Mathematica Balkanica

New Series Vol. 22, 2008, Fasc. 1-2

Rich Families, W-spaces and the Product of Baire Spaces

Peijie Lin and Warren B. Moors ¹

Presented by P. Kenderov

In this paper we prove a theorem more general than the following. Suppose that X is a Baire space and Y is the product of hereditarily Baire metric spaces then $X \times Y$ is a Baire space.

AMS Subj.Classification: Primary 54B10, 54C35; Secondary 54E52. Key Words: Baire space; barely Baire space; W-space; rich family.

1. Introduction

A topological space X is said to be a Baire space if for each sequence $(O_n : n \in \mathbb{N})$ of dense open subsets of X, $\bigcap_{n \in \mathbb{N}} O_n$ is dense in X and a Baire space Y is called barely Baire if there exists a Baire space Z such that $Y \times Z$ is not Baire. It is well known that there exist metrizable barely Baire spaces, (see [5]). On the other hand it has recently been shown that the product of a Baire space X with a hereditarily Baire metric space Y is Baire, [7]. In that same paper the author claims in a "Remark" that the hypothesis on Y can be reduced to: "Y is the product of hereditarily Baire metric spaces". In this paper we substantiate this claim.

The main result of this paper relies upon two notions. The first, which is that of a W-space [6], is recalled in Section 2. The second, which is that of a "rich family" is considered in Section 3. In Section 4, we shall prove our main theorem which states that the product of a Baire space with a W-space that possesses a rich family of Baire subspaces is Baire.

¹The second author is supported by the Marsden Fund research grant, UOA0422, administered by the Royal Society of New Zealand.

2. W-spaces

In this paper all topological spaces are assumed to be regular, Hausdorff and nonempty. Furthermore, if X is a topological space and $a \in X$ then we shall always denote by $\mathcal{N}(a)$ the set of all neighbourhoods of a.

For any point a in a topological space X we can consider the following two player topological game, called the G(a)-game. This game is played between the players α and β and although it may seem unfair, β will always be granted the priviledge of the first move. To define this game we must first specify the rules and then also specify the definition of a win.

The moves of the player α are simple. He/she must always select a neighbourhood of the point a. However, the moves of the player β depend upon the previous move of α . Specifically, for his/her first move β may select any point $x_1 \in X$. For α 's first move, as mentioned earlier, α must select a neighbourhood O_1 of a. Now, for β 's second move he/she must select a point $x_2 \in O_1$. For α 's second move he/she is entitled to select any neighbourhood O_2 of a. In general, if α has chosen $O_n \in \mathcal{N}(a)$ as his/her n^{th} move of the G(a)-game then β is obliged to choose a point $x_{n+1} \in O_n$. The response of α is then simply to choose any neighbourhood O_{n+1} of a. Continuing in this fashion indefinitely, the players α and β produce a sequence $((x_n, O_n) : n \in \mathbb{N})$ of ordered pairs with $x_{n+1} \in O_n \in \mathcal{N}(a)$ for all $n \in \mathbb{N}$, called a play of the G(a)-game. A partial play $((x_k, O_k) : 1 \le k \le n)$ of the G(a)-game consists of the first n moves of a play of the G(a)-game. We shall declare α the winner of a play $((x_n, O_n) : n \in \mathbb{N})$ of the G(a)-game if $a \in \{x_n : n \in \mathbb{N}\}$, otherwise, β is the winner. That is, β is declared the winner of the play $((x_n, O_n) : n \in \mathbb{N})$ if, and only if, $a \notin \overline{\{x_n : n \in \mathbb{N}\}}$.

A strategy for the player α is a rule that specifies his/her moves in every possible situation that can occur. More precisely, a strategy for α is an inductively defined sequence of functions $t := (t_n : n \in \mathbb{N})$. The domain of t_1 is X^1 and for each $(x_1) \in X^1$, $t_1(x_1) \in \mathcal{N}(a)$, i.e., $((x_1, t_1(x_1)))$ is a partial play. Inductively, if t_1, t_2, \ldots, t_n have been defined then the domain of t_{n+1} is defined to be,

$$\{(x_1, x_2, \dots, x_{n+1}) \in X^{n+1} : (x_1, x_2, \dots, x_n) \in \text{Dom}(t_n)$$

and $x_{n+1} \in t_n(x_1, x_2, \dots, x_n)\}.$

For each $(x_1, x_2, ..., x_{n+1}) \in \text{Dom}(t_{n+1}), t_{n+1}(x_1, x_2, ..., x_{n+1}) \in \mathcal{N}(a)$. Equivalently, for each $(x_1, x_2, ..., x_{n+1}) \in \text{Dom}(t_{n+1}), ((x_k, t_k(x_1, ..., x_k)) : 1 \le k \le n+1)$ is a partial play.

A partial t-play is a finite sequence $(x_1, x_2, ..., x_n) \in X^n$ such that $(x_1, x_2, ..., x_n) \in \text{Dom}(t_n)$ or, eqivalently, if $x_{k+1} \in t_k(x_1, x_2, ..., x_k)$ for all $1 \leq k < n$. A t-play is an infinite sequence $(x_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, $(x_1, x_2, ..., x_n)$ is a partial t-play.

A strategy $t := (t_n : n \in \mathbb{N})$ for the player α is said to be a winning strategy if each play of the form $((x_n, t_n(x_1, x_2, \dots, x_n)) : n \in \mathbb{N})$ is won by α , or equivalently, if $a \in \{x_n : n \in \mathbb{N}\}$ for each t-play $(x_n : n \in \mathbb{N})$.

A topological space X is called a W-space if α has a winning strategy in the G(a)-game for each $a \in X$, [6].

In the remainder of this section we shall recall some relevant facts concerning W-spaces.

Theorem 2.1. [6, Theorem 3.3] Every first countable space is a W-space.

There are of course many W-spaces that are not first countable, see Example 2.7..

A topological space X is said to have *countable tightness* if for each nonempty subset A of X and each $p \in \overline{A}$, there exists a countable subset $C \subseteq A$ such that $p \in \overline{C}$.

Proposition 2.2. [6, Corollary 3.4] Every W-space has countable tightness.

Proposition 2.3. [6, Theorem 3.1] If X is a W-space and $\emptyset \neq A \subseteq X$ then A is a W-space.

Lemma 2.4. [6, Theorem 3.9] Suppose that X is a W-space and $a \in X$, then the player α possesses a strategy $s := (s_n : n \in \mathbb{N})$ in the G(a)-game such that every s-play converges to a.

For the remainder of this paper whenever we shall consider a W-space X with $a \in X$ we shall assume that the player α is employing a strategy t, in the G(a)-game, in which every t-play converges to a.

Let $\{X_s : s \in S\}$ be a nonempty family of topological spaces and let $a \in \Pi_{s \in S} X_s$. The Σ -product of this family with base point a, denoted by $\Sigma_{s \in S} X_s(a)$,

is the set of all $x \in \Pi_{s \in S} X_s$ such that $x(s) \neq a(s)$ for at most countably many $s \in S$. For each $x \in \Sigma_{s \in S} X_s(a)$, the support of x is defined by $\operatorname{supp}(x) := \{s \in S : x(s) \neq a(s)\}.$

Theorem 2.5. [6, Theorem 4.6] Suppose that $\{X_s : s \in S\}$ is a nonempty family of W-spaces. If $a \in \Pi_{s \in S} X_s$ then $\Sigma_{s \in S} X_s(a)$ is a W-space.

Corollary 2.6. [6, Theorem 4.1] If $\{X_n : n \in \mathbb{N}\}$ are W-spaces, then so is $\prod_{n \in \mathbb{N}} X_n$.

Example 2.7. Suppose that S is a nonempty set. For each $s \in S$, let $X_s := [0,1]$ and define $a: S \to [0,1]$ by, a(s) := 0 for all $s \in S$. Then by Theorem 2.5., $X := \sum_{s \in S} X_s(a)$ is a W-space. However, X is not first countable whenever S is uncountable.

3. Rich familes

Let X be a topological space, and let \mathcal{F} be a family of nonempty, closed and separable subsets of X. Then \mathcal{F} is rich if the following two conditions are satisfied:

- (i) for every separable subspace Y of X, there exists an $F \in \mathcal{F}$ such that $Y \subset F$:
- (ii) for every increasing sequence $(F_n : n \in \mathbb{N})$ in \mathcal{F} , $\overline{\bigcup_{n \in \mathbb{N}} F_n} \in \mathcal{F}$.

For any topological space X, the collection of all rich families of subsets forms a partially ordered set, under the binary relation of set inclusion. This partially ordered set has a greatest element, $S_X := \{S \in 2^X : S \text{ is a nonempty, closed and separable subset of } X\}$. On the other hand, if X is a separable space, then the partially ordered set has a least element, namely $\{X\}$.

Next we present an important property of rich families. For a proof of this see [2, Proposition 1.1].

Proposition 3.1. Suppose that X is a topological space. If $\{\mathcal{F}_n : n \in \mathbb{N}\}$ are rich families then so is $\bigcap_{n \in \mathbb{N}} \mathcal{F}_n$.

Suppose that X is a topological space and S is a separable subset, it can be easily verified that the family $\mathcal{F}_S := \{F \in \mathcal{S}_X : S \subseteq F\}$ is rich. Hence, whenever X is an infinite set and \mathcal{F} is a rich family of subsets of X, then we can always assume, by possibly passing to a sub-family, that all the members of \mathcal{F} are infinite. Indeed, if X has a countably infinite subset A, then by Proposition 3.1., $\mathcal{F} \cap \mathcal{F}_A \subseteq \mathcal{F}$ is a rich family whose members are all infinite.

Proposition 3.2. If X is a topological space with countable tightness (e.g. if X is a W-space) and E is a dense subset of X then

$$\mathcal{F} := \{ F \in \mathcal{S}_X : E \cap F \text{ is dense in } F \}$$

is a rich family.

Proof. Let Y be a separable subspace of X, then Y has a countable dense subset $D:=\{d_n:n\in\mathbb{N}\}$. Since X has countable tightness, for each $n\in\mathbb{N}$, there is a countable subset $C_n\subseteq E$ such that $d_n\in\overline{C_n}$. Let $F:=\overline{\bigcup_{n\in\mathbb{N}}C_n}$, then $Y=\overline{D}\subseteq F\in\mathcal{S}_X$ and

$$F = \overline{\bigcup_{n \in \mathbb{N}} C_n} \subseteq \overline{E \cap F} \subseteq F.$$

Therefore, $F \in \mathcal{F}$. Now suppose that $(F_n : n \in \mathbb{N})$ is an increasing sequence in \mathcal{F} . Then $F' := \overline{\bigcup_{n \in \mathbb{N}} F_n} \in \mathcal{S}_X$ and $F' \cap E$ is dense in F'. Therefore, $F' \in \mathcal{F}$.

Theorem 3.3. Suppose that X is a topological space with countable tightness (in particular if X is a W-space) that possesses a rich family \mathcal{F} of Baire subspaces then X is also a Baire space.

Proof. Let $\{O_n : n \in \mathbb{N}\}$ be dense open subsets of X. For each $n \in \mathbb{N}$, let $\mathcal{F}_n := \{F \in \mathcal{S}_X : O_n \cap F \text{ is dense in } F\}$, then \mathcal{F}_n is a rich family by Proposition 3.2.. Let $\mathcal{F}^* = \bigcap_{n \in \mathbb{N}} \mathcal{F}_n \cap \mathcal{F}$, then \mathcal{F}^* is also a rich family by Proposition 3.1.. For each $F \in \mathcal{F}^*$, $\bigcap_{n \in \mathbb{N}} (O_n \cap F)$ is dense in F since F is a Baire space. Let $x \in X$, then there is $F \in \mathcal{F}^*$ such that $x \in F$. Then $x \in \bigcap_{n \in \mathbb{N}} (O_n \cap F) \subseteq \bigcap_{n \in \mathbb{N}} O_n$. Therefore, $\bigcap_{n \in \mathbb{N}} O_n = X$.

Suppose that $\{X_s: s \in S\}$ is a nonempty family of topological spaces and $a \in \Pi_{s \in S} X_s$. A cube E in $\Sigma_{s \in S} X_s(a)$ is any nonempty product $\Pi_{s \in S} E_s \subseteq \Sigma_{s \in S} X_s(a)$. The set $C_E := \{s \in S: E_s \neq \{a(s)\}\}$ is at most countable and E is homeomorphic to $\Pi_{s \in C_E} E_s$. If for each $s \in S$, \mathcal{F}_s is a rich family of subsets of X_s then the Σ -product of the rich families, with the base point $a \in \Pi_{s \in S} X_s$, denoted by $\Sigma_{s \in S} \mathcal{F}_s(a)$, is the set of all cubes $E := \Pi_{s \in S} E_s$ in $\Sigma_{s \in S} X_s(a)$ such that $E_s \in \mathcal{F}_s$ for each $s \in C_E$.

Lemma 3.4. Let $\{X_s : s \in S\}$ be a nonempty family of topological spaces. For each $s \in S$, let $(E_n^s : n \in \mathbb{N})$ be an increasing sequence of nonempty subsets of X_s . Then $\overline{\bigcup_{n \in \mathbb{N}} (\Pi_{s \in S} E_n^s)} = \overline{\prod_{s \in S} (\bigcup_{n \in \mathbb{N}} E_n^s)}$.

Proof. It is easy to see that $\overline{\bigcup_{n\in\mathbb{N}}(\Pi_{s\in S}E_n^s)}\subseteq\overline{\Pi_{s\in S}(\bigcup_{n\in\mathbb{N}}E_n^s)}$ since for all $n\in\mathbb{N},\ \Pi_{s\in S}E_n^s\subseteq\overline{\Pi_{s\in S}(\bigcup_{n\in\mathbb{N}}E_n^s)}$.

Let $x \in \overline{\Pi_{s \in S}(\bigcup_{n \in \mathbb{N}} E_n^s)}$ and let $U := \Pi_{s \in S} U_s$ be a basic neighbourhood of x. Then there exists $y \in U \cap \Pi_{s \in S}(\bigcup_{n \in \mathbb{N}} E_n^s)$. Let M be the finite set $\{s \in S : U_s \neq X_s\}$, and let $N_s := \min\{n \in \mathbb{N} : y(s) \in E_n^s\}$ for all $s \in M$. Let $N := \max\{N_s : s \in M\}$, then $y(s) \in E_N^s$ for all $s \in M$. Let $a \in \Pi_{s \in S} E_N^s$ and let $y' \in U$ be defined by y'(s) := y(s) for all $s \in M$ and y'(s) := a(s) for all $s \in S \setminus M$. Since $y' \in \Pi_{s \in S} E_N^s$, $U \cap \bigcup_{n \in \mathbb{N}} (\Pi_{s \in S} E_n^s) \neq \emptyset$. Therefore, $x \in \overline{\bigcup_{n \in \mathbb{N}} (\Pi_{s \in S} E_n^s)}$.

Theorem 3.5. Suppose that $\{X_s : s \in S\}$ is a nonempty family of topological spaces and $a \in \Pi_{s \in S} X_s$. If for each $s \in S$, \mathcal{F}_s is a rich family of subsets of X_s , then $\Sigma_{s \in S} \mathcal{F}_s(a)$ is a rich family of subsets of $\Sigma_{s \in S} X_s(a)$.

Proof. Let Y be a separable subspace of $\Sigma_{s\in S}X_s(a)$, then it has a countable dense subset D. Let $C:=\bigcup_{d\in D}\operatorname{supp}(d)$, then C is a countable set. For each $s\in C$, let P_s be the projection of D onto X_s , then P_s is countable and hence there is some $E_s\in \mathcal{F}_s$ such that $\overline{P_s}\subseteq E_s$. For each $s\in S\setminus C$, let $E_s:=\{a(s)\}$. Let $F:=\prod_{s\in S}E_s$, then $F\in \Sigma_{s\in S}\mathcal{F}_s(a)$ and $Y\subseteq F$.

Let $(E_n : n \in \mathbb{N})$ be an increasing sequence in $\Sigma_{s \in S} \mathcal{F}_s(a)$. For each cube $E_n \in \Sigma_{s \in S} \mathcal{F}_s(a)$, let $E_n := \prod_{s \in S} E_n^s$. Then by Lemma 3.4.

$$\overline{\bigcup_{n\in\mathbb{N}} E_n} = \overline{\bigcup_{n\in\mathbb{N}} (\Pi_{s\in S} E_n^s)} = \overline{\prod_{s\in S} (\bigcup_{n\in\mathbb{N}} E_n^s)} = \Pi_{s\in S} (\overline{\bigcup_{n\in\mathbb{N}} E_n^s}).$$

It now follows that $\overline{\bigcup_{n\in\mathbb{N}} E_n} \in \Sigma_{s\in S} \mathcal{F}_s(a)$.

4. Baire spaces and Σ -products

A subset R of a topological space X is residual in X if there exist dense open subsets $\{O_n : n \in \mathbb{N}\}$ of X such that $\bigcap_{n \in \mathbb{N}} O_n \subseteq R$.

For any subset R of a topological space X we can consider the following two player topological game, called the BM(R)-game. This game is played between two players α and β and, as with the G(a)-game, the player β is always granted the priviledge of the first move. To define this game we must first specify the rules and then specify the definition of a win.

The player β 's first move is to select a nonempty open subset B_1 of X. For α 's first move he/she must also select a nonempty open subset A_1 of B_1 . Now, for β 's second move he/she must select a nonempty open subset B_2 of A_1 . For α 's second move he/she must select a nonempty open subset A_2 of B_2 . In general, if α has chosen A_n as his/her n^{th} move of the BM(R)-game then β is obliged to select a nonempty open subset B_{n+1} of A_n . The response of α is then

simply to select any nonempty open subset A_{n+1} of B_{n+1} . Continuing in this fashion indefinitely the players α and β produce a sequence $((B_n, A_n) : n \in \mathbb{N})$ of ordered pairs of nonempty open subsets of X such that $B_{n+1} \subseteq A_n \subseteq B_n$ for all $n \in \mathbb{N}$, called a play of the BM(R)-game. A partial play $((B_k, A_k) : 1 \le k \le n)$ of the BM(R)-game consists of the first n moves of a play of the BM(R)-game. We shall declare α the winner of a play $((B_n, A_n) : n \in \mathbb{N})$ of the BM(R)-game if $\bigcap_{n \in \mathbb{N}} A_n = \bigcap_{n \in \mathbb{N}} B_n \subseteq R$, otherwise, β is declared the winner. That is, β is the winner if, and only if, $\bigcap_{n \in \mathbb{N}} B_n \not\subseteq R$.

A strategy for the player α is an inductively defined sequence of functions $t := (t_n : n \in \mathbb{N})$. The domain of t_1 is the family of all nonempty open subsets of X and for each $B_1 \in \text{Dom}(t_1)$, $t_1(B_1)$ must be a nonempty open subset of B_1 or, equivalently, for each $B_1 \in \text{Dom}(t_1)$, $t_1(B_1)$ is defined so that $((B_1, t_1(B_1)))$ is a partial play of the BM(R)-game. Inductively, if t_1, t_2, \ldots, t_n have been defined then the domain of t_{n+1} is defined to be:

$$\{(B_1, B_2, \dots, B_{n+1}) : (B_1, B_2, \dots, B_n) \in \text{Dom}(t_n) \text{ and } B_{n+1} \text{ is a nonempty open subset of } t_n(B_1, B_2, \dots, B_n)\}.$$

For each $(B_1, B_2, \ldots, B_{n+1}) \in \text{Dom}(t_{n+1})$, $t_{n+1}(B_1, B_2, \ldots, B_{n+1})$ must be a nonempty open subset of B_{n+1} . Alternatively, but equivalently, for each $(B_1, B_2, \ldots, B_{n+1}) \in \text{Dom}(t_{n+1})$, $t_{n+1}(B_1, B_2, \ldots, B_{n+1})$ is defined so that $((B_k, t_k(B_1, B_2, \ldots, B_k)) : 1 \le k \le n+1)$ is a partial play. A partial t-play is a finite sequence (B_1, B_2, \ldots, B_n) such that $(B_1, B_2, \ldots, B_n) \in \text{Dom}(t_n)$ or, equivalently, B_{k+1} is a nonempty open subset of $t_k(B_1, B_2, \ldots, B_k)$ for all $1 \le k < n$. A t-play is an infinite sequence $(B_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, (B_1, B_2, \ldots, B_n) is a partial t-play.

A strategy $t := (t_n : n \in \mathbb{N})$ for the player α is said to be a winning strategy if each play of the form $((B_n, t_n(B_1, B_2, \dots, B_n)) : n \in \mathbb{N})$ is won by α , or equivalently, if $\bigcap_{n \in \mathbb{N}} B_n \subseteq R$ for each t-play $(B_n : n \in \mathbb{N})$. For more information on the BM(R)-game see [3].

Our interest in the BM(R)-game is revealed in the next lemma.

Lemma 4.1. [9]Let R be a subset of a topological space X. Then R is residual in X if, and only if, the player α has a winning strategy in the BM(R)-game played on X.

The next simple result plays a key role in the proof of our main theorem (Theorem 4.3.).

Lemma 4.2. Let X and Y be topological spaces and let O be a dense open subset of $X \times Y$. Given nonempty open subsets $V_1, V_2,...,V_m$ of Y and a

nonempty open subset U of X, there exists a nonempty open subset $W \subseteq U$ and elements $y_i \in V_i$, $1 \le i \le m$, such that $W \times \{y_1, ..., y_m\} \subseteq O$.

Proof. The result will be shown inductively on m.

Base Step: m=1. Since $U \times V_1$ is nonempty and open in $X \times Y$ and O is dense and open in $X \times Y$, $(U \times V_1) \cap O$ is a nonempty open subset of $X \times Y$. Therefore, there is a nonempty open subset $W \subseteq U$ and an element $y_1 \in V_1$ such that $W \times \{y_1\} \subseteq (U \times V_1) \cap O \subseteq O$.

Inductive Step: Suppose that the result holds for m=k and consider the case when m=k+1. According to the inductive hypothesis, there exists a nonempty open subset $W' \subseteq U$ and elements $y_i \in V_i$, $1 \le i \le k$, such that $W' \times \{y_1, ..., y_k\} \subseteq O$. By repeating the base step, there is a nonempty open subset $W \subseteq W'$ and an element $y_{k+1} \in V_{k+1}$ such that $W \times \{y_{k+1}\} \subseteq O$. Clearly, $W \times \{y_1, ..., y_{k+1}\} \subseteq O$.

Theorem 4.3. Suppose that Y is a W-space and X is a topological space. If Z is a separable subset of Y and $\{O_n : n \in \mathbb{N}\}$ are dense open subsets of $X \times Y$ then for each rich family \mathcal{F} of Y the subset

$$R := \{x \in X : \text{ there exists a } F_x \in \mathcal{F} \text{ containing } Z \text{ such that}$$

 $\{y \in F_x : (x,y) \in O_n\} \text{ is dense in } F_x \text{ for all } n \in \mathbb{N}\}$

is residual in X.

Proof. We are going to apply the BM(R)-game and Lemma 4.1. to show that R is residual in X. We shall only consider the case when Y is infinite as the case when Y is finite (and hence has the discrete topology) follows from Lemma 4.2.. Thus we can assume that all the members of \mathcal{F} are infinite. Moreover, without loss of generality, we can also assume that all the sets $\{O_n : n \in \mathbb{N}\}$ are decreasing. For each $a \in Y$, let $t^a := (t_n^a : n \in \mathbb{N})$ be a winning strategy for the player α in the G(a)-game.

We shall inductively define a strategy $s:=(s_n:n\in\mathbb{N})$ for the player α in the BM(R)-game played on X, but first let us choose $y\in Y$, set $z_{(i,j,0)}:=y$ for all $(i,j)\in\mathbb{N}^2$, set $Z_0:=\{z_{(1,1,0)}\}$ and let \mathscr{F}_0 be any countable subset of Y such that $Z\subseteq\overline{\mathscr{F}_0}\in\mathcal{F}$.

Base Step: Suppose that (B_1) is a partial s-play. We shall define the following:

(i) a countable set
$$\mathscr{F}_1 := \{f_{(1,n)} : n \in \mathbb{N}\}\$$
such that $Z_0 \cup \mathscr{F}_0 \subseteq \overline{\mathscr{F}_1} \in \mathcal{F};$

- (ii) $s_1(B_1)$ and $z_{(1,1,1)}$ so that:
 - (a) $s_1(B_1)$ is a nonempty open subset of B_1 ;
 - (b) $z_{(1,1,1)} \in t_1^{f_{(1,1)}}(z_{(1,1,0)})$, i.e., $(z_{(1,1,0)}, z_{(1,1,1)}) \in \text{Dom}(t_2^{f_{(1,1)}})$;
 - (c) $s_1(B_1) \times \{z_{(1,1,1)}\} \subseteq O_1$.

Note that this is possible by Lemma 4.2..

Finally, define $Z_1 := \{z_{(1,1,1)}\}.$

Inductive Hypothesis: Suppose that $(B_1, ..., B_k)$ is a partial s-play, and for each $1 \le n \le k$, the following terms have been defined, $\mathscr{F}_n = \{f_{(n,j)} : j \in \mathbb{N}\},$ $Z_n = \{z_{(i,j,l)} : (i,j,l) \in \mathbb{N}^3 \text{ and } i+j+l \le n+2\}$ and s_n so that:

- (i) $(\mathscr{F}_{n-1} \cup Z_{n-1}) \subseteq \overline{\mathscr{F}_n} \in \mathcal{F};$
- (ii) $(z_{(i,j,0)},...,z_{(i,j,l)}) \in \text{Dom}(t_{l+1}^{f_{(i,j)}})$ for all i+j+l=n+2 and $s_n(B_1,...,B_n) \times \{z_{(i,j,l)}: i+j+l=n+2\} \subseteq O_n$.

Inductive Step: Suppose that $(B_1,...,B_{k+1})$ is a partial s-play, that is, $(B_1,...,B_k) \in \text{Dom}(s_k)$ and B_{k+1} is a nonempty open subset of $s_k(B_1,...,B_k)$. Then:

- (i) $Z_k \cup \mathscr{F}_k$ is countable, hence it is contained in some $F \in \mathcal{F}$. Define $\mathscr{F}_{k+1} := \{f_{(k+1,n)} : n \in \mathbb{N}\}$ to be a countable dense subset of F;
- (ii) by the inductive hypothesis, $(z_{(i,j,0)},...,z_{(i,j,l)}) \in \text{Dom}(t_{l+1}^{f_{(i,j)}})$ for all i+j+l=k+2. By re-indexing and noting $(z_{(i,j,0)}) \in \text{Dom}(t_1^{f_{(i,j)}})$ for all i+j=(k+1)+2, we get that $(z_{(i,j,0)},...,z_{(i,j,l-1)}) \in \text{Dom}(t_l^{f_{(i,j)}})$ for all i+j+l=(k+1)+2.

Next, we define $s_{k+1}(B_1,...,B_{k+1})$ and $z_{(i,j,l)}$ for all i+j+l=(k+1)+2 so that:

- (a) $s_{k+1}(B_1,...,B_{k+1})$ is a nonempty open subset of B_{k+1} ;
- (b) $z_{(i,j,l)} \in t_l^{f_{(i,j)}}(z_{(i,j,0)},...,z_{(i,j,l-1)})$ for all i+j+l=(k+1)+2, i.e., $(z_{(i,j,0)},...,z_{(i,j,l)}) \in \text{Dom}(t_{l+1}^{f_{(i,j)}})$ for all i+j+l=(k+1)+2;
- (c) $s_{k+1}(B_1, ..., B_{k+1}) \times \{z_{(i,j,l)} : i+j+l=(k+1)+2\} \subseteq O_{k+1}$.

Note that this is possible by Lemma 4.2..

Finally, define $Z_{k+1} := \{z_{(i,j,l)} : i+j+l \le (k+1)+2\}$. This completes the inductive definition of s.

Consider an s-play $(B_n:n\in\mathbb{N})$ of the BM(R)-game played on X. For any $x\in\bigcap_{n\in\mathbb{N}}B_n$, let $F_x:=\overline{\bigcup_{n\in\mathbb{N}}\mathscr{F}_n}\in\mathcal{F}$. Clearly, $Z\subseteq F_x$. Let $N\in\mathbb{N}$, we will show that the set $\{y\in F_x:(x,y)\in O_N\}$ is dense in F_x . For any open subset U of Y that intersects F_x , there is $f_{(i,j)}\in U\cap(\bigcup_{n\in\mathbb{N}}\mathscr{F}_n)$. Since $t^{f_{(i,j)}}$ is a winning strategy for the player α in the $G(f_{(i,j)})$ -game, there is m>N such that $z_{(i,j,m)}\in U\cap F_x$. Moreover, according to the definition of the the strategy $s,(x,z_{(i,j,m)})\in O_{i+j+m-2}\subseteq O_m\subseteq O_N$. Therefore, $\{y\in F_x:(x,y)\in O_N\}$ is dense in F_x . Hence $\bigcap_{n\in\mathbb{N}}B_n\subseteq R$, which means s is a winning strategy for the player α is the BM(R)-game. Hence, by Lemma 4.1., R is residual in X.

Theorem 4.4. Suppose that Y is a W-space and X is a Baire space. If Y possesses a rich family \mathcal{F} of Baire subspaces then $X \times Y$ is a Baire space. In fact, if Z is any topological space that contains Y as a dense subspace then $X \times Z$ is also a Baire space.

Proof. Suppose that $\{O_n:n\in\mathbb{N}\}$ are dense open subsets of $X\times Y$ and $U\times V$ is the product of a nonempty open subset U of X with a nonempty open subset V of Y; we will show that $(U\times V)\cap\bigcap_{n\in\mathbb{N}}O_n\neq\varnothing$. To this end, choose $y\in V$ and set $Z:=\{y\}$. By the previous theorem there exists a residual subset R of X such that for each $x\in R$ there exists an $F_x\in\mathcal{F}$ such that (i) $y\in F_x$ and (ii) $\{y'\in F_x:(x,y')\in\bigcap_{n\in\mathbb{N}}O_n\}$ is dense in F_x . Choose $x_0\in U\cap R\neq\varnothing$ and $F_{x_0}\in\mathcal{F}$ such that $y\in F_{x_0}$ and $\{y'\in F_{x_0}:(x_0,y')\in\bigcap_{n\in\mathbb{N}}O_n\}$ is dense in F_x . In particular, $\{y'\in F_{x_0}:(x_0,y')\in\bigcap_{n\in\mathbb{N}}O_n\}\cap V\neq\varnothing$. Hence, if we choose $y_0\in\{y'\in F_{x_0}:(x_0,y')\in\bigcap_{n\in\mathbb{N}}O_n\}\cap V$ then $(x_0,y_0)\in(U\times V)\cap\bigcap_{n\in\mathbb{N}}O_n$. This completes the first part of the proof. To see that $X\times Z$ is a Baire space it is sufficient to realise that $X\times Y$ is a dense Baire subspace of $X\times Z$.

There are many examples of spaces that admit a rich family of Baire spaces that are not hereditarily Baire. For example, if (i) X is a separable Baire space that is not hereditarily Baire; in which case $\mathcal{F} := \{X\}$ is a rich family of Baire spaces, [1] or (ii) Y is a hereditarily Baire W-space such that $Y \times Y$ is not hereditarily Baire, [1], then the family of all nonempty closed separable rectangles gives a rich family of Baire subspaces of $Y \times Y$.

Corollary 4.5. Suppose that $\{X_s : s \in S\}$ is a nonempty family of W-spaces. If each X_s , $s \in S$, possesses a rich family of Baire subspaces \mathcal{F}_s then for each $a \in \Pi_{s \in S} X_s$, $\Sigma_{s \in S} X_s(a)$ is a W-space with a rich family of Baire subspaces. In particular, $\Sigma_{s \in S} X_s(a)$ is a Baire space.

Proof. The fact that $\Sigma_{s\in S}X_s(a)$ is a W-space follows directly from Theorem 2.5.. Moreover, from Theorem 3.5. we know that $\Sigma_{s\in S}\mathcal{F}_s(a)$ is a rich family, so it remains to show that all the members of $\Sigma_{s\in S}\mathcal{F}_s(a)$ are Baire spaces. To this end, suppose that $E:=\Pi_{s\in S}E_s\in \Sigma_{s\in S}\mathcal{F}_s(a)$. Then E is homeomorphic to $\Pi_{s\in C_E}E_s$. However, by [6, Theorem 3.6] E is a separable first countable space. Therefore, by [8], $\Pi_{s\in C_E}E_s$ is a Baire space. Finally, the fact that $\Sigma_{s\in S}X_s(a)$ is a Baire space now follows from Theorem 3.3..

Corollary 4.6. Suppose that $\{X_s : s \in S\}$ is a nonempty family of W-spaces. If each X_s , $s \in S$, possesses a rich family of Baire subspaces \mathcal{F}_s then $\Pi_{s \in S} X_s$ is a Baire space.

Proof. This follows directly from Corollary 4.5. since for any $a \in \Pi_{s \in S} X_s$, $\Sigma_{s \in S} X_s(a)$ is a dense Baire subspace.

As a tribute to Professor I. Namioka, let us end this paper with what is essentially a folklore result, apart from the phrasing in terms of rich families, concerning the Namioka property.

Recall that a Baire space X has the Namioka property if for each compact Hausdorff space K and continuous mapping $f: X \to C_p(K)$ there exists a dense subset D of X such that f is continuous with respect to the $\|\cdot\|_{\infty}$ -topology on C(K) at each point of D.

Theorem 4.7. Suppose that X is a topological space with countable tightness (in particular if X is a W-space) that possesses a rich family \mathcal{F} of Baire subspaces then X has the Namioka property.

Proof. In order to obtain a contradiction let us suppose that X does not have the Namioka property. Then there exists a compact Hausdorff space K and a continuous mapping $f: X \to C_p(K)$ that does not have a dense set of points of continuity with respect to the $\|\cdot\|_{\infty}$ -topology. In particular, since X is a Baire space (by Theorem 3.3.), this implies that for some $\varepsilon > 0$ the open set:

$$O_{\varepsilon} := \bigcup \{ U \in 2^X : U \text{ is open and } \| \cdot \|_{\infty} \text{-diam}[f(U)] \le 2\varepsilon \}$$

is not dense in X. That is, there exists a nonempty open subset W of X such that $W \cap O_{\varepsilon} = \emptyset$. For each $x \in X$, let $F_x := \{y \in X : ||f(y) - f(x)||_{\infty} > \varepsilon\}$. Then $x \in \overline{F_x}$ for each $x \in W$. Moreover, since X has countable tightness, for each $x \in W$, there exists a countable subset C_x of F_x such that $x \in \overline{C_x}$.

Next, we inductively define an increasing sequence of separable subspaces $(F_n : n \in \mathbb{N})$ of X such that:

- (i) $W \cap F_1 \neq \emptyset$;
- (ii) $\bigcup \{C_x : x \in D_n \cap W\} \cup F_n \subseteq F_{n+1} \in \mathcal{F} \text{ for all } n \in \mathbb{N}, \text{ where } D_n \text{ is any countable dense subset of } F_n$.

Note that since the family \mathcal{F} is rich this construction is possible.

Let $F := \overline{\bigcup_{n \in \mathbb{N}} F_n}$ and $D := \bigcup_{n \in \mathbb{N}} D_n$. Then $\overline{D} = F \in \mathcal{F}$ and $\|\cdot\|_{\infty}$ -diam $[f(U)] \ge \varepsilon$ every nonempty open subset U of $F \cap W$. Therefore, $f|_F$ has no points of continuity in $F \cap W$ with respect to the $\|\cdot\|_{\infty}$ -topology. This however, contradicts [10] which states the every separable Baire space has the Namioka property. Therefore, the space X must have the Naimoka property.

This theorem improves upon some results from [4].

References

- [1] J. M. Aarts and D. J. Lutzer, The product of totally nonmeagre spaces, *Proc. Amer. Math. Soc.* **38**, 1973, 198–200.
- [2] J. M. Borwein and W. B. Moors, Separable determination of integrability and minimality of the Clarke subdifferential mapping, *Proc. Amer. Math. Soc.* 128, 2000, 215–221.
- [3] J. Cao and W. B. Moors, A survey on topological games and their applications in analysis, *RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.* **100**, 2006, 39–49.
- [4] J. Chaber and R. Pol, On hereditarily Baire spaces, σ -fragmentability of mappings and Namioka property, *Topology Appl.* **151**, 2005, 132–143.
- [5] W. G. Fleissner and K. Kunen, Barely Baire spaces, Fund. Math. 101, 1978, 499–504.
- [6] G . Gruenhage, Infinite games and generalizations of first-countable spaces, $Topology\ Appl.\ {f 6},\ 1976,\ 339-352.$
- [7] W. B. Moors, The product of a Baire space with a hereditarily Baire metric space is Baire, *Proc. Amer. Math. Soc.* **134**, 2006, 2161–2163.
- [8] J. C. Oxtoby, Cartesian products of Baire spaces, Fund. Math. 49. 1960/61, 157–166.

- [9] J. C. Oxtoby, The Banach-Mazur game and Banach category theorem, Contributions to the theory of games Vol III, Annals of Mathematics Studies 39, Princeton University press, 1957.
- [10] J. Saint Raymond, Jeux topologiques et espaces de Namioka, *Proc. Amer. Math. Soc.* 87, 1983, 499–504.

Department of Mathematics, The University of Auckland, Received 09.04.2008

Private Bag 92019, Auckland, NEW ZEALAND,

 $E\text{-}mail:\ pjlin85@yahoo.co.nz,\ moors@math.auckland.ac.nz$