New Series Vol. 23, 2009, Fasc. 1-2

A Fixed Point Theorem in Fuzzy Metric Spaces via an Implicit Relation

Shaban Sedghi, Nabi Shobe and Abdelkrim Aliouche

Presented by P. Kenderov

We prove a fixed point Theorem for a self-map in complete fuzzy metric spaces satisfying an implicit relation, next we give a metric version of this Theorem.

Key Words: fixed point; fuzzy metric space; metric space

AMS Subj.Classification: 54E40; 54E35; 54H25

1. Introduction and preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [14] in 1965. To use this concept in topology and analysis, many authors have expansively developed the theory of fuzzy sets and applications. George and Veeramani [7] modified the concept of fuzzy metric space introduced by Kramosil and Michalek [9] and defined the Hausdoff topology of fuzzy metric spaces which have very important applications in quantum particle physics particularly in connections with both string and E-infinity theory which were given and studied by El Naschie [3, 4, 5, 12]. They showed also that every metric induces a fuzzy metric. Grabiec [2] extended the well known fixed point theorem of Banach [1] and Edelstein [2] to fuzzy metric spaces in the sense of [9].

In this paper, we prove a fixed point theorem for a self-map in complete fuzzy metric space X satisfying an implicit relation, next we give a metric version of this Theorem.

Definition 1.1. ([11]) A binary operation $*: [0,1] \times [0,1] \longrightarrow [0,1]$ is a continuous t-norm if it satisfies the following conditions:

- 1. * is associative and commutative,
- 2. * is continuous,
- 3. a * 1 = a for all $a \in [0, 1]$,
- 4. $a * b \le c * d$ whenever $a \le c$ and $b \le d$, for each $a, b, c, d \in [0, 1]$.

Two typical examples of continuous t-norm are a * b = ab and $a * b = \min(a, b)$.

Definition 1.2. ([7]) A 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary (non-empty) set, * is a continuous t-norm and M is a fuzzy set on $X^2 \times (0, \infty)$ satisfying the following conditions for all $x, y, z \in X$ and t, s > 0,

- 1. M(x, y, t) > 0,
- 2. M(x, y, t) = 1 if and only if x = y,
- 3. M(x, y, t) = M(y, x, t),
- 4. $M(x, y, t) * M(y, z, s) \le M(x, z, t + s)$,
- 5. $M(x, y, .): (0, \infty) \longrightarrow [0, 1]$ is continuous

Let (X, M, *) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with a center $x \in X$ and a radius 0 < r < 1 is defined by

$$B(x,r,t) = \{ y \in X : M(x,y,t) > 1 - r \}.$$

If (X, M, *) is a fuzzy metric space, let τ be the set of all $A \subset X$ with $x \in A$ if and only if there exist t > 0 and 0 < r < 1 such that $B(x, r, t) \subset A$. Then, τ is a topology on X (induced by the fuzzy metric M). This topology is Hausdorff and first countable.

A sequence $\{x_n\}$ in X converges to x [7] if and only if $M(x_n, x, t) \to 1$ as $n \to \infty$ for all t > 0.

It is called a Cauchy sequence if for all $0 < \varepsilon < 1$ and t > 0, there exists $n_0 \in \mathbf{N}$ such that $M(x_n, x_m, t) > 1 - \varepsilon$ for all $n, m \ge n_0$.

The fuzzy metric space (X, M, *) is said to be complete if every Cauchy sequence is convergent. A subset A of X is said to be F-bounded if there exists t > 0 and 0 < r < 1 such that M(x, y, t) > 1 - r for all $x, y \in A$.

Since * is continuous, it follows from (FM-4) that the limit of a sequence in a fuzzy metric space is unique

Example 1.3. ([7]) Let $X = \mathbb{R}$ and $\forall a, b \in [0, 1], \ a * b = ab$. Define for all $x, y \in X$ and t > 0.

$$M(x, y, t) = \frac{t}{t + |x - y|}$$

Lemma 1.4. ([8]) Let (X, M, *) be a fuzzy metric space. Then, M(x, y, t) is increasing with respect to t for all x, y in X.

Definition 1.5. Let (X, M, *) be a fuzzy metric space. M is said to be continuous on $X^2 \times (0, \infty)$ if

$$\lim_{n \to \infty} M(x_n, y_n, t_n) = M(x, y, t).$$

whenever $\{(x_n, y_n, t_n)\}$ is a sequence in $X^2 \times (0, \infty)$ converges to a point $(x, y, t) \in X^2 \times (0, \infty)$; i.e.

$$\lim_{n\to\infty} M(x_n,x,t) = \lim_{n\to\infty} M(y_n,y,t) = 1 \text{ and } \lim_{n\to\infty} M(x,y,t_n) = M(x,y,t)$$

Lemma 1.6. ([8]) Let (X, M, *) be a fuzzy metric space. Then, M is continuous function on $X^2 \times (0, \infty)$.

Let (X, M, *) be a fuzzy metric space and B(X) be the set of all nonempty bounded subsets of X. As in Fisher [6], for $A, B \in B(X)$ and $\forall t > 0$

$$\delta_M(A, B, t) = \inf\{M(a, b, t) : a \in A, b \in B\}.$$

If A is consisted of a single point a, we write $\delta_M(A, B, t) = \delta_M(a, B, t)$. If B is consisted also of a single point b, we write $\delta_M(A, B, t) = M(a, b, t)$. It follows immediately from the definition that

$$\delta_M(A, B, t) = \delta_M(B, A, t) \ge 0,$$

 $\delta_M(A, B, t) = 1 \iff A = B = \{a\},$

for all $A, B \subseteq X$. In particular if $\emptyset \neq S = A = B \subset X$, we obtain

$$\delta_M(S,t) = \inf\{M(x,y,t) : x,y \in S, t > 0\}.$$

If S is consisted of a single point a, then $\delta_M(S,t) = 1$ for all t > 0. If S is consisted of a two points a, b, then $\delta_M(S,t) = M(a,b,t)$. It follows immediately from the definition that:

- (i) :If $A \subseteq B$, then $\delta_M(A,t) \geq \delta_M(B,t)$.
- $(ii): 0 \leq \delta_M(S,t) \leq 1$, for all nonempty subset S of X.
- (iii): $\delta_M(S,t)$ is increasing with respect to t. That is, if $0 < t_1 \le t_2$, therefore $\delta_M(S,t_1) \le \delta_M(S,t_2)$.

For a sequence $A_n = \{x_n, x_{n+1}, x_{n+2}, \dots\}$ in a fuzzy metric space (X, M, *), let $r_n(t) = \delta_M(A_n, t)$ for $n \in \mathbb{N}$ and t > 0. Then

- (a): By (i), since $A_n \supseteq A_{n+1}$, we have $r_n(t) \le r_{n+1}(t)$, $\forall t > 0$,
- $(b): \forall n, m \ge k, \ M(x_n, x_m, t) \ge \delta_M(A_k, t) = r_k(t),$
- $(c): \forall n \geq 1, \ 0 \leq r_n(t) \leq 1.$

Therefore, $\{r_n(t)\}$ is increasing and bounded for all $n \in \mathbb{N}$ and t > 0 and so there exists $0 \le r(t) \le 1$ such that $\lim_{n \to \infty} r_n(t) = r(t)$.

Lemma 1.7. Let (X, M, *) be a fuzzy metric space. If $\lim_{n\to\infty} r_n(t) = 1$ for all t > 0, then $\{x_n\}$ is a Cauchy sequence in X.

Proof. As $\lim_{n\to\infty} r_n(t) = 1$, given $\epsilon > 0$, there exists an $n_0 \in \mathbb{N}$ such that for all $n > n_0$, we get $|r_n(t) - 1| < \epsilon$. That is $1 - \epsilon < r_n(t) < 1 + \epsilon$. Then, for $l, k \ge n > n_0$ by (b) we obtain

$$M(x_l, x_k, t) \ge \inf\{M(x_i, x_j, t) : x_i, x_j \in A_n\} = r_n(t) > 1 - \epsilon.$$

Therefore, $\{x_n\}$ is a Cauchy sequence in X.

Motivated by a work due to Popa [13], we have observed that proving fixed point theorems using an implicit relation is a good idea since it covers several contractive conditions rather than one contractive condition.

Let Φ be the set of all continuous functions $\varphi:[0,1]^6\longrightarrow (0,1]$ satisfying the following conditions:

- $(\phi_1): \varphi(t_1, \dots, t_5, t_6)$ is increasing in variables t_1, t_2, \dots, t_5 .
- $(\phi_2): \forall u, v \in (0,1], \ \varphi(u,u,u,u,v) \leq 0$ implies that $v \geq \phi(u),$ where $\phi: (0,1] \longrightarrow (0,1]$ is an increasing continuous function with $\phi(t) > t$ for all 0 < t < 1.

It easy to see that $\phi(1) = 1$ and if $\varphi(1, 1, 1, 1, 1, v) \leq 0$, then v = 1. In fact, since $\varphi(1, 1, 1, 1, 1, v) \leq 0$ by ϕ_2 we obtain $v \geq 1$ which is a contradiction if v < 1. Thus, v = 1

Example 1.8. $\varphi(t_1, t_2, t_3, t_4, t_5, t_6) = \phi_1(\min\{t_1, t_2, t_3, t_4, t_5\}) - t_6$, where $\phi_1: (0, 1] \longrightarrow (0, 1]$ is an increasing and continuous function with $\phi(t) > t$ for 0 < t < 1.

For example $\phi_1(t) = \sqrt{t}$ or $\phi_1(t) = t^h$ for 0 < h < 1.

It is easy to see that φ in Example 1.8 verifies conditions (ϕ_1) and (ϕ_2) .

2 Main results

Theorem 2.1. Let (X, M, *) be a complete fuzzy metric space and T be a self map of X satisfying (2.1)

$$\varphi(M(x,y,t),M(x,Tx,t),M(y,Ty,t),M(x,Ty,t),M(y,Tx,t),M(Tx,Ty,t)) \leq 0$$

for all x, y in X, t > 0 and $\varphi \in \Phi$. Then, T has a unique fixed point p in X.

Proof. Let x_0 be an arbitrary point in X, $Tx_n = x_{n+1}$, $A_n = \{x_n, x_{n+1}, x_{n+2}, \dots\}$ and $r_n(t) = \delta_M(A_n, t)$, $n \in \mathbb{N}$ and t > 0. Then, we know that $\lim_{n \to \infty} r_n(t) = r(t)$ for some $0 \le r(t) \le 1$.

If $x_{n+1} = x_n$ for some $n \in \mathbb{N}$, then T has a fixed point, say $p \in X$.

Assume that $x_{n+1} \neq x_n$ for each $n \in \mathbb{N}$. Taking $x = x_{n+k}$ and $y = x_{m+k}$ in (2.1) for $k \in \mathbb{N}$, we have

$$\varphi(M(x_{n+k}, x_{m+k}, t), M(x_{n+k}, Tx_{n+k}, t), M(x_{m+k}, Tx_{m+k}, t), M(x_{n+k}, Tx_{m+k}, t), M(x_{m+k}, Tx_{n+k}, t), M(Tx_{n+k}, Tx_{m+k}, t))$$

$$= \varphi(M(x_{n+k}, x_{m+k}, t), M(x_{n+k}, x_{n+k+1}, t), M(x_{m+k}, x_{m+k+1}, t), M(x_{n+k}, x_{m+k+1}, t), M(x_{n+k}, x_{m+k+1}, t), M(x_{n+k}, x_{m+k+1}, t))$$

$$\leq 0$$

Since $M(x_{n+k}, x_{m+k}, t) \ge r_k(t)$, for every $n, m \ge 0$, using (ϕ_1) we get

$$\varphi(r_k(t), r_k(t), r_k(t), r_k(t), r_k(t), M(x_{n+k+1}, x_{m+k+1}, t)) \le 0.$$

which implies by (ϕ_2)

$$M(x_{n+k+1}, x_{m+k+1}, t) \ge \phi(r_k(t)) \ \forall m, n \ge 0.$$

Hence

$$\inf_{m,n\geq 0} M(x_{n+k+1}, x_{m+k+1}, t) \geq \phi(r_k(t)).$$

Therefore, $r_{k+1}(t) \geq \phi(r_k(t))$. Letting $k \to \infty$, we get $r(t) \geq \phi(r(t))$. If 0 < r(t) < 1, then $r(t) \geq \phi(r(t)) > r(t)$ which is a contradiction. Thus, r(t) = 1 and so $\lim_{n \to \infty} r_n(t) = 1$. Thus by Lemma 1.7, $\{x_n\}$ is a Cauchy sequence in X. By the completeness of X, there exists a $p \in X$ such that $\lim_{n \to \infty} x_n = p$, then $\lim_{n \to \infty} Tx_n = p$. Applying inequality (2.1) we get

$$\varphi(M(x_n, p, t), M(x_n, Tx_n, t), M(p, Tp, t), M(x_n, Tp, t), M(p, Tx_n, t), M(Tx_n, Tp, t))$$

$$= \varphi(M(x_n, p, t), M(x_n, x_{n+1}, t), M(p, Tp, t), M(x_n, Tp, t), M(p, x_{n+1}, t)), M(x_{n+1}, Tp, t)) < 0.$$

Taking $n \longrightarrow \infty$, we obtain

$$\varphi(1, 1, M(p, Tp, t), M(p, Tp, t), 1, M(p, Tp, t)) \le 0.$$

By (ϕ_1) we have

$$\varphi(M(p, Tp, t), M(p, Tp, t), M(p, Tp, t), M(p, Tp, t), M(p, Tp, t)) \le 0$$

and (ϕ_2) implies that $M(p, Tp, t) \ge \phi(M(p, Tp, t)) > M(p, Tp, t)$ which is a contradiction. Hence Tp = p. The uniqueness of p follows from inequality (2.1) and (ϕ_2) .

Corollary 2.2. Let (X, M, *) be a complete fuzzy metric space and T be a self map of X satisfying

$$M(Tx, Ty, t) \ge (\min\{M(x, y, t), M(x, Tx, t), M(y, Ty, t), M(x, Ty, t), M(y, Tx, t)\})^h$$

for all x, y in X, 0 < h < 1 and t > 0. Then, T has a unique fixed point p in X.

Proof. We take
$$\varphi(t_1, t_2, t_3, t_4, t_5, t_6) = (\min\{t_1, t_2, t_3, t_4, t_5\})^h - t_6$$
.

Corrollary 2.3. Let (X, M, *) be a complete fuzzy metric space and T be a self map of X satisfying

$$M(Tx,Ty,t) \geq \sqrt{M(x,y,t)}$$

for all x, y in X and t > 0. Then, T has a unique fixed point p in X.

Proof. We take
$$\varphi(t_1, t_2, t_3, t_4, t_5, t_6) = \sqrt{t_1} - t_6$$
.

Example 2.4. Let (X, M, *) be a fuzzy metric space, where $X = \mathbb{R}$ and $M(x, y, t) = e^{-\frac{|x-y|}{t}}$. Define a self-map T on X by: $Tx = \frac{x+5}{6}$ for all $x \in X$. Then, we have

$$M(Tx, Ty, t) = e^{-\frac{|x-y|}{6t}} \ge e^{-\frac{|x-y|}{2t}}.$$

Therefore, all conditions of Corollary 2.3 are satisfied and 1 is the unique fixed point of T.

3. A metric version

Now, we give a metric version of Theorem 2.1.

Let (X, d) be a metric space and B(X) be the set of all nonempty bounded subsets of X. As in Fisher [6], for $A, B \in B(X)$

$$\delta(A, B) = \sup\{d(a, b) : a \in A, b \in B\}.$$

If A is consisted of a single point a, we write $\delta(A, B) = \delta(a, B)$. If B is consisted also of a single point b, we write $\delta(A, B) = d(a, b)$. It follows immediately from the definition that

$$\delta(A, B) = \delta(B, A) \ge 0,$$

 $\delta(A, B) = 1 \iff A = B = \{a\},$

for all $A, B \subseteq X$. In particular if $\emptyset \neq S = A = B \subset X$, we obtain

$$\delta(S) = \sup\{d(x,y): x,y \in S\}.$$

If S is consisted of a single point a, then $\delta(S) = 1$. If S is consisted of a two points a, b, then $\delta(S) = d(a, b)$. It follows immediately from the definition that:

- (i) If $A \subseteq B$, then $\delta(A) \le \delta(B)$.
- (ii) $\delta(S) \geq 0$, for all nonempty subset S of X.

For a sequence $A_n=\{x_n,x_{n+1},x_{n+2},\cdots\}$ in a metric space (X,d), let $r_n=\delta(A_n)$ for $n\in\mathbb{N}$. Then

- (a): By (i), since $A_n \supseteq A_{n+1}$, we have $r_{n+1} \le r_n$,
- $(b): \forall n, m \ge k, \ d(x_n, x_m) \le \delta(A_k) = r_k,$
- $(c): \forall n \in \mathbb{N}, r_n \geq 0.$

From (a) and (c), there exists $r \geq 0$ such that $\lim_{n \to \infty} r_n = r$.

Lemma 3.1. Let (X,d) be a metric space. If $\lim_{n\to\infty} r_n = 0$, then $\{x_n\}$ is a Cauchy sequence in X.

Proof. As $\lim_{n\to\infty} r_n = 0$, given $\epsilon > 0$, there exists an $n_0 \in \mathbb{N}$ such that for all $n > n_0$, we get $0 \le r_n < \epsilon$. That is Hence, for $l, k \ge n > n_0$ by (b) we obtain

$$d(x_l, x_k) \le \sup\{d(x_i, x_j) : x_i, x_j \in A_n\} = r_n < \epsilon.$$

Therefore, $\{x_n\}$ is a Cauchy sequence in X.

Let Ψ be the set of all continuous functions $\psi:[0,\infty)^6\longrightarrow\mathbb{R}$ satisfying the following conditions:

 $(\psi_1): \psi(t_1, \dots, t_5, t_6)$ is increasing in variables t_1, t_2, \dots, t_5 .

 $(\psi_2): \forall u, v \geq 0, \ \psi(u, u, u, u, v) \geq 0$ implies that $v \leq f(u)$, where $f: [0, \infty) \longrightarrow [0, \infty)$ is an increasing and upper semi-continuous function with f(t) < t for all t > 0.

It easy to see that f(0) = 0 and if $\psi(0,0,0,0,0,v) \leq 0$, then v = 0.

Example 3.2. $\psi(t_1, t_2, t_3, t_4, t_5, t_6) = \psi_1(\max\{t_1, t_2, t_3, t_4, t_5\}) - t_6$, where $\psi_1 : [0, \infty) \longrightarrow [0, \infty)$ is an increasing and upper semi-continuous function with $\psi_1(t) < t$ for all t > 0. For example $\psi_1(t) = kt$, 0 < k < 1 for all t > 0.

It is easy to see that ψ in Example 3.2 verifies conditions (ψ_1) and (ψ_2) .

Theorem 3.3. Let (X,d) be a complete metric space and T be a self map of X satisfying

$$(3.1) \psi(d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx), d(Tx,Ty)) \ge 0$$

for all x, y in X and $\psi \in \Psi$. Then, T has a unique fixed point in X.

Proof. Let x_0 be an arbitrary point in X, $Tx_n = x_{n+1}$, $A_n = \{x_n, x_{n+1}, x_{n+2}, \cdots\}$ and $r_n = \delta(A_n)$, $n \in \mathbb{N}$. Then, we know that $\lim_{n\to\infty} r_n = r$ for some $r \geq 0$.

If $x_{n+1} = x_n$ for some $n \in \mathbb{N}$, then T has a fixed point, say $p \in X$.

Assume that $x_{n+1} \neq x_n$ for each $n \in \mathbb{N}$. Taking $x = x_{n+k}$ and $y = x_{m+k}$ in (3.1) for $k \in \mathbb{N}$, we have

$$\psi(d(x_{n+k}, x_{m+k}), d(x_{n+k}, Tx_{n+k}), d(x_{m+k}, Tx_{m+k}), d(x_{n+k}, Tx_{m+k}), d(x_{n+k}, Tx_{m+k}), d(Tx_{n+k}, Tx_{m+k}))$$

$$= \psi(d(x_{n+k}, x_{m+k}), d(x_{n+k}, x_{m+k+1}), d(x_{m+k}, x_{m+k+1}), d(x_{m+k}, x_{m+k+1}), d(x_{n+k}, x_{m+k+1})) \ge 0.$$

Since $d(x_{n+k}, x_{m+k}) \le r_k$, for every $n, m \ge 0$, using (ψ_1) we get

$$\psi(r_k, r_k, r_k, r_k, r_k, d(x_{n+k+1}, x_{m+k+1}) \ge 0$$

which implies by (ψ_2)

$$d(x_{n+k+1}, x_{m+k+1}) \le f(r_k), \ \forall m, n \ge 0.$$

Hence

$$\sup_{n,m\geq 0} d(x_{n+k+1}, x_{m+k+1}) \leq \psi(r_k).$$

Therefore, $r_{k+1} \leq f(r_k)$. Letting $k \to \infty$, we get $r \leq f(r)$. If 0 < r, then r < r which is a contradiction. Thus, r(t) = 1 and so $\lim_{n \to \infty} r_n = 0$. Thus by Lemma 1.7, $\{x_n\}$ is a Cauchy sequence in X. By the completeness of X, there exists $p \in X$ such that $\lim_{n \to \infty} x_n = p$, then $\lim_{n \to \infty} Tx_n = p$. Applying inequality (3.1) we get

$$\psi(d(x_n, p, d(x_n, Tx_n), d(p, Tp), d(x_n, Tp), d(p, Tx_n), d(Tx_n, Tp))$$

$$= \psi(d(x_n, p), d(x_n, x_{n+1}), d(p, Tp), d(x_n, Tp), d(p, x_{n+1}), d(x_{n+1}, Tp)) \ge 0.$$

Taking $n \longrightarrow \infty$, we obtain

$$\psi(0, 0, d(p, Tp), d(p, Tp), 0, d(p, Tp)) \ge 0.$$

By (ψ_1) we have

$$\psi(d(p,Tp),d(p,Tp),d(p,Tp),d(p,Tp),d(p,Tp)) \ge 0$$

and (ψ_2) implies that $d(p,Tp) \leq \psi(d(p,Tp)) < d(p,Tp)$ which is contradiction. Hence Tp = p.

The uniqueness of p follows from inequality (3.1) and (ψ_2) .

Corollary 3.4. Let (X,d) be a complete metric space and T be a self map of X satisfying

$$d(Tx,Ty) \leq h \max\{d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)\}$$

for all x, y in X and 0 < h < 1. Then, T has a unique fixed point p in X.

Proof. We take $\psi(t_1,t_2,t_3,t_4,t_5,t_6)=k\max\{t_1,t_2,t_3,t_4,t_5\}-t_6,\ 0< k<1.$

Corollary 3.5. Let (X,d) be a complete metric space and T^n be a self map of X satisfying for some $n \geq 1$

$$d(T^n x, T^n y) \le h \max\{d(x, y), d(x, T^n x), d(y, T^n y), d(x, T^n y), d(y, T^n x)\}$$

for all x, y in X and 0 < h < 1. Then, T has a unique fixed point p in X.

Proof. By Corollary 3.4, T^n has a unique fixed point p in X. That is, $T^np = p$. Thus, $T^n(Tp) = T(T^np) = Tp$. Since p is unique, we get Tp = p.

Example 3.6. Let $(X,d) = (\mathbb{R},|.|)$. Define a self-map T on X by:

$$Tx = \begin{cases} 1, & \text{if } x \in \mathbb{Q}, \\ 0, & \text{if } x \in \mathbb{R} - \mathbb{Q}. \end{cases}$$

For all $n \geq 2$ and $x \in \mathbb{R}$ we have $T^n x = 1$ and so

$$d(T^n x, T^n y) \le h \max\{d(x, y), d(x, T^n x), d(y, T^n y), d(x, T^n y), d(y, T^n x)\}.$$

Hence, by Corollary 3.5, T has a unique fixed point x = 1.

References

- [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3, 1922, 133-181.
- [2] M. Edelstein, On fixed and periodic points under contraction mappings, J. London Math. Soc., 37, 1962, 74-79.
- [3] El Naschie MS. A review of *E*-infinity theory and the mass spectrum of high energy particle physics. *Chaos, Solitons and Fractals*, **19**, 2004, 209-236.
- [4] El Naschie MS. On a fuzzy Kahler-like Manifold which is consistent with two-slit experiment. *Int. J of Nonlinear Science and Numerical Simulation*, **6**, 2005, 95-98.
- [5] El Naschie MS. The idealized quantum two-slit gedanken experiment revisited Criticism and reinterpretation. *Chaos, Solitons and Fractals*, **27**, 2006, 9-13.
- [6] B. Fisher, Common fixed points of mappings and set-valued mappings, Rostock, Math. Kolloq, 18, 1981, 69-77.
- [7] A. George and P. Veeramani, On some result in fuzzy metric space. Fuzzy Sets and Systems, 64, 1994, 395-399.
- [8] M. Grebiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27, 1988, 385-389.
- [9] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, *Kybernetica*, bf 11, 1975, 326-334.
- [10] J. López Rodríguez and S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets Sys., 147, 2004, 273-283.

Received 02.05.2008

- [11] B. Schweizer and A. Sklar, Statistical metric spaces. *Pacific J. Math.*, **10**, 1960, 313-334.
- [12] Y. Tanaka, Y. Mizno and T. Kado, Chaotic dynamics in Friedmann equation. *Chaos, Solitons and Fractals*, **24**, 2005, 407-422.
- [13] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, *Demonstratio Math.*, **32**, 1999,157-163.
- [14] L. A. Zadeh, Fuzzy sets. Inform and Control, 8, 1965, 338-353.

Shaban Sedghi

Department of Mathematics

Islamic Azad University-Ghaemshahr Branch

Ghaemshahr P.O.Box 163, IRAN

E-mail: $sedghi_gh@yahoo.com$

Nabi Shobe

Department of Mathematics

Islamic Azad University-Babol Branch

IRAN

E-mail: $nabi_shobe@yahoo.com$

A. Aliouche

Department of Mathematics University of Larbi Ben M'Hidi Oum-El-Bouaghi, 04000 ALGERIA

E-mail: alioumath@yahoo.fr