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New Conception and Algorithm of Allocation
Mapping for Processor Arrays Implemented into

Multi—Context FPGA Devices !

Piotr Ratuszniak 2 and Oleg Maslennikow 3

In the paper authors present new concept of realization of algorithms with regu-
lar graphs of information dependencies, in form of systolic arrays realized in multi-context
program- mable devices. Processor matrix efficiency depends on both allocation and sched-
ule mapping. Authors use evolution algorithms and constraint programming to determine
allocation mapping and optimize runtime of set algorithm. Authors compared the runtime of
Cholesky’s algorithm for banded matrices in which the new concept has been used with ones
obtained by use of linear and non-linear allocation mapping for processor matrix.

1. Introduction

Modern VLSI technology allows placing a whole SoC (System-on-Chip)
in one programmable unit. Some of the SoC system modules (especially mod-
ules containing specialized processing units) should be created as programmable
FPGA units, which the main advantage is the possibility of fast and multiple
changes in its internal structure in order to make the processing most efficient.
Additionaly realization of SoC systems (or its fragments) in form of FPGA units
allows to lower power drain, because highly efficient calculations can be real-
ized through parallel hardware processing, and appropriate reconfigu-  ration
can be used dynamically in the background during calculations [1]. One of the
models of parallel architectures created for linear algebra algorithms, is a par-
allel architecture model with a virtual topology. FPGA systems are effective
hardware platforms for realization of such architectures also under efficiency
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and price criteria. However to achieve high efficiency, including high operating
frequency a rule of locality of connections must be fulfilled. Examples of paral-
lel architectures with regular network of local connections are processor matrix
architectures [2], in which a calculations are realized in systolic path [3,4,5].

In this paper we propose a new concept of parallel processor architecture,
similar to the systolic processor array, in which every processing element realizes
the amount of operations corresponding to only one vertex of algorithm depen-
dence graph realized by the unit. Realization of this concept allows total elim-
ination of the control unit in a parallel processor and limiting the runtime of
the algorithm to the value compared with the value computed through critical
path of its information dependency graph. In order to optimize runtime and to
automate the design process of new architectures a constraint programming was
used, and also an evolutionary program was written in which designs appropriate
allocation mapping of input algorithm graph into parallel processor architecture
(through decomposition of the graph mentioned above into subgraphs). Evolu-
tionary algorithm operate based on given volume of the target FPGA unit and
hardware complexity of each graphs vertex (expressed by amount of CLB blocks
of FPGA unit), the main criteria of optimization is the minimal runtime of the
given algorithm corresponding to the shortest (critical) path in all graph. De-
signed architecture is meant for realization in a multi-context programmable
unit, which concept was used by different research teams, including polish ones
[6-8]. Advantages of the designed concept and the mapping algorithm are shown
for the parallel processor project which decomposes LLT symmetrical matrices
based on Cholesky’s algorithm.

An important issue in the process of designing SoC systems is efficiency
and quality of this process, because of this the use of standard IP—Core [9]
components is advised. Because of that, during designing of the said algorithm
we put special attention to the possibility of full automation and assumed strict
boundaries for the runtime. We worked on our own IP-Core generator (project
JGEN]I19]), which will be used for both logical and structural level designing of
specialized parallel architectures, in which the described algorithm is used.

2. New concept of allocation mapping of regular algorithms
implemented into multi-context FPGA devices

Multi-context FPGA unit contains [6-8] a certain number p of identi-
cal configuration memory CM blocks, in which each p different configurations
(contexts) could be stored. However in every moment of time there can be only
one context active (one CM block). Such CM organization allows for fast changes
of the unit’s configuration (in ideal form during one cycle of system clock), which
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in turn means that the configuration could be changed while the system is op-
erational. The amount of cycles necessary for changes in unit configuration is
relatively small when compared to the cycles required for realization of the said
algorithm, that is because in the following part of the paper it was deliberately
overlooked. The mentioned possibilities allow for another, more effective way
of digital systems implementation in such FPGA units. The structure of the
whole complex system can be divided for the p substructures of similar hardware
complexity in such a way, that the calculation results given by a substructure
“1” would be used as input data in substructure “i4+1”. In such case the system
can be designed in much smaller (up to p times) p-context FPGA unit, where
in the single CM blocks configurations of every substructure of the system are
stored. During calculations, calling of an appropriate substructures is realized
by activation of appropriate CM blocks [10]. Realization efficiency of the whole
system in a multi-context unit depends on the way of partitioning the structure
of the whole system into certain number of substructures, and the way of de-
signing of these substructures which should ensure similarity of their hardware
complexity while maintaining assumed efficiency of the unit. Existing methods
of decomposition of the system’s structure into s substructures [1, 6], work on
the VHDL description level and are not designed for dividing the architecture
of parallel units. However in paper [1] it is proposed to design projects of s sub-
structures based on algorithm information dependence graph which the unit will
be realizing instead of trying to decompose the existing project of the parallel
unit. This idea was realized in [8] by forming of 2-stage method of acquiring
substructures of parallel unit with processor matrix architecture. Sadly, a draw-
back of the described method is that its first stage is realized heuristically, which
does not allow automation. Besides that, acquisition of the processor matrix ar-
chitectures is based on linear and non-linear space-time mapping, which does
not guarantee the required unit efficiency. Relating to this, we propose the new
concept of parallel unit architecture, in which every processing unit (EP) real-
izes only one vertex of the algorithm’s graph. In this case of use of multi-context
FPGA units, it allows for total elimination of the control unit and lines that
pass control signals in parallel unit. It also minimizes algorithm runtime to that
of the approaching minimal possible value (critical graph path).

The information dependency graph’s decomposition for multi-context
programmable units (Figure 1) has several limits considering space mapping.
First limits are conditions of locality and causality, it means that every operation
needed to perform current operation must be executed directly in the previous
of current context of the programmable unit. In practice it means acquiring
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Figure 1: Cholesky algorithm information dependency graph for band matrix
(matrix size N=6, matrix band width L=4) and decomposition for 3 contexts
FPGA Devices

arguments for current operation in the same or previous context (causality) and
the data written in the memory for the time of changing of the unit’s context
must be remembered only for the next configuration (locality). Another limit
of space mapping is the maximal size of single context (analogy to BPP — bin
packing problem). The parameters for the proposed method will be as follows:
maximal context size, estimated size of the structures which realize all kinds of
operations occurring in said algorithm (measured in CLB) in the chosen arith-
metic. In methods used for acquiring parallel architectures described in papers
[5, 8] the designer defines allocation and schedule mapping function in linear
or non-linear form (usually in form of vector) which does not allow for total
automation of the process. The proposed method generates allocation mapping
automatically, and also attributes the smallest possible number of clock cycle
for singular operations (of this mapping) in which these operations will be exe-
cuted. The main criteria of optimization is the minimal number of clock cycles
needed for realization of set linear algebra algorithm in every context of the pro-
grammable unit for the different space mapping, assuming that all graph nodes
are realized in single clock or the virtual cycle.
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3. Genetic algorithm and constraint programming for graph
partitioning

There are many algorithms designed for partitioning and vertex coloring
[11], which also use genetic algorithms [12, 13]. It is difficult however to find a
method for directed graphs with weights for nodes which would be the merge of
the bin packing problem algorithm with the scheduling algorithm, and that this
would fulfill earlier assumptions of volume, causality and locality. The method
of information dependency graph decomposition, described in paper [8] does not
allow for its automation, and additionally in the case of the use of linear or non-
linear functions of allocation mapping it is difficult to achieve a set structure
or parallel architecture. Some methods use graph transformations specific to
the given algorithm, which allow bigger influence on the shape of the parallel
structure and on the parameters of the processing elements, but these trans-
formations cannot be generalized for different algorithms. For these reasons we
decided to use the genetic algorithm, which allows define the structure of the
designed parallel architectures and allows for full automation of the design and
the optimization process. In the case of multi-context FPGA unit architectures
a number of contexts, or a maximum size of substructure depending on a set
unit model can be set. After the defining of the maximum size of substruc-
ture and hardware complexity of each kind of operations in the algorithm, the
essential number of contexts can be calculated automatically. In practice a min-
imal number of contexts is calculated with an assumed margin, because during
the projects syntheses for given FPGA unit, it is difficult to use all available
program- ming space.

First trials of the use of genetic algorithms for partitioning information
dependency graphs for linear algebra algorithms we presented in paper [10],
however after further investigations a decomposition of information dependency
graphs for bigger matrices of chosen linear algebra algorithms (for graphs with
nodes number greater than 500) has proved to be problematic while using stan-
dard recombination operators (mutation and crossover). Some genetic algo-
rithms used for the different decomposition tasks and other operations on graphs
(including operations with constraints) with different modifications of genetics
operators are shown in paper [14], however it is stressed, that they were used
for graphs of sizes limited to 100 or 900. In this paper we also propose certain
modifications of the genetic operators and use of constraint programming for the
generation of initial population, and present results of graph division containing
even up to 2500 nodes, acquired in estimated time not exceeding 15min. To
accelerate the runtime of the genetic algorithm (to get more generations in a set
amount of time) we decided to make it parallel. Many methods of parallelizing
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Figure 2: Parallel implementation of genetic algorithm

of the genetic calculations were considered, for example supercomputers, GPU
processors, GRID network, but in the end we created their own dispersed appli-
cation of one client - multiple servers type designed for running on popular PC
class computers [15]. In this application a model of genetic algorithm (similar
to Island model) [16] has been used. A similar rule of independent populations
was used, but there is a slightly different way of exchanging the best solution
between clients and multiply servers. The copy of the best individual replaces
the worst individual in all island. This exchange is realized in amount of time
given by the user.

Parallel implementation increases the number of calculated generations
and also allows for use of different modifications of the algorithm on different
servers at the same time.

4. Proposed genetic algorithm

A. Data representation

In the proposed algorithm we decided for coding the division groups with
the use of numbers. Divisions are represented as integer chains of n-dimension,
where n corresponds to the number of information dependency graphs nodes,
and the range of numbers is limited from 0 to m-1, where m is the number
of contexts of the programmable unit. Similar way of division graph coding is
presented in paper [17]. At Figure 3 is an exemplary division and its representa-
tion for graph and contexts from Figure 1 is shown.

B. Generating of initial population
Two methods of generating the initial population were implemented in
the program. In the first method values were generated in a random way (ran-
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Figure 3: Group coding with use of numbers for figure 1 graph

dom assignment of graph nodes to contexts), and in the second one the initial
population was generated by using constraint programming. The use of con-
straint programming was meant to generate permissible solutions in the short-
est time frame, those solutions could be later optimized with use of the genetic
algorithm. It allowed for shortening of the time in which the program was calcu-
lating permissible solutions. Exact results comparing the use of both methods
are shown in the following part of the paper. The whole program was created
using .NET Remoting technology on Microsoft .NET platform and that is why
in the constraint programming module we decided to use a library designed by
prof. Andy Chun’s team named NSolver [18]. The module which generates
the initial population with use of constraint programming finished its run after
the experimentally chosen duration of 2 min or after generating a whole initial
population of 100 individuals.

We investigated the use of two heuristics used for searching of the solu-
tion space: “Random” and “MinSizeMinValue” heuristics. The second one was
based on searching through the solution space from the smallest values for small-
est indexes in the chromosome. Through experiments it was concluded, that a
“Random” heuristic gives better results for smaller graphs (with nodes number
less than 200) and heuristic “MinSizeMinValue” allows for faster acquisition of
solutions for larger graphs. There was a problem for finding solutions for con-
texts number greater than 5, which could result from the binary representa-
tion of all graph nodes in all contexts, because of the limited number of op-
erations on array variables. We conduct intensive research on the changes of
representa-  tion of variables in the constraint programming module, which
probably would allow in the near future for acquiring solutions for the number
of contexts greater than 5.

C. Recombination operators

In the presented genetic algorithm a standard one point crossover opera-
tor with fixed probability was used, the value of probability was experimentally
chosen at 0.2 level. Bigger influence on convergence had modifications intro-
duced to mutation operator. At first a mutation with a fixed probability was
used, which caused a different number of mutations for different graph sizes.
With the constraints described earlier it caused a long time of coming to per-
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missible solutions for larger graphs (with node number greater than 500). The
first introduced standard modification was setting the probability of the muta-
tion of a single position in chromosome in accordance to the size of the graph,
so that the small number of genes would mutate (the change of assignment of
context to the small number of nodes). Another change was the introduction of
variable probability of mutation in accordance with the runtime of the algorithm
[14]. The program started with such a probability of mutation, so that there
would be a change in only one position per chromosome. Next, for following
periods of time, if there was not an improvement of the best solution, the prob-
ability of mutation was raised in such way, that one more gene would change.
The next modification included in mutation operator was limitation of range of
values that a gene in chromosome could accept. The range of possible values
for a given gene in chromosome was calculated basing on linear projection with
a margin of (-1, +1), so called “window”. The width of the “window” could
rise with the runtime of the algorithm if there was not an improvement in the
best solution. Described modifications allowed for much faster acquisition of
permissible solutions (graph division that fulfilled constraints described earlier).

D. Objective function

The evolutionary algorithm work consists of two stages: the stage of
finding the permissible solution and the latter stage of optimization. At stage
one, for all individuals a number of unfulfilled rules of locality and causality
is calculated, and so the allocation mapping is determined. Objective function
F at this stage is dependant on locality, causality and overflow errors and is
calculated according by equation (1),

CN—OE+ENGS—CL

(1) F1=1+ENQREN — SE) + EN= a5

where:
EN - edge number in all graph,
SE - space projection errors, locality an casuality errors,
CN - contexts number of the multi-context FPGA device,
OF - context overflow errors, number of overflow contexts,
GS - graph size (CLB), hardware size of maximum parallel architecture assign
for realization all operation in graph,
CL - context layout (CLB), maximum different between contexts size.

Based on experiments we also made objective function at this stage de-
pendent on equal arrangement of processing elements in all contexts (in CLB),
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which caused faster minimizing of overflow errors. During second stage of the
algorithm, after finding the permissible solution, the value of the objective func-
tion is calculated according to one of two equations depending on the permissi-
bility of the individual. For the individuals that do not fulfill constraints (non-
permissible) a function that gives much lower values was assigned (similarly to
the penalty function), and for the individuals that fulfill the constraints objec-
tive function additionally is dependant on the number of clock cycles needed to
realize all contexts (whole graph).

In the second stage of genetic algorithm run, the value of objective func-
tion for individuals that fulfill the constraints (allocation mapping without local-
ity, direction errors and contexts overflow) is calculated accordingly to equation

(2),

(2) F2=3EN?>+CN*EN +2EN - T

where T' - tacts number(schedule mapping).

For the individuals that do not fulfill the constraints (non-permissible so-
lutions) the value of the objective function is calculated accordingly to equation

(3).

SE OF
®) FS=3-3pn ~on
Values of F3 function are always smaller than values of F2 function, which
is an equivalent of the penalty function [17] for the individuals that do not fulfill
the constraints.

E. Selection operator

In the presented algorithm, an elitist selection model was used in order
to pass the best solution to the next population. In the developed model of
the parallel genetic algorithm the best solutions are passed to all Island pop-
ulations. Elite selection model ensures “keeping”, of the best solution found,
that fulfills all constraints (causality, locality and context size), which during the
mutation process could be easily changed into solutions that do not fulfill all
the constraints (non-permissible solutions). Elitist selection allows for keeping
the best solutions, which has a strong influence in case of strict time boundaries
for finding permissible solution.
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F. Genetic algorithm termination criteria

Because of the targeted use of the presented method in the IPCore gener-
ator, which will be used for designing the parallel architectures for linear algebra
algorithms (project JGEN [19]), strict time limits for a runtime were set. The
maximal runtime of the algorithm was limited to 15min. The termination of
calculations also occurred if there was not an improvement of the best solution
for a time period longer than 5 min.
All calculatons were performed on PC class computer - Dell OptiPlex760 with
ntel Core 2 Quad 2,2 GHz processor,4GB RAM and Microsoft Windws Vista
Enterprise operating system.

5. Example. Cholesky LLT decomposition algorithm

This designed algorithm was used for the partition of information depen-
dency graph for Cholesky’s decomposition algorithm of banded matrices with
band width of 3, 5 and 7, which are frequently occurring in practical numerical
computations. The basic parameter of optimization was the number of clock
cycles needed for realization of operations in all contexts of FPGA unit. In
tables 1, 2 and 3 indispensable numbers of tacts acquired with linear (4) and
non-linear (5) mapping for banded matrices received according to the method
[8] are presented.

In these tables for comparison are presented results acquired with use
of the proposed algorithm using evolutionary calculations with random initial
population and initial population generated with use of constraint programming.

Based on results presented in table 1, one can conclude that results ac-
quired with the use of the proposed algorithm are better than results acquired
in paper [8]. It could also be concluded, that these are optimal results, because
they are the same as the results for the critical path of the graph (minimal
number of clock cycles with maximally parallel realization). For this relatively
small space of possible combinations (max. NC, Nnodes number=600, C-con-
texts number=7), algorithm has always finished its run before the 15min limit,
after not being able to find a better solution in 5min. Results of graph decompo-
sition for a matrix with band width equal to 5 are shown in table 2. Also in
this case with the use of the proposed algorithm acquired results were better
than those acquired with use of method [8] and close to the optimal values (crit-
ical graph path). In some cases generation of the initial population with the
use of constraint programming caused acquiring of better solutions (for exam-
ple for matrix size 40, 50) in comparison with random initial population.There
were also cases of getting a worse solution (for example for matrix size 30, 60),
probably because the acquired initial solution shifted search area to the local
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minimum, from which the algorithm did not get out in a given time period.
It should be stressed however, that constraint programming allowed for getting
the permissible results in a shorter time, which was described in detail in the
following part of the paper.

The next research objects were graphs for Cholesky’s matrix with band
width = 7. Results for decomposition of those graphs are shown in table 3.

Also in this case a significant advantage of the proposed algorithm over
the linear and nonlinear space mapping described in [8] is clearly visible. It
should be noticed, that the division was executed even for graphs as large as
approximately 2700 nodes, and still the runtime was less than 15min. Based
on results shown in tables 1, 2, 3 one can see, that with the increase of the
matrix size and band width, and what corresponds the number of nodes in the
graph, resulting mapping required more clock cycles to realize whole Choleksy’s
algorithm. But still the results were close to their optimal values (based on
critical path).

Another area of research was the influence of the initial population gene-
rated with use of constraint programming on the time in which a permissible
solution was found by genetic algorithm for a given problem. During research
data considering the best solutions were gathered after 1, 2 and 3min from
the beginning of calculations. The results of the comparison of the algorithm
with random and generated with use of constraint programming population are
presented in table 4.

Based on the results show in table 4, one can conclude that with the use
of very strict time limits results acquired with use of constraint programming for
the generation of the initial population are usually better, but this advantage
lowers with the prolongation of computation runtime.

6. Conclusions and future tasks

Based on conducted research, one can conclude, that genetic algorithms
might be effectively used for the decomposition of graphs of chosen algorithms
meant for realization in a multi-context programmable units. We managed to
perform such modifications of the algorithm, that with the tight time limits
(15min) it was possible to decompose graphs of even few thousand nodes. Pro-
posed method gives much better results, in terms of shorter realization time of
given algorithm, than methods described in [8], and can be totally automated.
During future research we intend to modify the data representation and con-
straints construction in the initial population generator module, so that there
would be more initially permissible solutions for a larger number of contexts.
We intend to compare the our with the other hybrid genetic algorithms.
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