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We study the boundedness of some pseudo-differential operators of order 0 on pointwise
multipliers Triebel-Lizorkin space M(F,,(R™)), where F,],(R") is defined from a positive
function 7 : [0, 400) — [0, +00) satisfies the condition:
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1. Introduction

Several authors studied the continuity of the pseudo-differential operators
(ps.d.0.) on certain functional spaces, in particular on Besov space B, , (R"), or
on Triebel-Lizorkin space F};, (R"), can be found in the different works, as [1,
4, 5, 13]. In this work we consider the study of the boundedness on pointwise
multipliers Triebel-Lizorkin space M (F;”q(R”)) of the ps.d.o. p(:, D) defined
as

0(, D) f(x) = (@m)™" / o (e, 6) F(E)dE,  (WfeS, VreR").

n

We denote by OP]; the set of all ¢ (-, D) such that its symbol ¢ : R" x
R" — C satisfies
0807 o(w, )] < e (1 +[¢]ym A+,
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where a, 3 € N" and 6, p, m € [0, 00).

The main result of this paper has been proved in the case of Besov space
B, (R") by Moussai [5], where the function 7 : [0,400) — [0,+00) satisfies
the condition:

2—]6
(1) sup t™%  sup o (

T2 ) 40,  (a€R).
>0 k=0,1.2... Na (27Ft) ( )

nn
Our contribution is the following result: we shall prove that Bpf} N L%
is included in the pointwise multipliers space M (F;’;) if —% + max(0, 2?” —n) <
n
a < D
Theorem 1. Letl <p < oo, 1 <q < o0, —%—Hnax((]7 27"—n) <a< %,
and 1, be a positive function satisfies (1), then

nn

Bpfgo NL® — M(F;j;).

On the other hand as it is well-known that for all ¢ € D the function

+
|-|” ¢ belongs to B;oo” (1 > —%), we will give an assertion in this context for
F,% which leads to prove that all ps.d.o. of OPR | is not bounded on M (E}%).

Theorem 2. Let0 < a < %, l<p<oo, 1<qg<oo, andn, be a
positive function satisfies (1). Then there exists a ps.d.o. o (-, D) in OP107O and
a function h € M(F)%) such that o (-,D)h ¢ M(F,%).

2. Preliminaries
2.1. Notation

We will work in the Euclidean space R"”, then all spaces and all functions
are defined on R™. The norm of the Lebesgue space LP is [|||,. We note by

85 f= 8@ . 852 f the derivative of f of order a multi-indices 3. The notations

~ v
Ff=fand F~lf = f are used for the Fourier transform of f and its inverse.
If g€ L] , the Hardy-Littlewood maximal function is

loc?

1
M9 = o [ lawlay
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where B (x,r) is the ball of center x and radius r. The difference operators are

N
A{Xf:Z(JID (=D fF(+(N—kh) (NeNheR").
k=0

If p € [1,00], its conjugate p’ is p/(p — 1).If x € R, the number [z] denotes the
greatest integer less than or equal to . As usual, constants ¢, ¢y, ... are strictly
positive and depend only on the fixed parameters n, s, p, ¢ and their values may
vary from line to line.

2.2. Series of Littlewood-Paley

Consider a partition of unity
p&)+) 627 =1 (VeR"),
j=1

where ¢, ¢ € C* are positive functions such that suppp C {{ € R" : || < 2}
and supp ¢ C {¢€ € R" : 271 < |¢] < 2}. We define the convolution operators S;
and @), by the following

sif = (6@9)F)  G=12 .)
Qrf (cp (2—’“-) f)v (k=0,1, ...),

and we set Qo = Sp. Thus we obtain the Littlewood-Paley decomposition f =
Z;io S;f (convergence in S’). The product f - g is defined bay

whenever the limit on the right hand side exists in §’( see [8, Section 4.2]). The
support of S (S;f - Agg) is not empty in one the following cases

(<k+1 and k—-2<j<k+4,
j<k+1 and k—-2</(<k-+4,
g >k and |[(—1] <1,

and we have

Se(f-9) = Su(S;ifSeg) = (I + I} +1I}) (f - g) ,
7.=0
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where N
I (f-9) = Su(Qr+19-Skf),
IE(f-9) = Sk(Skg-Qrsrf),

I (f-9) = stk(sjg -Sif);
‘7:
with gk = Z,’;igfz Sj and Sy = Z];ilifl Sj.

2.3. Triebel-Lizorkin and Besov spaces.

Let us now recall the definition of F)% and B)%. The classical different
properties of By , and F}, (obtained here by taking ns(t) = t~*), as equivalent
norms and embeddings, can be found in [3, 8, 10, 11, 12].

Definition 1. Let v > 0,a € R, 1 < p < oo, (resp.,, 1 < p <
o) and 1 < ¢ < oo. Let n, be a positive function satisfies (1). The space
LP (3%) (resp., £g* (LP)) is the set of the sequences {fx},.y C S, such that

supp fr C {€ eR™: [¢] < y2%} and

H{fk}keNHLp(eZ]“) = Il{na@_k)f’f}keNHLP(M) < o9,

(7’63]7-7 H{fk}keN‘ e (L) H{na(z_k)fk}keNH@(LP) < OO)

Definition 2. (i) Leta e R, 1 <p< oo, 1< g < o0, and 7, be a
positive function satisfies (1), then the Triebel-Lizorkin space is

Fro={£ €8 Ifllpme = {2 )8k enll pogeny < 20}

(ii) Let a € R, 1 < p,q < o0, and 7, be a positive function satisfies (1), then
the Besov space is

B = eS8 1l = na@™)Se yerlnmy < 20} -

Remark 1. We introduce the maximal function

S f(x) = sup =2 22 VeeR", feS,d>0, keN).
A ST :
Then we can replace Sif by SZ’df with d > n/min(p,q) (resp. d > n/p) in
Definition /(i) (resp. (ii)), cf [11, Theorem 2.3.2].
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Lemma 1. (i) Leta € R, 0 < p < o0, 0 < u,v,q < 00, and 1, be a
positive function satisfies (1), then

B;fu — F;"; — B;i; and G (LP) — LP(61e) — £ (LP),

for all w and v such that 0 < u < min(p,q) and max(p,q) < v < co

(i) Let 0 < po < p<p1 < o0 and a— (n/py) = B — (n/p) =a— (n/p1)
and 0 < u,v,q < 0o, then

B) s Fyees Bit o and  010(LP0) < LP(£37) < (00 (LPY),
for all u and v such that 0 < u <p < v < oco.

Lemma 2. Let 0 < p <oo andy > 0. Let {fj}jeN C LP be a sequence
of functions such that suppfj C {€ € R": |¢] < ~27}. Then the estimate

1Sk fill, < 2072715511,

holds for p = max(0, % —n) and k < j < oo, where the constant ¢ depends only
on n,p and .

For Lemma 1. we can see [10, Section 2.3 and 2.8] and [11, Section 2.7],
the proof of Lemma is given in [3, Section 2.4].

Proposition 1. Letl <p<oo, 1<qg< o0, a € R and v > 1. Let n,
be a positive function satisfies (1). There exists a constant ¢ > 0 such that

|2 il <l (X (a2 10s)")
=0 P j=0 P

C S with supp Fg; C {£ € R™ : y7127 < |¢] < ~27}.

holds for all {g;} ;.

Before the proof of Proposition 1. we shall discuss an estimates in £¢ and
a maximal inequality.

Lemma 3. Let {j}; .y € 7(RT),0<b<1andl<qg<oo. Then we

.

have

H{Zb DesYren

.+ H{Zb D¢ e

’zq < % H{8k}keN
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Lemma 4. Letl <p<ooandl < q < oo.
(i) If 0 € Ly and g € LY°, then

(70 (/1)  9(@)| < 1BlhMg(a), (vt >0, Va € RY).

(ii) There exists a constant ¢ > 0 such that the following inequality

10> aagy) ||, < e I Zlgqu )1,
7=0

holds, for all sequences {g;}jen of locally Lebesque-integrable functions.

The proof of Lemma 3. is immediate by using Young’s inequality in £9.
However the proof of Lemma 4. can be found in [9, pp. 55] and [8, p. 21].

Proof. of Proposition 1.
(i) It is easy to see that

(2)  Spg; =0 if j>k+L or j<k—L, (L=2+[logvy/log2]).

One has

k+L

h > sal)

Jj=k—L

HZ 2

Jous _H<

One makes the decomposition of Sig; (x) into I (x) + I5 (x) where

I(z)= 2" / Fo2 (- 1))g; (v) dy,

lz—y|<2-F

)= 27 [ F 624w - ) () dy
lz—y|>2-F

Clearly from Lemma /(i) we have |I; (z)| < ¢ Mg; (z). Also we have

R@ < 2y [ et - )|l Wl

20g-ktegjamy|<o-hrens

cMgj (x) 226("_1\[).
>0

IN
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We choose N > n, then |I5 (z)| < ¢ Mg, (z), where c is independent of j
and k. Now according to sign of a we separate the cases, indeed by (1) we have

o—ky — 2—(k—j)a—n“ (2716) 9(k—j)a 97} < ¢ouk—7) 9—J
Na( )= e (2-F2F=1) Na ( ) sc Na ( ) )

then, in the case a > 0, we obtain

o 5 = (274
Ma(277) Z 1Skgil < a Zmn (277) 1Sk+L95l
j=k—L j=k "
(3) < o 2’“22 (279 Mgj,

and in the case a < 0, we obtain

. k+L k Na (2—k) '
na(277) Z |Skgi| < ClZW% (27]) |Sk—r.95]
j=k—L j=0'%
(4) < o 2’“‘22 “n, (279) Mg;.

In both (3) and (4) we calculate LP(¢9)-norm, we apply Lemma and
Lemma /(ii), successively, then we obtain the desired bound.

If a = 0, we immediately get

k+L k+L
na(27%) Y Skgl < et Y mo (277) Mg;
j=k—L j=k—L
k+L 1/q
< (2L+11/q(2 nOZJMgJ)> ,

j=k—L

which implies

[e’s) k+L 1/q
por w2 21)" S 1)

j=k—L

wirnsar)

gk

< CsH(
Y
a (

Il
o

J

gk

Il
=)

J
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Proposition 2. Let 1<p<oo,1 < qg <00, and 0 < a < N where
N € N. Let n, be a positive function satisfies (1). We set

! d
15168k, = 151+ 1| e 9 s [ 2111

Then ||- ||Fna and ||- || are equivalent norms in Fy%,.

F’Ia
Proof. Step 1. We prove that there exists a constant ¢ > 0 such that

(5) 1Al e < CIIfIIFna-

Knowing that ¢(0) = 0, we derive that

(6) Sif(@)= | Flé(=h)L5y,f (z) dh

Rn

We combine (6) with the equality

N-—1
aNs@ = S (V) okl e -k,
k=0
and we obtain
(7) Sif(@)+ Ajn() = (=D [ Flo(=h) AL, f () dh,

Rn
where
—2
N-1 — _

A‘%N(x) = Z ( & ) (_1)k+N 1 an: 1¢(—h) %
Dy f(z+277 (N —k—1)h) dh,
for N > 2 and Aj; = 0.

Next we use the Koch and Sickel’s idea [7] (but not in the sense of

Nikol'skij [6, 5.2.1]). For that, let Iy = [0,1) and I, = [2¢71,2%), ¢ € N.
Then we estimate the right hand side of (7) by

Iij(l')—f-A]’N(ZBN < Clz/j /|/| A 1 If 1¢ th/ IIAQ Jth/f I dtdh/

IA

csz osp |ANF (@),

|u| <267
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where L > 1 is an arbitrary natural number. On take the norm of both sides,
and passing by the triangle inequality, we get

<l X (X (e s 16211))",

ful<2¢-3

(8)

The left hand-side in (8) is bounded by

Sl (222 S (e o o),

k=0+1,... =41 |u|<2¢—7

<o S ([ (o 25",

Jul<
then it suffices to choose L > 2a to get (5).

Step 2. We prove the converse assertion of (5). As above, there exists a
constant ¢ > 0, such that 1y (1) < ¢27% ¢t %0, (27 forall 0 < t < 1 and V¢ € N,
then we obtain

£+1

! dt > 2=
[ (e 21" 503 (remery sup foal) [ o

lul<t |w<2é

(%(24) sup !Aivf!>q

-0 [u]<2-¢

S

Let u € R™ be such that |u| <27¢ and j =0, ..., £, we have

(9) sup ’Aiv (S;f) (3:)’ < ¢ min(1, Q(j_K)N)S;’df (x).

lu|<2=¢

The proof of (9) is given in [10, p. 111]. We split AN f into

and we estimate each of the two terms. Choose two real numbers r and t such
that 0 < r < a < t, and using (9) where we replace d by r and ¢ in the estimate
of Ay and By respectively, we obtain

L

sy S (30 (7>, 9y 1)) |

£=0 7=0

H{AZ}ZGN‘
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and
(11)
3 N oGy, (29) 557 7))
[Bekeen] g, < e (0 (207 3 2 me (27 571)°)
=0 j=t+1
To end the proof, we apply Lemma to (10) and (11). [

2.4. Pointwise multipliers Triebel-Lizorkin space

Definition 3. Letae R, 1 <p < oo, 1 < g < oo, and 7, be a positive
function satisfies (1). Then we define

M(Ey)={fell*: fgek, foal geF}

and call the elements of M (F,%) pointwise multipliers of F"%.

Now, we shall give some properties of M (Fp‘;) necessary for us.

Proposition 3. Leta >0, 1 <p<oo, 1 <qg< o0 andn, be a positive
function satisfies (1), then
. a\/ 1/na
(Z) (FZ;I:Q) = Fp’,q”
.. a 1/na
(”) M(FZ;I:Q) = M(Fp’,q’ )’

(iii) M (F)%) < L.

Proof. Let f € F), and g € F;,/Z‘f . We first prove the case a > 0:
Using the identity

(12) (f1g) /ZSf Qi dx+/ZSkf Qx19(2) da,

where f (z) = f(—2) and §(z) = g(—x). Then, by Holder’s inequality in ¢4,
the fact that (1/14(277) < ¢(2¢*k=9) /,(27%)), and take to Lemma , we obtain

381 @)- Qig ) dal
J=0

< / H{na (Z_j) 1S f ()] }jENHZqH{Q_jaZQka |Skg ()] }jeN‘

< c2[lfllgpe gl pasme -

P ,a’

o0t dx
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Similarly, we derive

|/§jskf( ) Q1§ (@) da| < e f]
k=1

and since A f(x) = AY, f(z) , the Proposition 2 gives the correct bound.
Next, we prove the case a < 0: As in (12), we have

(f 1) = /ZQJ Sig dx‘f‘/Zlef - S () da

then we get the estimation

] ZQ] ) da] < g ol

p .q’

s 180

It remain to prove the last case a = 0 : Remark that, there exists y; , € R"
such that |z — y; | <277 for all j and z. Choosing d > (n/min(p, ¢)), we obtain

(13) | / SOS1 () - Qg (x) de
=0
/Z\Sf Z 159 ()] S(L+ (282 — y;00)%))da

k— 01+(2 |x_yjf13|)

Since g (2 J) <en ( ) the last term of (13) is bounded by

| j |
c/ H{UO (2_]) |15 f ()] }jeNHZqH{ ZQd(k_]) o (;k) ’SZ’dg(x)’}
k=0

the we use the Holder inequality. These cases imply F;/’Z'f — (F;,Z),'

For the converse embedding, let g € (F;'f;)’ and consider the mapping
feF5 — g(f) = (f1g) . By Hahn-Banach’s theorem and [10, Proposition
2.11.1/(3)] we obtain

[e.9]

Z |Skg|) )M

ke a

p ~ llgll

(llg|l denotes the norm of the continuous linear application g), thus g € F, / R

and (Fjs) < F)/".
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In order to show (i), let b € M(F,%), f € F;/ o and g € F,7. The
product (bf 1 g) can be written as

/ZQ] 5 (bg) ( dx+/ZQk f () - Spbg (2)dz (if a > 0),
/Zij(z)-Qj (bg) (z) dx+/ZSkf(a:) - Q_1bg (z)dz  (if a < 0),
J=0 k=1

’/Zij(x)'Sj (bg) (x) dz| <
7=0

/ Z 1) S @) (27) 15,00 @) (@ =0, see (13)

and the estimate |(bf 1 g)| < c||f]| P/ ||bg||Fna can be obtained in a similar

manner to the proof of (7). It follovvs}0 that

oSl pame < sup |Bf19)] < ellfll ajma s (Va €R),
p'.q’

p va! H.‘J”F;z%:l

which proves that M (FI;";) — M (F;,/ Za) The converse embedding is obtained
by the same technique.

Finally, to prove (iii), let us and v; be two positive functions satisfies (1).
The real interpolation see [10, Section 2.4.2] yields

Us v _ nr
(FPO»QO’FPI»Ql)Q,p qu ?
where
1_0 ,1-0 1_ 0 , 1-0 6,,1-0 — _
s =t o s mw T h=uy , r=0s+(1-0)t, 0<f<1

Let b inM (F”“) by duality we have be M (F v ;7,“). Remark that
(F;E’Fgga)uzg by = L?, therefore b € M (L?) = L> (M (L?) denotes the

pointwise multipliers space of L?). This completes the proof of (iii). [
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3. Proof of Theorem 1

Nnn
Let f € F;"; and g € (Bpfgo N LOO), according to the decomposition of
f - g and Proposition 1., we obtain

£ -l < 5> {memm -9}
=1

keN‘ Lp(ea)

Then we estimate respectively II} (f-g), I3 (f-g) and I3 (f-g)
in LP(¢)*)-norm.

Estimate of {II},(f - g)}keN' Since
T (f - 9) @)] < cllgll (S°F) ()
where g;’b f is defined as in Remark 1 , we derive

{me om0}

<cllglle H{%(Tk)g/?bf}kel\l‘

e

Lp(09) LP(£9)

Choosing b > n/ min(p, q), we get
“MITL (f - < 2k .
[{me 90}, b < ol [{me@ 50} L

Estimate of {II} (f - 9)}, oy - Let u € R such that

(14) max (p,n/(n/p —a)) < u < co.
We set
1 1 1
(15) —Z——i-—,aza—ﬁ—kﬁ,andﬁza—ﬁ—kﬁ.
voop o u p v pu

Then, the following inclusions hold (see [3, Section 2.3])
(16) (1 (Ly) < LP(£1) and F,% < B,

On the other hand, the Holder inequality in LP-norm yields

k+1
12 [T )], < ens @) |[Sha| 24D 279° (ms (279) 1551
J=0
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Next the Holder inequality in /P-norm and Lemma , gives

[{me MMz -9)}

<C||9|| nn | fllpa -

poo

k6N| LP(£9)

Estimate of {IL} (f - g)}keN. We first consider p > 2. Let u € R such
that p < u < oo, applying Lemma , we find

1o ) I (- 9], < 2" DD T2 (o (279) S5l (ns (279) 1S5 £1L)
Jj=k

where v, o and [ are defined in (15). Arguing as above we obtain
(17)

||{770 MG (f g }keN

<el[{2t*s 22 T (s (277) [IS5gll,)

x (15 (277) IIS; f|| ) }keN”ep-

er(Lv)
Thanks to the Holder inequality, the right hand of (17 ) is bounded by
llg]] nn Il f ||Bnﬁ . Thus we conclude the desired estimate by (16).
B, o u,p
For the case p < 2, let u € R" satisfying p < u < n/max(0,n —n/p),

then we set 1 = % +1 (v<1),ando=s— 5+ 4. Using Lemma and Hélder’s
inequality we get

1o (27F) |1 (f - 9)]],

IN

116 2 Zz” D) |50l 1S541,

IN

CQSup (nn 277) [|S;9]| >2k“22 (0o 277) 1S5 £11.,) »

j=k

where p = s — % + o and p=s— % +n > 0 which allow us to apply Lemma ,
therefore
<cligh s 111l -

ep(Lv)
poo

|2 (- 9) by

Since 0 > 5, v < p and F) — B, "y we conclude by using the embed-

dings in (16). ]
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4. Proof of Theorem 2
We set h(xz) = 9(%)¢ () where 9 (z) > 0, supp? C {z = (21,2') €

||

Sl < —1/2), W (w) = 0 if |z| < (1/3), Y (r) =1if (1/2) < || <1 and

0 < () < 1. It is well-known that h € Bf « (see [5, Proposition 4.3]), then by
Theorem , h € M(F,%) for 0 < a < (n/p). Let

0(6) = F1-X(),

where £ = (¢1,¢') € R x R"™ and X € D which equals 1 near the origin. Since
‘8?9(5) | <c(l+ ]fl)*k’“ we have

Q(,D) GOP1070,

and, we can verify that
o(-.D)h ¢ M(F,5).

Indeed, o (-, D) h = Rih— A% R1h where R; is the Riesz transform which
is bounded on L2, (see [9, p. 56] or [2, p. 86]). Thus, we get

A% Rihllo < IAll2 ]l -
Using the identity
(13) | fe@d=c [ End@a (e

for x,y € R™ \ {0}, such that 1 > (|z|/2) and y1 < (—|y|/2) (i.e. 1 —y1 >
% |x —y|), then

Rih(z) = cplim @=v) 1, (y) dy

e—0 lz—y|>e |z—y]

> o[ o)y Loglal.
lz|<|y[<1

and we deduce the result by Proposition 3/(iii). It remains to prove (18). It
suffices to see that the locally integrable function f (&) = &F/[£|* (for k =
1,2,... and 0 < a < n + 2k), is the Fourier transform in D', of the function
Frf(x) = b/ |a["7%T2% | (cf. see [9, ch. 3/(31) p. 73]). Indeed, since the
function (i&;)" e~ 2t¢%is the Fourier transform of (t/2m)> or (e_%mz), then

(2r) "% th+3 / (~a)* e 21 § (@) da = /R (&) el 6 (€) de,
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for any ¢ € D. We multiply both sides of this equality by t_l_%, we integrate
on t in [0,00) and using the fact that

o0
n—a 1 —Lt|pl2 k+(n—a)/2 _
/ 15t rh—1 ,— 5] dt:ﬁﬂﬂ_wr(kJrnza),
0

® e —L¢? 20 a
0 t 2e 2t dt:Wr(ﬁ),

then we conclude the desired conclusion by Fubini’s theorem.
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