Mathematica Balkanica

New Series Vol. 23, 2009, Fasc. 1-2

On Extremal Properties for the Derivative of Polynomials ¹

K. K. Dewan and Sunil Hans

Presented by V. Kiryakova

If P(z) be a polynomial of degree n, having no zero in $|z| < k, k \le 1$, then Govil [Proc. Natl. Acad. Sci., 50 (1980), 50–52] proved that

$$\max_{|z|=1} |P'(z)| \le \frac{n}{1+k^n} \max_{|z|=1} |P(z)|,$$

provided |P'(z)| and |Q'(z)| becomes maximum at the same point on |z|=1, where $Q(z)=z^n\overline{P(1/\overline{z})}$. In this paper, we consider a class of polynomials of the type $P(z)=c_nz^n+\sum_{\nu=\mu}^n c_{n-\nu}z^{n-\nu}$, $1\leq\mu\leq n$ and obtain generalization as well as improvement of above inequality. Also we generalize a result of Govil [J. Math. Phy. Sci., 14, no. 2 (1980), 183–187] in this direction.

Key Words: polynomials; inequalities; derivatives; zeros.

AMS Subj. Classification: 30A10, 30C10, 30C15

1. Introduction

If P(z) be a polynomial of degree n, then according to a well known result of S. Bernstein (for reference see [2]), we have

(1)
$$\max_{|z|=1} |P'(z)| \le n \max_{|z|=1} |P(z)|.$$

The result is best possible and equality holds for $P(z) = \alpha z^n$, where $|\alpha| = 1$.

 $^{^1{\}rm The}$ work is supported by Council of Scientific and Industrial Research, New Delhi, under grant F.No. $9/466(95)/2007{\rm \cdot EMR{\text -}I.}$

If we restrict ourselves to the class of polynomials having no zero in |z| < 1, then inequality (1.1) can be sharpened. In fact, P. Erdös conjectured and later Lax [7] proved that if $P(z) \neq 0$ in |z| < 1, then

(2)
$$\max_{|z|=1} |P'(z)| \le \frac{n}{2} \max_{|z|=1} |P(z)|.$$

The result is best possible and equality holds for $P(z) = \alpha + \beta z^n$, where $|\alpha| = |\beta|$. As a generalization of inequality (1.2), Malik [8] considered that if $P(z) \neq 0$ in $|z| < k, k \ge 1$, then

(3)
$$\max_{|z|=1} |P'(z)| \le \frac{n}{1+k} \max_{|z|=1} |P(z)|.$$

The result is best possible and equality holds for $P(z) = (z+k)^n$.

While seeking for the inequality analogous to (1.3) for the polynomials not vanishing in $|z| < k, k \le 1$, Govil [4] proved the following result.

Theorem A. Let $P(z) = \sum_{\nu=0}^{n} c_{\nu} z^{\nu}$ is a polynomial of degree n, having no zero in |z| < k, $k \le 1$ and $Q(z) = z^n \overline{P(1/\overline{z})}$. If |P'(z)| and |Q'(z)| becomes maximum at the same point on |z| = 1, then

(4)
$$\max_{|z|=1} |P'(z)| \le \frac{n}{1+k^n} \max_{|z|=1} |P(z)|.$$

For the polynomials having all its zeros on |z| = k, $k \le 1$, Govil [5] was able to prove the following result.

Theorem B . If $P(z) = \sum_{\nu=0}^{n} c_{\nu} z^{\nu}$ is a polynomial of degree n, having all its zeros on |z| = k, $k \le 1$, then

(5)
$$\max_{|z|=1} |P'(z)| \le \frac{n}{k^n + k^{n-1}} \max_{|z|=1} |P(z)|.$$

In this paper, we generalize as well as improve upon Theorems A and also generalize Theorem B for the polynomials of the type $P(z) = c_n z^n + \sum_{\nu=\mu}^n c_{n-\nu} z^{n-\nu}$, $1 \le \mu \le n$.

Theorem 1. Let $P(z) = c_n z^n + \sum_{\nu=\mu}^n c_{n-\nu} z^{n-\nu}$, $1 \leq \mu < n$ is a polynomial of degree n, having no zero in |z| < k, $k \leq 1$ and $Q(z) = z^n \overline{P(1/\overline{z})}$. If |P'(z)| and |Q'(z)| becomes maximum at the same point on |z| = 1, then

(6)
$$\max_{|z|=1} |P'(z)| \le \frac{n}{1 + k^{n-\mu+1}} \max_{|z|=1} |P(z)|.$$

Remark 1 . If we take $\mu=1$ in Theorem 1, then inequality (1.6) reduces to inequality (1.4) due to Govil [4].

Theorem 2. Let $P(z) = c_n z^n + \sum_{\nu=\mu}^n c_{n-\nu} z^{n-\nu}$, $1 \leq \mu < n$ is a polynomial of degree n, having no zero in |z| < k, $k \leq 1$ and $Q(z) = z^n \overline{P(1/\overline{z})}$. If |P'(z)| and |Q'(z)| becomes maximum at the same point on |z| = 1, then

(7)
$$\max_{|z|=1} |P'(z)| \le \frac{n}{1+k^{n-\mu+1}} \left\{ \max_{|z|=1} |P(z)| - \min_{|z|=k} |P(z)| \right\}.$$

If we take $\mu=1$ in Theorem 2, then we get the following result, which was also proved by Aziz and Rather [1].

Corollary 1. Let $P(z) = \sum_{\nu=0}^{n} c_{\nu} z^{\nu}$ is a polynomial of degree n, having no zero in |z| < k, $k \le 1$ and $Q(z) = z^{n} \overline{P(1/\overline{z})}$. If |P'(z)| and |Q'(z)| becomes maximum at the same point on |z| = 1, then

$$\max_{|z|=1} |P'(z)| \le \frac{n}{1+k^n} \left\{ \max_{|z|=1} |P(z)| - \min_{|z|=k} |P(z)| \right\}.$$

Theorem 3 . If $P(z) = c_n z^n + \sum_{\nu=\mu}^n c_{n-\nu} z^{n-\nu}$, $1 \le \mu < n$ is a polynomial of degree n, having all its zeros on |z| = k, $k \le 1$, then

(8)
$$\max_{|z|=1} |P'(z)| \le \frac{n}{k^{n-2\mu+1} + k^{n-\mu+1}} \max_{|z|=1} |P(z)|.$$

Remark 2. Again if we take $\mu=1$ in Theorem 3, then inequality (1.8) reduces to inequality (1.5) due to Govil [5].

2. Lemmas

For the proofs of these theorems, we need the following lemmas.

Lemma 1. If $P(z) = c_0 + \sum_{\nu=\mu}^n c_{\nu} z^{\nu}$, $1 \le \mu < n$ is a polynomial of degree n, having all its zeros in the disk $|z| \le k$, $k \ge 1$, then for |z| = 1

(2.1)
$$k^{n+\mu-3} |Q'(z)| \le |P'(k^2 z)|,$$

where $Q(z) = z^n \overline{P(1/\overline{z})}$.

Proof. Since the polynomial P(z) has all its zeros in $|z| \leq k$, $k \geq 1$. Therefore the polynomial F(z) = P(kz) has all its zeros in the unit disk $|z| \leq 1$. Now if $G(z) \equiv z^n \overline{F(1/\overline{z})} \equiv z^n \overline{P(k/\overline{z})} \equiv k^n Q(z/k)$, then all the zeros of G(z) lie in $|z| \geq 1$. Since |F(z)| = |G(z)| on |z| = 1, it follows by maximum modulus principle that $|G(z)| \leq |F(z)|$ on $|z| \geq 1$. Hence for every complex number λ with $|\lambda| > 1$, it follows by Rouche's theorem that the polynomial $G(z) - \lambda F(z)$ has all its zeros in |z| < 1. By Gauss Lucas theorem the polynomial $G'(z) - \lambda F'(z)$ has all its zeros in |z| < 1, which implies

(2.2)
$$|G'(z)| \le |F'(z)| \text{ for } |z| \ge 1.$$

Substituting for F(z) and G(z) in (2.2), we get

(2.3)
$$k^{n-1} |Q'(z/k)| \le k |P'(kz)| \text{ for } |z| \ge 1.$$

Since $c_1 = c_2 = \cdots = c_{\mu-1} = 0$, from (2.3), we get

(2.4)
$$k^{n-1} |Q'(z/k)| \le k^{\mu} \left| \sum_{\nu=\mu}^{n} \nu c_{\nu} (kz)^{\nu-\mu} \right| \text{ for } |z| \ge 1.$$

In fact (2.4) holds for |z| = 1. But $\sum_{\nu=\mu}^{n} \nu c_{\nu}(kz)^{\nu-\mu} \neq 0$ in |z| > 1, by maximum modulus principle it also holds for |z| > 1. Taking kz instead of z in (2.4), we have

$$k^{n-1} |Q'(z)| \le k^{\mu} \left| \sum_{\nu=\mu}^{n} \nu c_{\nu} (k^2 z)^{\nu-\mu} \right| \text{ for } |z| \ge 1/k.$$

In particular,

$$k^{n-1} |Q'(z)| \le k^{\mu} \left| \sum_{\nu=\mu}^{n} \nu c_{\nu} (k^2 z)^{\nu-\mu} \right| \text{ for } |z| = 1,$$

this implies

$$k^{n-1} |Q'(z)| \le k^{2-\mu} \left| \sum_{\nu=\mu}^{n} \nu c_{\nu} (k^2 z)^{\nu-1} \right| \text{ for } |z| = 1.$$

Consequently

$$k^{n+\mu-3} |Q'(z)| \le |P'(k^2 z)|$$
 for $|z| = 1$.

This completes the proof of Lemma 1.

Lemma 2. If $P(z) = c_0 + \sum_{\nu=\mu}^n c_{\nu} z^{\nu}$, $1 \leq \mu < n$ is a polynomial of degree n, having all its zeros in the disk $|z| \leq k$, $k \geq 1$, then

$$\max_{|z|=1} \left| Q'(z) \right| \leq k^{n-\mu+1} \max_{|z|=1} \left| P'(z) \right|,$$

where $Q(z) = z^n \overline{P(1/\overline{z})}$.

Proof. By Lemma 1, we have

(2.5)
$$\max_{|z|=1} |Q'(z)| \le \frac{1}{k^{n+\mu-3}} \max_{|z|=k^2} |P'(z)|.$$

If H(z) is a polynomial of degree n, then it is a simple deduction from maximum modulus principle (see [9, P. 158, Prob. 269]) that

(2.6)
$$\max_{|z|=R>1} |H(z)| \le R^n \max_{|z|=1} |H(z)|.$$

Applying inequality (2.6) to the polynomial P'(z), which is of degree n-1, with $R=k^2\geq 1$, we have

$$\max_{|z|=k^2} |P'(z)| \le k^{2n-2} \max_{|z|=1} |P'(z)|.$$

Combining this with (2.5), the lemma follows.

Lemma 3. If $P(z) = c_n z^n + \sum_{\nu=\mu}^n c_{n-\nu} z^{n-\nu}$, $1 \le \mu < n$ is a polynomial of degree n, having no zero in |z| < k, $k \le 1$, then

$$k^{n-\mu+1} \max_{|z|=1} |P'(z)| \le \max_{|z|=1} |Q'(z)|,$$

where $Q(z) = z^n \overline{P(1/\overline{z})}$.

Proof. If P(z) has no zero in |z| < k, $k \le 1$, then $Q(z) = z^n \overline{P(1/\overline{z})}$ has all its zeros in $|z| \le 1/k$, $1/k \ge 1$. Thus applying Lemma 2 to the polynomial Q(z), we get

$$\max_{|z|=1} |P'(z)| \le \frac{1}{k^{n-\mu+1}} \max_{|z|=1} |Q'(z)|,$$

and the lemma follows.

Lemma 4. If P(z) is a polynomial of degree n, then for |z| = 1

$$\left|P'(z)\right| + \left|Q'(z)\right| \le n \max_{|z|=1} |P(z)|,$$

where $Q(z) = z^n \overline{P(1/\overline{z})}$.

The above lemma is a special case of a result due to Govil and Rahman [6].

Lemma 5. If $P(z)=c_0+\sum_{\nu=\mu}^nc_\nu z^\nu,\ 1\leq\mu\leq n$ is a polynomial of degree n, having no zero in the disk $|z|< k,\ k\geq 1$, then for |z|=1

$$k^{\mu} |P'(z)| \le |Q'(z)|,$$

where $Q(z) = z^n \overline{P(1/\overline{z})}$.

The above lemma is due to Chan and Malik [3].

Lemma 6. If $P(z)=c_nz^n+\sum_{\nu=\mu}^nc_{n-\nu}z^{n-\nu}$, $1\leq\mu\leq n$ is a polynomial of degree n, having all its zeros on |z|=k, $k\leq 1$, then for |z|=1

$$\left| Q'(z) \right| \le k^{\mu} \left| P'(z) \right|,$$

where $Q(z) = z^n \overline{P(1/\overline{z})}$.

Proof. Since P(z) has all its zeros on |z| = k, $k \le 1$, therefore $Q(z) = z^n \overline{P(1/\overline{z})}$ has all its zeros on |z| = 1/k, $1/k \ge 1$. Now applying Lemma 5 to polynomial Q(z) and result follows.

3. Proofs of the Theorems

Proof. of Theorem 1. Since by hypothesis |P'(z)| and |Q'(z)| becomes maximum at the same point on |z|=1, if we choose z_0 be a point on |z|=1 such that $|P'(z_0)|=\max_{|z|=1}|P'(z)|$ and $|Q'(z_0)|=\max_{|z|=1}|Q'(z)|$, then by Lemma 4, we have

(3.1)
$$|P'(z_0)| + |Q'(z_0)| \le n \max_{|z|=1} |P(z)|.$$

Combining inequality (3.1) with Lemma 3, we get

$$|p'(z_0)| + k^{n-\mu+1} \max_{|z|=1} |P'(z)| \le n \max_{|z|=1} |P(z)|,$$

which implies

$$(1 + k^{n-\mu+1}) \max_{|z|=1} |P'(z)| \le n \max_{|z|=1} |P(z)|,$$

and the result follows.

Proof. of Theorem 2. If P(z) is a polynomial of degree n having no zero in |z| < k, $k \le 1$ and if $m = \min_{|z| = k} |P(z)|$, then for every α with $|\alpha| < 1$, the polynomial $P(z) - \alpha m$ has no zero in |z| < k, $k \le 1$. This result is clear if P(z) has a zero on |z| = k, for then m = 0 and therefore $P(z) - \alpha m = P(z)$. In case P(z) has no zero on |z| = k, then for every α with $|\alpha| < 1$, we have $|P(z)| > m |\alpha|$ on |z| = k and on applying Rouche's theorem the result will follows. Thus $P(z) - \alpha m$ has no zero in |z| < k, $k \le 1$ and hence, applying Theorem 1 to $P(z) - \alpha m$, we get

(3.2)
$$\max_{|z|=1} |P'(z)| \le \frac{n}{1 + k^{n-\mu+1}} \max_{|z|=1} |P(z) - \alpha m|.$$

If we choose a point z_0 on |z| = 1 such that $|P(z_0)| = \max_{|z|=1} |P(z)|$, then (3.2) in particular gives

(3.3)
$$\max_{|z|=1} |P'(z)| \le \frac{n}{1 + k^{n-\mu+1}} |P(z_0) - \alpha m|.$$

Now choosing argument of α on right hand side (3.3), we get

$$\max_{|z|=1} |P'(z)| \ge \frac{n}{1+k^{n-\mu+1}} \{ |P(z_0)| - |\alpha| \, m \} \,,$$

and letting $|\alpha| \to 1$, we get

$$\max_{|z|=1} |P'(z)| \le \frac{n}{1+k^{n-\mu+1}} \left\{ \max_{|z|=1} |P(z)| - \min_{|z|=k} |P(z)| \right\}.$$

This completes the proof of Theorem 2.

Proof. of Theorem 3. If z_0 be a point on |z| = 1 such that $|Q'(z_0)| = \max_{|z|=1} |Q'(z)|$, then by Lemma 4, we have

$$(3.4) |P'(z_0)| + \max_{|z|=1} |Q'(z)| \le n \max_{|z|=1} |P(z)|.$$

Combining inequality (3.4) with Lemma 6, we get

$$\left(\frac{1}{k^{\mu}}\right)\left|Q'(z_0)\right| + \max_{|z|=1}\left|Q'(z)\right| \le n \max_{|z|=1}\left|P(z)\right|,$$

which is equivalent to

(3.5)
$$\left(\frac{1}{k^{\mu}} + 1\right) \max_{|z|=1} |Q'(z)| \le n \max_{|z|=1} |P(z)|.$$

Inequality (3.5), when combined with Lemma 3, gives

$$\left(\frac{1}{k^{\mu}} + 1\right) k^{n-\mu+1} \max_{|z|=1} |P'(z)| \le n \max_{|z|=1} |P(z)|,$$

which implies

$$\max_{|z|=1} |P'(z)| \le \frac{n}{k^{n-2\mu+1} + k^{n-\mu+1}} \max_{|z|=1} |P(z)|.$$

This completes the proof of the Theorem 3.

Remark 3 . For $\mu=n$ Theorem 1, 2 and 3 holds if polynomial satisfy the condition $|c_0| \leq k \, |c_n|$.

References

- [1] A. Aziz and N. Ahmad, Inequalities for the derivative of a polynomial, *Proc. Indian Acad. Sci.*(Math. Sci.), **107**, no. 2, 1997, 189–196.
- [2] S. Bernstein, Lecons sur les, propriétés extrémales et la meilleure approximation desfonctions analytiques d'une variable réelle, Gauthier Villars, Paris, 1926.
- [3] T. N. Chan and M. A. Malik, On Erdös-Lax theorem, *Proc. Indian Acad. Sci.* (Math. Sci.), **92**, no. 3, 1983, 191–193.
- [4] N. K. Govil, On a theorem of S. Bernstein, *Proc. Natl. Acad. Sci.*, **50**, 1980, 50–52.

- [5] N. K. Govil, On a theorem of S. Bernstein, J. Math. Phy. Sci., 14, no. 2, 1980, 183–187.
- [6] N. K. Govil and Q. I. Rahman, Functions of exponential type not vanishing in a half plane and related polynomials, *Trans. Amer. Math. Soc.*, **137**, 1969, 501–517.
- [7] P. D. Lax, Proof of a conjecture of P. Erdös on the derivatives of a polynomial, Bull. Amer. Math. Soc., **50**, 1944, 509–513.
- [8] M. A. Mali On the derivative of a polynomial, J. London Math. Soc., 2, no. 1, 1969, 57–60.
- [9] G. Pólya and G. Szegö,, *Problems and theorems in analysis*, Springer–Verlag, New York, Vol. 1, 1972.

K. K. Dewan

Received 28.07.2008

Department of Mathematics Jamia Millia Islamia(Central University) New Delhi-110025, INDIA.

 $E ext{-}Mail: kkdewan123@yahoo.co.in.$

Sunil Hans

Department of Mathematics Jamia Millia Islamia(Central University) New Delhi-110025, INDIA.

 $E ext{-}Mail: sunil.hans 82@yahoo.com.$