n : n \in \mathbf{N}\}, \ \mathbf{B_1} = \{a \in \mathbf{A} : a \text{ is an s-sequence }\}$ and $\mathbf{B} = \{a \in \mathbf{B_1} : a \text{ is a b-sequence of } X$ at (L, x) for some $L \in \mathcal{A}, x \in L\}$. For $a = \{\alpha_n \in A_n : n \in \mathbf{N}\} \in \mathbf{A}$ and $b = \{\beta_n \in A_n : n \in \mathbf{N}\} \in \mathbf{A}$ put $d(a, b) = \sum \{2^{-n} : n \in \mathbf{N}\}$ is such that $\alpha_n \neq \beta_n\}$ (The Baire metric). Then (A, d) is a complete metric space, $\mathbf{B} \subseteq \mathbf{B_1} \subseteq \mathbf{A}$ and $\mathbf{B_1}$ is a closed subset of \mathbf{A} . Moreover, the family $\mathcal{B} = \{s_m(\alpha) = \{a = \{\alpha_n : n \in \mathbf{N}\} \in \mathbf{B} : \alpha_m = \alpha\} \subseteq \mathbf{B} : m \in \mathbf{N}, \ \alpha \in A_m\}$ is a base for the metric space (\mathbf{B}, d) . Note if $a = \{\alpha_n \in A_n : n \in \mathbf{N}\}$ is an s-sequence and $\alpha = \alpha_m$ then $\pi_{m-1}(\alpha_m) = \alpha_{m-1}, \ldots, \pi_1(\alpha_2) = \alpha_1$.

Put $\mathbf{Z} = \{(x, a) : x \in X, \ a \in \mathbf{B} \text{ where } a \text{ is a b-sequence of } X \text{ at } (L, x) \}$ for some $L \in \mathcal{A}$ such that $x \in L$. Thus $\mathbf{Z} \subseteq X \times \mathbf{B}$. Denote by π and q

the projections from **Z** onto X and onto **B**, respectively (i.e. $\pi((x,a)) = x$ and q((x,a)) = a for $(x,a) \in \mathbf{Z}$). Put $\rho((x,a),(y,b)) = d(a,b)$ for $(x,a),(y,b) \in \mathbf{Z}$. Finally denote by \mathcal{A}' the family $\{\pi^{-1}(L) : L \in \mathcal{A}\}$.

2.3 Properties

Property 2.14. (B, d) is a metric space.

Property 2.15. ρ is a continuous pseudometric on \mathbb{Z} .

Proof. It follows from the fact that $q: \mathbb{Z} \to \mathbb{B}$ is continuous.

Property 2.16. $(\mathbf{Z}, \mathcal{A}', \rho)$ is a metrizable family.

Proof. Let $L_0 \in \mathcal{A}$, $(x_0, a_0) \in \pi^{-1}(L_0)$ and $a_0 = \{\alpha_{0n} \in A_n : n \in \mathbb{N}\}$. Obviously $H((x_0, a_0), \rho) = \{(x, a_0) \in \mathbb{Z}\}$.

Assume $(x_1, a_0) \in H((x_0, a_0), \rho) \cap \pi^{-1}(L_0)$.

Then $x_1 \in L_0$ and from Remarks 2.13 and 2.12 follows that a_0 is a b-sequence of X at (L_0, x_1) . Thus $\{x_1\} = \bigcap \{L_0 \bigcap U_{\alpha_{0n}} : n \in \mathbf{N}\} = \{x_0\}$. Therefore $H((x_0, a_0), \rho) \bigcap \pi^{-1}(L_0) = \{(x_0, a_0)\}$.

Now let U be an open subset of \mathbf{Z} such that $(x_0, a_0) \in U$. Since $\mathbf{Z} \subseteq X \times \mathbf{B}$, it can be assumed that $U = (V \times s_m(\alpha)) \cap \mathbf{Z}$ for some open subset V of X and $m \in \mathbf{N}$ where $\alpha = \alpha_{0m}$. Thus $x_0 \in V \cap L_0 \cap U_\alpha$. From the fact that a_0 is a b-sequence of X at (L_0, x_0) follows that there exist $l \geq m$ and an open subset W of X such that $x_0 \in W$ and $L \cap U_{\alpha_{0l}} \subseteq V$ provided $L \cap W \neq \emptyset$, $L \in \mathcal{A}$. Fix $0 < \varepsilon < 2^{-l}$ and let $W_1 = W \times s_l(\alpha_{ol})$. Take $L' \in \mathcal{A}$ such that $\pi^{-1}(L') \cap W_1 \neq \emptyset$ and $(x, a) \in \pi^{-1}(L') \cap O_\rho((x_0, a_0), \varepsilon)$, $a = \{\alpha_n : n \in \mathbf{N}\}$. From $d(a, a_0) < \varepsilon$ it follows that $\alpha_l = \alpha_{0l}$. From $(x, a) \in \mathbf{Z}$ it follows that $x \in U_{\alpha_l} = U_{\alpha_{0l}}$. Since $L' \cap W \neq \emptyset$, $L' \cap U_{\alpha_{0l}} \subseteq V$. Therefore $x \in V$ and $a \in s_l(\alpha_{ol}) \subseteq s_m(\alpha)$ (i.e. $(x, a) \in U$). Thus ε and $W_1 \cap \mathbf{Z}$ are the required ones from condition MF2 for metrizable family.

Property 2.17. $\pi: \mathbb{Z} \to X$ is an open continuous mapping.

Proof. It suffices to show that $\pi((V \times s_m(\alpha)) \cap \mathbf{Z}) = V \cap U_\alpha$ for every $V \subseteq X$, $\alpha \in A_m$ and $m \in \mathbf{N}$. Take $x_0 \in V \cap U_\alpha$. Then $x_0 \in L_0$ for some $L_0 \in \mathcal{A}$. There exists a b-sequence $a = \{\alpha_n \in A_n : n \in \mathbf{N}\}$ of X at (L_0, x_0) such that $\alpha_m = \alpha$. Thus $a \in s_m(\alpha)$ and $(x_0, a_0) \in \mathbf{Z}$. Hence $x_0 = \pi((x_0, a_0)) \in \pi((V \times s_m(\alpha)) \cap \mathbf{Z})$.

Definition 2.18. A family $(X, \mathcal{A}, \gamma, p)$ is called open continuous image of a metrizable family (Y, \mathcal{B}, ρ) if there exists an open continuous mapping $\varphi : Y \to X$ such that $\mathcal{B} = \{\varphi^{-1}(L) : L \in \mathcal{A}\}.$

Theorem 2.19. Let $(X, \mathcal{A}, \gamma, p)$ be a first countable family. Then it is an open continuous image of a metrizable family $(\mathbf{Z}, \mathcal{A}', \rho)$.

Proof. It follows from Properties 2.16 and 2.17.

Property 2.20. Let $(X, \mathcal{A}, \gamma, p)$ be an A-family and $L \in \mathcal{A}$ be such that for every s-sequence $\mathbf{a} = \{\alpha_n \in A_n : n \in \mathbf{N}\}$ with $L \cap U_{\alpha_n} \neq \emptyset$ for every $n \in \mathbf{N}$ follows that $\bigcap \{L \cap U_{\alpha_n} : n \in \mathbf{N}\} \neq \emptyset$. Then $(\pi^{-1}(L), \rho)$ is a complete metric space.

Proof. Let $S_n = \{\beta \in A_n : L \cap U_\beta \neq \emptyset\}$ and $S = \mathbf{B} \cap (\prod \{S_n : n \in \mathbf{N}\})$. Then S is a complete metric space. It is sufficient to prove that S is closed in $\mathbf{B_1}$. Take $b \in \mathbf{B_1} \setminus S$ where $b = \{\beta_n : n \in \mathbf{N}\}$. Assume that $L \cap U_{\beta_n} \neq \emptyset$ for every $n \in \mathbf{N}$. But b is an s-sequence, hence $\bigcap \{L \cap U_{\beta_n} : n \in \mathbf{N}\} \neq \emptyset$. Now from Condition 2.4 follows that b is a b-sequence of X at (L, x) for some $x \in \bigcap \{L \cap U_{\beta_n} : n \in \mathbf{N}\}$. Thus $b \in \mathbf{B} \cap (\prod \{S_n : n \in \mathbf{N}\}) = S$ which is a contradiction. Hence $L \cap U_{\beta_m} = \emptyset$ for some $m \in \mathbf{N}$. Thus the open subset $s'_m(\beta_m) = \{a = \{\alpha_n : n \in \mathbf{N}\} \in \mathbf{B_1} : \alpha_m = \beta_m\}$ of $\mathbf{B_1}$ contains b and it does not meet S.

Clearly, to prove the property, it is enough to show that $q_L = q|\pi^{-1}(L)$: $(\pi^{-1}(L), \rho) \to (S, d)$ is an isometry. Fix $a \in S$, $a = \{\alpha_n \in A_n : n \in \mathbb{N}\}$. There exists $x \in \bigcap \{L \bigcap U_{\alpha_n} : n \in \mathbb{N}\} \neq \emptyset$. Therefore a is a b-sequence of X at (L, x). From $(x, a) \in \pi^{-1}(L)$ follows that $a = q_L((x, a))$. Thus q_L is onto S. Moreover q_L is a one-to-one mapping because $(\mathbf{Z}, \mathcal{A}', \rho)$ is a metrizable family and $\pi^{-1}(L) \in \mathcal{A}'$. The proof follows from the equality $\rho((x, a), (y, b)) = d(a, b)$ for $(x, a), (y, b) \in \pi^{-1}(L)$.

Corollary 2.21. Let $(X, \mathcal{A}, \gamma, p)$ be a complete A-family. Then $(\pi^{-1}(L), \rho)$ is a complete metric space for every $L \in \mathcal{A}$.

Property 2.22. Let $(X, \mathcal{A}, \gamma, p)$ be a first countable family [A-family] and $\mathcal{A}_1 = \{H \cap L : L \in \mathcal{A}, H \subseteq X\}$. Then $(X, \mathcal{A}_1, \gamma, p)$ is a first countable family [A-family], too.

Proof. Let $(X, \mathcal{A}, \gamma, p)$ be a first countable family, $L_0 \in \mathcal{A}_1$, $x_0 \in L_0 \cap U_\beta$ and $\beta \in A_m$, $m \in \mathbb{N}$. Then $L_0 \subseteq L_1$ for some $L_1 \in \mathcal{A}$. From Condition 2.3 follows that there exists a b-sequence $a = \{\alpha_n \in A_n : n \in \mathbb{N}\}$ of X at (L_1, x_0) such that $\alpha_m = \beta$. Clearly, $\{x_0\} = \bigcap \{L_0 \cap U_{\alpha_n} : n \in \mathbb{N}\} = \bigcap \{L_1 \cap U_{\alpha_n} : n \in \mathbb{N}\}$. Let V be an open subset of X such that $x_0 \in V$. There exist $k \in \mathbb{N}$ and an open subset W of X such that $x_0 \in W$ and $L' \cap U_{\alpha_k} \subseteq V$ provided $W \cap L' \neq \emptyset$, $L' \in \mathcal{A}$. Now if $L'' \in \mathcal{A}_1$ and $W \cap L'' \neq \emptyset$. Then $L'' \subseteq L_2$ for some $L_2 \in \mathcal{A}$. Hence $L'' \cap U_{\alpha_k} \subseteq L_2 \cap U_{\alpha_k} \subseteq V$. Therefore a is a b-sequence of X at (L_0, x_0) . Thus $(X, \mathcal{A}_1, \gamma, p)$ is a first countable family. One can easily prove

 $(X, \mathcal{A}_1, \gamma, p)$ is an A-family provided $(X, \mathcal{A}, \gamma, p)$ is an A-family, in a similar way.

Corollary 2.23. Let $(X, \mathcal{A}, \gamma, p)$ be an A-family. Then $(\pi^{-1}(x), \rho)$ is a complete metric space for every $x \in X$.

Proof. Let $\mathcal{A}_1 = \{H \cap L : L \in \mathcal{A}, H \subseteq X\}$ and $x \in X$. Then $\{x\} \in \mathcal{A}_1$. Take an s-sequence $a = \{\alpha_n \in A_n : n \in \mathbb{N}\}$ such that $x \in U_{\alpha_n}$ for every $n \in \mathbb{N}$. Clearly, $\{x\} = \bigcap \{\{x\} \cap U_{\alpha_n} : n \in \mathbb{N}\}$. From Property 2.20 follows that $(\pi^{-1}(x), \rho)$ is a complete metric space.

Property 2.24. Let $(X, \mathcal{A}, \gamma, p)$ be a complete A-family and $\mathcal{A}_2 = \{H \cap L : L \in \mathcal{A}, H \text{ is a closed subset of } X\}$. Then $(X, \mathcal{A}_2, \gamma, p)$ is a complete A-family, too.

Proof. That $(X, \mathcal{A}_2, \gamma, p)$ satisfies Condition 2.4 can be seen in a similar way as in the proof of the previous property. To prove that Condition 2.6 holds for $(X, \mathcal{A}_2, \gamma, p)$, take $L \in \mathcal{A}_2$ and an s-sequence $a = \{\alpha_n : n \in \mathbb{N}\}$ such that $L \cap U_{\alpha_n} \neq \emptyset$ for every $n \in \mathbb{N}$. Then $L = L_0 \cap H$ for some $L_0 \in \mathcal{A}$ and a closed subset H of X. Take $x \in \bigcap \{L_0 \cap U_{\alpha_n} : n \in \mathbb{N}\} \neq \emptyset$. Then a is a b-sequence of X at (L_0, x) . Assume that $\bigcap \{H \cap L_0 \cap U_{\alpha_n} : n \in \mathbb{N}\} = \emptyset$. Thus $X \setminus H$ is an open subset of X containing x. There exist $m \in \mathbb{N}$ and an open subset W of X such that $x \in W$ and $L' \cap U_{\alpha_m} \subseteq X \setminus H$ provided $L' \cap W \neq \emptyset$ and $L' \in \mathcal{A}$. Thus $L_0 \cap U_{\alpha_m} \subseteq X \setminus H$. Therefore $L \cap U_{\alpha_m} = \emptyset$ which is a contradiction. Hence $\bigcap \{L \cap U_{\alpha_n} : n \in \mathbb{N}\} \neq \emptyset$.

3. Examples

Example 3.1. Let X be a first countable T_1 -space and $\mathcal{A} = \{L \subseteq X\}$. Then there exists an wA-sieve $(\gamma, p) = \{\gamma_n = \{U_\alpha : \alpha \in A_n\}, \ p_n : A_{n+1} \to A_n : n \in \mathbb{N}\}$ of X such that $(X, \mathcal{A}, \gamma, p)$ is a first countable family.

Proof. Take as $\gamma_1 = \{U_{\alpha} : \alpha \in A_1\}$ an arbitrary base of X. Put $A_n = \{(\alpha_1, \alpha_2, ..., \alpha_n) \in A_1^n : U_{\alpha_n} \subseteq U_{\alpha_{n-1}} \subseteq ... \subseteq U_{\alpha_1}\}, \ \gamma_n = \{U_{(\alpha_1, \alpha_2, ..., \alpha_n)} = U_{\alpha_n} : (\alpha_1, \alpha_2, ..., \alpha_n) \in A_n\}$ and $p_n((\alpha_1, \alpha_2, ..., \alpha_n, \alpha_{n+1})) = (\alpha_1, \alpha_2, ..., \alpha_n)$ for every $(\alpha_1, \alpha_2, ..., \alpha_{n+1}) \in A_{n+1}$ and every $n \in \mathbb{N}$. Clearly, $(\gamma, p) = \{\gamma_n = \{U_{\alpha} : \alpha \in A_n\}, \ p_n : A_{n+1} \to A_n : n \in \mathbb{N}\}$ is an wA-sieve of X. Let $U_0 \in \mathcal{A}$, $U_0 \in \mathcal{A}$, $U_0 \in \mathbb{N}$ and $U_0 \in \mathcal{A}$ and $U_0 \in \mathcal{A}$ for some $U_0 \in \mathcal{A}$ and $U_0 \in \mathcal{A}$ for some $U_0 \in \mathcal{A}$ and $U_0 \in \mathcal{A}$ and $U_0 \in \mathcal{A}$ for some $U_0 \in \mathcal{A}$ and $U_0 \in \mathcal{A}$ for some $U_0 \in \mathcal{A}$ for som

Example 3.2. Let $(X_i, A_i, \gamma^i, p^i)$, i = 1, 2 be first countable families where $(\gamma^1, p^1) = \{ \gamma_n^1 = \{ U_\alpha : \alpha \in A_n^1 \}, \ p_n^1 : A_{n+1}^1 \to A_n^1 : n \in \mathbf{N} \}$ and $(\gamma^2, p^2) = \{ \gamma_n^2 = \{ V_\beta : \beta \in A_n^2 \}, \ p_n^2 : A_{n+1}^2 \to A_n^2 : n \in \mathbf{N} \}$. If $X = X_1 \times X_2, \ A = \{ L_1 \times L_2 : L_i \in \mathcal{A}_i, \ i = 1, 2 \}$ and $(\gamma, p) = \{ \gamma_n = \{ U_\alpha \times V_\beta : U_\alpha \in \gamma_n^1, \ V_\beta \in \gamma_n^2 \}, \ p_n : A_{n+1}^1 \times A_{n+1}^2 \to A_n^1 \times A_n^2 = A_n \text{ where } p_n((\alpha, \beta)) = (p_n^1(\alpha), \ p_n^2(\beta)) : n \in \mathbf{N} \}$. Then $(X, \mathcal{A}, \gamma, p)$ is a first countable family.

Example 3.3. Finite product of first countable families is a first countable family. \blacksquare

Example 3.4. Let $(X_j, \mathcal{A}_j, \gamma^j, p^j)$, $j \in \mathbf{N}$ be first countable families, $X = \prod \{X_j : j \in \mathbf{N}\}$ and $\mathcal{A} = \{\prod \{L_j : j \in \mathbf{N}\} : L_j \in \mathcal{A}_j, j \in \mathbf{N}\}$. Then $(X, \mathcal{A}, \gamma, p)$ is a first countable family for some wA-sieve (γ, p) of X.

Proof. Let $(\gamma^{j}, p^{j}) = \{\gamma_{n}^{j} = \{U_{\alpha}^{j} : \alpha \in A_{n}^{j}\}, \ p_{n}^{j} : A_{n+1}^{j} \rightarrow A_{n}^{j} : n \in \mathbb{N}\}$ be an wA-sieve of $X_{j}, \ j \in \mathbb{N}$. Put $A_{n} = \{(\alpha_{n}^{1}, ..., \alpha_{n}^{n}) : \alpha_{n}^{j} \in A_{n}^{j}, \ j \in \mathbb{N}\}$ and $P_{n} : P_{\alpha_{n}^{j}} : P_{\alpha_{n}^{j}} : p \in \mathbb{N}\}$ be an wA-sieve of $X_{j}, \ j \in \mathbb{N}$. Put $A_{n} = \{(\alpha_{n}^{1}, ..., \alpha_{n}^{n}) : \alpha_{n}^{j} \in A_{n}^{j}, \ j \in \mathbb{N}\}$ and $P_{n} : P_{\alpha_{n}^{j}} : p \in \mathbb{N}$, where $P_{n} : P_{n}^{j} : p \in \mathbb{N}$ and $P_{n} : P_{n}^{j} : p \in \mathbb{N}$ and that if $P_{n} : P_{n}^{j} : p \in \mathbb{N}$ and $P_{n} : P_{n}^{j} : p \in \mathbb{N}$, where $P_{n} : P_{n}^{j} : p \in \mathbb{N}$ is an wA-sieve of $P_{n} : p \in \mathbb{N}$. Then $P_{n} : p \in \mathbb{N}$ is an wA-sieve of $P_{n} : p \in \mathbb{N}$, where $P_{n} : p \in \mathbb{N}$ is an wA-sieve of $P_{n} : p \in \mathbb{N}$, where $P_{n} : p \in \mathbb{N}$ is an wA-sieve of $P_{n} : p \in \mathbb{N}$. To prove that $P_{n} : p \in \mathbb{N}$ is a first countable family take $P_{n} : p \in \mathbb{N}$ and $P_{n} : p \in \mathbb{N}$ is an wA-sieve of $P_{n} : p \in \mathbb{N}$. Choose $P_{n} : p \in \mathbb{N}$ and $P_{n} : p \in \mathbb{N}$ is a first countable family take $P_{n} : p \in \mathbb{N}$ is an wA-sieve of $P_{n} : p \in \mathbb{N}$ is an wA-sieve of $P_{n} : p \in \mathbb{N}$ and $P_{n} : p \in \mathbb{N}$ is an wA-sieve of

Example 3.5. Let $(X, \mathcal{A}, \gamma, p)$ be a first countable family where $(\gamma, p) = \{\gamma_n = \{U_\alpha : \alpha \in A_n\}, p_n : A_{n+1} \to A_n : n \in \mathbf{N}\}$ and Y be a topological space. Let $Z = X \times Y$ and $\mathcal{A}^* = \{L \times \{y\} : L \in \mathcal{A}, y \in Y\}$. Then $(Z, \mathcal{A}^*, \gamma^*, p)$ is a first countable family for the wA-sieve $(\gamma^*, p) = \{\gamma_n^* = \{U_\alpha \times Y : \alpha \in A_n\}, p_n : A_{n+1} \to A_n : n \in \mathbf{N}\}$ of Z.

4. Applications

Theorem 4.1. Let $\theta: Y \to 2^X$ be an l.s.c. mapping, Y be a paracompact space, $\mathcal{A} = \{\theta(y): y \in Y\}$, the wA-sieve (γ, p) of X be such that $(X, \mathcal{A}, \gamma, p)$ is an A-family and $Y_0 = \{y \in Y: \theta(y) \text{ is not complete relatively to the wA-sieve } (\gamma, p)\}$ be a σ -discrete subset of Y (i.e. a countable union of discrete (in Y) subsets of Y). Then there exist a u.s.c. compact-valued mapping $\psi: Y \to 2^X$

and an l.s.c. compact-valued mapping $\varphi: Y \to 2^X$ such that $\varphi(y) \subseteq \psi(y) \subseteq \theta(y)$ for every $y \in Y$. Moreover, if $L \subseteq Y$ and $\dim L \le n$ then there exists a u.s.c. mapping $\psi: L \to 2^X$ such that $\psi(y) \subseteq \theta(y)$ and $|\psi(y)| \le n+1$ for every $y \in L$.

Proof. There exist a mertizable family (Z, \mathcal{A}', ρ) and an open continuous mapping $g: Z \to X$ such that $\mathcal{A}' = \{g^{-1}(L): L \in \mathcal{A}\}$. For every $y \in Y \setminus Y_0$ the metric space $(g^{-1}(\theta(y)), \rho)$ is complete. By virtue of Theorem 2 from [1] there exist an l.s.c mapping $\varphi_1: Y \to 2^Z$ and a u.s.c. mapping $\psi_1: Y \to 2^Z$ such that $\varphi_1(y) \subseteq \psi_1(y) \subseteq g^{-1}(\theta(y))$ for every $y \in Y$ and the sets $\varphi_1(y)$ and $\psi_1(y)$ are compact for every $y \in Y$. Obviously the mappings $\varphi(y) = g(\varphi_1(y))$ and $\psi(y) = g(\psi_1(y))$ are the required ones.

Corollary 4.2. Let $(X, \mathcal{A}, \gamma, p)$ be a complete A-family of subsets of a space X, $\theta: Y \to 2^X$ be an l.s.c. mapping, Y be paracompact and $\theta(y) \in \mathcal{A}$ for every $y \in Y$. Then there exist a u.s.c. mapping $\psi: Y \to 2^X$ and an l.s.c. mapping $\varphi: Y \to 2^X$ such that $\varphi(y) \subseteq \psi(y) \subseteq \theta(y)$ for every $y \in Y$. Moreover, if $\dim Y = 0$, then the mapping φ is single-valued.

Corollary 4.3. Let $(X, \mathcal{A}, \gamma, p)$ be a first countable family of subsets of a space $X, \theta: Y \to 2^X$ be an l.s.c. mapping, Y be a σ -discrete, paracompact space and $\theta(y) \in \mathcal{A}$ for every $y \in Y$. Then there exists a single valued continuous mapping $f: Y \to X$ such that $f(y) \in \theta(y)$ for every $y \in Y$.

5. Inverse theorems

Theorem 5.1. Let X and Y be topological spaces, $f: Y \to X$ be an open continuous mapping onto X, A be a family of subsets of X and $A' = \{f^{-1}(L): L \in A\}$ be such that (Y, A', ρ) is a metrizable family for some continuous pseudometric ρ on Y. Then if L is a T_1 -space for every $L \in A$, there exists an wA-sieve (γ, p) for which (X, A, γ, p) is a first countable family.

Proof. Put $\mu_1 = \{O_{\rho}(y, \frac{1}{2^k}) : y \in Y, k \in \mathbf{N}\} = \{U_{\alpha} : \alpha \in A_1\}$. Then μ_1 is an open cover of Y. Put $A_n = \{(\alpha_1, \alpha_2, ..., \alpha_n) \in A_1^n : U_{\alpha_n} \subseteq U_{\alpha_{n-1}} \subseteq ... \subseteq U_{\alpha_1}\}, \ \gamma_n = \{U_{(\alpha_1, \alpha_2, ..., \alpha_n)} = U_{\alpha_n} : (\alpha_1, \alpha_2, ..., \alpha_n) \in A_n\}$ and $p_n((\alpha_1, \alpha_2, ..., \alpha_n, \alpha_{n+1})) = (\alpha_1, \alpha_2, ..., \alpha_n)$ for every $(\alpha_1, \alpha_2, ..., \alpha_{n+1}) \in A_{n+1}$ and for every $n \in \mathbf{N}$. Clearly, $(\mu, p) = \{\mu_n = \{U_{\alpha} : \alpha \in A_n\}, \ p_n : A_{n+1} \to A_n : n \in \mathbf{N}\}$ is an wA-sieve of Y. Next, put $\gamma_n = \{f(U_{\alpha}) : \alpha \in A_n\}$. Thus γ_n is an open cover of X for every $n \in \mathbf{N}$ (f is an open mapping). Clearly, $(\gamma, p) = \{\gamma_n = \{f(U_{\alpha}) : \alpha \in A_n\}, \ p_n : A_{n+1} \to A_n : n \in \mathbf{N}\}$ is an wA-sieve of X. Let $L_0 \in \mathcal{A}, \ x_0 \in L_0$ and $x_0 \in f(U_{\alpha})$ for some $\alpha = (\alpha_1, \alpha_2, ..., \alpha_m) \in A_m$

and $m \in \mathbf{N}$. Thus $U_{\alpha} = U_{\alpha_m} = O_{\rho}(y_1, \frac{1}{2^k})$ for some $y_1 \in Y$ and $k \in \mathbf{N}$. There exists $y_0 \in U_{\alpha}$ such that $f(y_0) = x_0$. Hence $y_0 \in f^{-1}(L_0) \in \mathcal{A}'$.

Take $l \geq k, \ l > m, \ l \in \mathbf{N}$ such that $U_{\beta} = O_{\rho}(y_0, \frac{1}{2^l}) \subseteq O_{\rho}(y_1, \frac{1}{2^k})$ $(\beta \in A_1)$. For every $i \in \mathbf{N}$ there exists $\alpha_{m+i+1} \in A_1$ such that $U_{\alpha_{m+i+1}} = O_{\rho}(y_0, \frac{1}{2^{l+i}})$. Therefore $a = \{a_n = (\alpha_1, \alpha_2, ..., \alpha_n) : n \in \mathbf{N}\}$ where $\alpha_{m+1} = \beta$ is an s-sequence. Obviously $\alpha = a_m$. To prove the Theorem it is sufficient to show that a is a b-sequence of X at (L_0, x_0) . Take $x_1 \in \bigcap \{L_0 \bigcap f(U_{\alpha_n}) : n \in \mathbf{N}\}$. There exists $y_n \in U_{\alpha_n}$ such that $f(y_n) = x_1$ for every $n \in \mathbf{N}$. Thus $y_n \in f^{-1}(L_0)$ and $\rho(y_n, y_0) < \frac{1}{2^{n+j}}$ for j = l-m-1 and every n > m. Let V be an open subset of Y such that $y_0 \in V$. There exist $\varepsilon > 0$ and an open subset W of Y such that $y_0 \in W$ and $O_{\rho}(y_0, \varepsilon) \bigcap f^{-1}(L) \subseteq V$ provided $f^{-1}(L) \bigcap W \neq \emptyset$, $L \in \mathcal{A}$. Thus for every open subset V of Y such that $y_0 \in V$ there exists $n_k \in \mathbf{N}$ such that $y_{n_k} \in f^{-1}(x_1) \cap V$. Therefore $y_0 \in Cl_{f^{-1}(L_0)}f^{-1}(x_1) = f^{-1}(x_1)$. Thus $x_0 = x_1$ and the Condition BS1 for a b-sequence holds.

Take an open subset U of X such that $x_0 \in U$. Then $f^{-1}(U)$ is an open subset of Y and $y_0 \in f^{-1}(U) \cap f^{-1}(L_0)$. There exist $\varepsilon > 0$ and W an open subset of Y such that $y_0 \in W$ and $O_{\rho}(y_0, \varepsilon) \cap f^{-1}(L) \subseteq f^{-1}(U)$ provided $f^{-1}(L) \cap W \neq \emptyset$, $L \in \mathcal{A}$. Put W' = f(W). Then W' is an open subset of X and $x_0 \in W'$. Take an $r \in \mathbb{N}$ such that $\frac{1}{2^r} < \varepsilon$. There exists $s \in \mathbb{N}$ such that $\frac{1}{2^{s+l}} \leq \frac{1}{2^r}$ and $U_{\alpha_{m+1+s}} = O_{\rho}(y_0, \frac{1}{2^{s+l}})$. If $L \in \mathcal{A}$ is such that $L \cap f(W) \neq \emptyset$ then $O_{\rho}(y_0, \frac{1}{2^{s+l}}) \cap f^{-1}(L) \subseteq f^{-1}(U)$. Thus $f(U_{\alpha_{m+s+1}}) \cap L \subseteq U$.

Remark 5.2. Theorem 5.1 combined with Theorem 2.19 and Proposition 1.5 gives another proof of the statement in Example 3.4.

Theorem 5.3. Let X and Y be topological spaces, $f: Y \to X$ be an open continuous mapping onto X, A be a family of subsets of X and $A' = \{f^{-1}(L): L \in A\}$ be such that there exists a continuous pseudometric ρ on Y for which (Y, A', ρ) is a metrizable family. Then if $(f^{-1}(x), \rho)$ is a complete metric space for every $x \in X$ and every $L \in A$ is a T_1 -subspace of X there exists an wA-sieve (γ, p) for which (X, A, γ, p) is an A-family.

Proof. Put $\mu_1 = \{O_{\rho}(y, \frac{1}{2^k}) : y \in Y, k \in \mathbb{N}\} = \{U_{\alpha} : \alpha \in A_1\}$. Then μ_1 is an open cover of Y. Put $A_n = \{(\alpha_1, \alpha_2, ..., \alpha_n) \in A_1^n : U_{\alpha_n} \subseteq U_{\alpha_{n-1}} \subseteq ... \subseteq U_{\alpha_1}, \ diam U_{\alpha_i} \le \frac{1}{2^i}, \ i = 1, ...n\}, \ \gamma_n = \{U_{(\alpha_1, \alpha_2, ..., \alpha_n)} = U_{\alpha_n} : (\alpha_1, \alpha_2, ..., \alpha_n) \in A_n\} \ \text{and} \ p_n((\alpha_1, \alpha_2, ..., \alpha_n, \alpha_{n+1})) = (\alpha_1, \alpha_2, ..., \alpha_n) \ \text{for every} \ (\alpha_1, \alpha_2, ..., \alpha_{n+1}) \in A_{n+1} \ \text{and for every} \ n \in \mathbb{N}. \ \text{Clearly}, \ (\mu, p) = \{\mu_n = \{U_{\alpha_n} : \alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \in A_n\}, \ p_n : A_{n+1} \to A_n : n \in \mathbb{N}\} \ \text{is an wA-sieve of} \ Y.$

Put $\gamma_n = \{f(U_{\alpha_n}) : \alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \in A_n\}$. Thus γ_n is an open cover of X for every $n \in \mathbb{N}$. Clearly, $(\gamma, p) = \{\gamma_n, p_n : A_{n+1} \to A_n : n \in \mathbb{N}\}$ is an wA-sieve of X.

To prove that $(X, \mathcal{A}, \gamma, p)$ is an A-family take $L_0 \in \mathcal{A}$, $x_0 \in L_0$ and an s-sequence $a = \{a_n = (\alpha_1, \alpha_2, ..., \alpha_n) : n \in \mathbf{N}\}$ such that $x_0 \in \bigcap \{f(U_{\alpha_n}) : n \in \mathbf{N}\}$. Let $x' \in \bigcap \{L_0 \bigcap f(U_{\alpha_n}) : n \in \mathbf{N}\}$. Since $f^{-1}(x_0)$ and $f^{-1}(x')$ are complete with respect to ρ , $f^{-1}(x_0) \bigcap (\bigcap \{\overline{U_{\alpha_n}}^{\rho} : n \in \mathbf{N}\}) \neq \emptyset$ and $f^{-1}(x') \bigcap (\bigcap \{\overline{U_{\alpha_n}}^{\rho} : n \in \mathbf{N}\}) \neq \emptyset$. Therefore there exist $y_0 \in f^{-1}(x_0) \subseteq f^{-1}(L_0)$ and $y' \in f^{-1}(x') \subseteq f^{-1}(L_0)$ such that $\rho(y_0, y') \leq \frac{1}{2^n}$ for every $n \in \mathbf{N}$. Hence $\rho(y_0, y') = 0$. Now MF1 for (Y, \mathcal{A}', ρ) implies that $y_0 = y'$. Therefore $x_0 = x'$ which shows that BS1 holds for the s-sequence a.

Take an open subset U of X such that $x_0 \in U$. It can be shown, as in the proof of the previous theorem, that $O_{\rho}(y_0, \frac{1}{2^l}) \cap f^{-1}(L) \subseteq f^{-1}(U)$ for some $l \in \mathbb{N}$, some open $W \subseteq Y$ neighborhood of y_0 and every $L \in \mathcal{A}$ with $f^{-1}(L) \cap W \neq \emptyset$. For every $n \in \mathbb{N}$, $U_{\alpha_n} = O_{\rho}(y_n^*, \frac{1}{2^{n+i_n}})$ for some $y_n^* \in Y$ and $i_n \in \mathbb{N}$. There exists $r \in \mathbb{N}$ such that $\frac{1}{2^{r+i_r}} < \frac{1}{2^{l+1}}$. Then $U_{\alpha_r} \subseteq O_{\rho}(y_0, \frac{1}{2^l})$. Thus r and f(W) are the required from BS2 ones and a is an s-sequence.

Theorem 5.4. Let X and Y be topological spaces, $f: Y \to X$ be an open continuous mapping onto X, A be a family of subsets of X and $A' = \{f^{-1}(L): L \in A\}$ be such that there exists a continuous pseudometric ρ on Y for which (Y, A', ρ) is a metrizable family. Then if $(f^{-1}(L), \rho)$ is a complete metric space for every $L \in A$, $(f^{-1}(x), \rho)$ is a complete metric space for every $x \in X$ and every $x \in X$ is a $x \in X$ -subspace of $x \in X$ -subspace

Proof. To check if Condition 2.6 holds for the wA-sieve (γ, p) constructed in the proof of the previous theorem take $L \in \mathcal{A}$ and an s-sequence $a = \{\alpha_n : n \in \mathbf{N}\}$ such that $L \cap f(U_{\alpha_n}) \neq \emptyset$ for every $n \in \mathbf{N}$. There exists $z \in f^{-1}(L) \cap (\bigcap \{\overline{U_{\alpha_n}}^{\rho} : n \in \mathbf{N}\}) = f^{-1}(L) \cap (\bigcap \{U_{\alpha_n} : n \in \mathbf{N}\})$.

Corollary 5.5. Every (complete) metrizable family is a (complete) A-family.

Corollary 5.6. Let $(X_j, \mathcal{A}_j, \gamma^j, p^j)$, $j \in \mathbf{N}$ be A-families, $X = \prod \{X_j : j \in \mathbf{N}\}$ and $\mathcal{A} = \{\prod \{L_j : j \in \mathbf{N}\} : L_j \in \mathcal{A}_j \text{ for every } j \in \mathbf{N}\}$. Then there exists an wA-sieve (γ, p) of X such that

- 1) (X, A, γ, p) is an A-family;
- 2) The family $(X, \mathcal{A}, \gamma, p)$ is complete if and only if the families $(X_j, \mathcal{A}_j, \gamma^j, p^j), j \in \mathbf{N}$ are complete.

6. On a theorem of V. I. Ponomarev

In [10] V. I. Ponomarev has proved the following theorem:

Theorem 6.1. For a T_1 -space X the following are equivalent:

- 1) X is a first countable space.
- 2) X is an open continuous image of a metric space.

Proof. Let X be a first countable space. Then $A=\{X\}$ is a first countable family. From Theorem 2.19 if follows that there exist a space Z, a continuous pseudometric ρ on Z and an open continuous mapping $\pi:Z\to X$ onto X such that $A'=\{\pi^{-1}(L):L\in A\}$ is a metrizable family. Thus $(Z,\{Z\},\rho)$ is a metrizable family and (Z,ρ) is a metric space. Implication $1\to 2$ is proved.

Implication $2 \to 1$ follows from Theorem 5.1 and Remark 2.13.

Corollary 6.2. Let $\theta: Y \to 2^X$ be an l.s.c. mapping of a σ -discrete paracompact space into a first countable T_1 -space. Then there exists a continuous single valued mapping $f: Y \to X$ such that $f(x) \in \theta(x)$ for every $y \in Y$.

Proof. Follows from Corollary 4.3 and Example 3.1.

7. On a theorem of Worrell and Wicke

A space X is a space with a base of countable order if $\{X\}$ is an A-family of subsets of X (see [11] and [12], or [2] Corollary 6.7).

Theorem 7.1. Let $\varphi: Y \to X$ be an open continuous mapping of a space Y onto a space X, \mathcal{A} be a family of T_1 -subsets of X, $\mathcal{A}' = \{\varphi^{-1}(L) : L \in \mathcal{A}\}$ and the family of all fibers $\{\varphi^{-1}(x) : x \in X\}$ be a complete A-family of Y with respect to an wA-sieve (γ, p) . If \mathcal{A}' is an A-family with respect to (γ, p) , then \mathcal{A} is an A-family for some wA-sieve, too.

Proof. Follows from Theorem 2.19, Corollary 2.23 and Theorem 5.3. \blacksquare For the family $\mathcal{A} = \{X\}$ we obtain:

Corollary 7.2. (Worrell-Wicke). A T_1 -space X is a space with a base of countable order if and only if X is a complete (i.e. all fibers are complete) open continuous image of some metric space.

8. On one theorem of Isbell and one of Junnila

In [6] J. R. Isbell has proved that every space is an open quotient of a paracompact space in which, for every family of open sets, there is a disjoint family of open subsets having the same union. In [7] H. J. K. Junnila has proved that every (first countable) space is an open continuous image of some (metrizable) σ -discrete paracompact space.

Theorem 8.1. Let $(X, \mathcal{A}, \gamma, p)$ be a first countable family of subsets of a T_1 -space X. Then there exist a σ -discrete paracompact space Z and an open continuous mapping $\varphi: Z \to X$ onto X such that $\mathcal{A}' = \{\varphi^{-1}(L): L \in \mathcal{A}\}$ is a metrizable family of Z for some continuous metric ρ on Z.

Proof. There exists a space Y, and a continuous pseudometric ρ_1 on Y and an open continuous mapping φ_1 from Y onto X such that $(Y, \mathcal{A}'', \rho_1)$, where $\mathcal{A}'' = \{\varphi_1^{-1}(L) : L \in \mathcal{A}\}$ is a metrizable family.

Let Y^N be a space with the metric $d((y_1, y_2, ...), (y'_1, y'_2...)) = \sum \{2^{-n} : n \in \mathbb{N} \text{ such that } y_n \neq y'_n\}.$

Put $n((y_1, y_2, ...)) = \min\{m : y_m = y_{m+k} \text{ for every } k \in N\}, Z = \{(y_1, y_2, ...) \in Y^N : n((y_1, y_2, ...)) < \infty\} \text{ and } \varphi_2((y_1, y_2, ...)) = y_{n_0} \text{ where } n_0 = n((y_1, y_2, ...)).$ Let $\varphi(z) = \varphi_1(\varphi_2(z))$ for all $z \in Z$ and $\rho(z, z') = d(z, z') + \rho_1(\varphi_2(z), \varphi_2(z')).$ On Z consider the topology generated by the basis $\{\varphi_2^{-1}(U) \cap O : U \text{ is open in } Y \text{ and } O \text{ is open in } (Z, \rho)\}.$

If $\mathcal{A}' = \{\varphi^{-1}(L) : L \in \mathcal{A}\} = \{\varphi_2^{-1}(L) : L \in \mathcal{A}''\}$, then (Z, \mathcal{A}', ρ) is a metrizable family of Z. By construction, ρ is a continuous metric.

Acknowledgements This work was begun during my stay at Tiraspol State University, Moldova. I would like to thank Academician Mitrofan Choban for introducing me into the theory of metrizable families and encouraging me to write this article. I would also like to thank Professor Stoyan Nedev for the valuable remarks and comments.

References

- [1] M. M. Choban, Factorization theorems about existence of continuous selections. Selections in subsets of factor-spaces of topological groups., *Mathematical Research* Kishinev, **4(30)** (1973), 111-156 (In Russian).
- [2] M. M. Choban, The open mappings and spaces, Rend. Circ. Math. Palermo, 2, Suppl., 29 (1992), 51-104.
- [3] M. M. Choban, Set-valued mappings and some connected questions, *Dokl. Acad. Nauk. USSR*, **I90** (1970), 2, 293-296 (In Russian).
- [4] R. Engelking, General Topology. Warszawa: PWN, 1977.
- [5] V. A. Geiler, Continuous selections in uniform spaces, Dokl. Acad. Nauk. USSR, 195 (1970), I, 17-19.
- [6] J. R. Isbell, A note on complete closure algebras, Math. Systems Theory, **3** (1969), 310-312.
- [7] H. J. K. Junnila, Stratifiable pre-images of topological spaces, Colloquia Math. Soc. Bolyai 23 (1978), *Proceedings of Colloquium on Topology*, Budapest, Amsterdam 1980, 689-703.

[8] E. Michael, Continuous selections I. - Ann. Math., 63:2 (1956), (2), 361-382.

- [9] S. I. Nedev, M. M. Choban, On the o-metrizable spaces, I-III, Vestnik Moskov. Univ., 3 (1972), 1: 8-15, 2: 10-17, 3: 10-15.
- [10] V. I. Ponomarev, Axioms of countability and continuous mappings, Bull. Polon. Acad. Sci., 8 (1960), 127-133.
- [11] H. H. Wicke, J. M. Worrell, A characterization of spaces having bases of countable order in terms of primitive bases, *Canad. J. Math.*, **27** (1975), 1100-1109.
- [12] H. H. Wicke, J. M. Worrell, Open continuous mappings of spaces having bases of countable order, *Duke. Math. J.*, **34** (1967), 255-272.

Institute of Mathematics and Informatics Bulgarian Academy of Sciences 1113 Sofia, BULGARIA

E-Mail: Katiamih@math.bas.bg

Received 30.05.2007