Mathematica Balkanica

New Series Vol. 25, 2011, Fasc. 1-2

Weighted Approximation by a Class of Bernstein-Type Operators

Parvan E. Parvanov

Presented by Bl. Sendov

Direct theorem in terms of the weighted K-functional for the uniform weighted approximation errors of a class of Bernstein-type operators are obtained for functions from C(w)[0,1] with weight of the form $x^{\gamma_0}(1-x)^{\gamma_1}$ for $\gamma_0, \gamma_1 \in [-1,0]$.

AMS classification: 41A36, 41A10, 41A25, 41A17.

Keywords: Bernstein-type operator, Direct theorem, K-functional.

1. Introduction

The class of Bernstein-type operators discussed in this paper are given for natural n by

$$\tilde{B}_n(f,x) = \sum_{k=0}^{n} b_{n,k}(f) P_{n,k}(x),$$

where $P_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}$ and the functionals $b_{n,k}(f)$ satisfy the following conditions

(1.1)
$$b_{n,0}(f) = f(0) \text{ and } b_{n,n}(f) = f(1);$$

(1.2)
$$b_{n,k}(f)$$
 are linear and positive;

(1.3)
$$\tilde{B}_n(e_i, x) = e_i(x) \text{ for i=0 and i=1};$$

(1.4)
$$\tilde{B}_n(e_2, x) = e_2(x) + \alpha(n)x(1-x).$$

Here e_i (for i = 0, 1, 2) are the functions $e_i(x) = x^i$.

The functional $b_{n,k}(f)$ for $1 \le k \le n-1$ in the operators \tilde{B}_n takes place of $f\left(\frac{k}{n}\right)$ in the classical Bernstein operators [4].

(

Denote the weight function by

(1.5)
$$w(x) = w(\gamma_0, \gamma_1; x) = x^{\gamma_0} (1 - x)^{\gamma_1} \text{ for } x \in (0, 1) \text{ and real } \gamma_0, \gamma_1.$$

Our main results will concern the values of the powers γ_0, γ_1 in the range [-1,0]. By $\varphi(x) = x(1-x)$ we denote the other weight which is naturally connected with the second derivatives of operators and the error for the function $e_2(x)$. By $D = \frac{d}{dx}$ we denote the first derivative operator.

Let $C(0,\overline{1})$ be the space of all continuous functions bounded on (0,1) and let $C(w)(0,1)=\{f:wf\in C(0,1)\}$. The norm in C(w)(0,1) is given by $\|f\|_{C(w)(0,1)}=\sup_{x\in(0,1)}|w(x)f(x)|$. The cases of (weighted) continuity at the end-points of the domain are denoted by [0,1] on the place of (0,1), namely

$$C(w)[0,1] = \left\{ f \in C(w)(0,1) : \exists \lim_{x \to 0+0} w(x)f(x) \text{ and } \lim_{x \to 1-0} w(x)f(x) \right\},$$

$$C_0(w)[0,1] = \left\{ f \in C(w)[0,1] : \lim_{x \to 0+0} w(x)f(x) = \lim_{x \to 1-0} w(x)f(x) = 0 \right\}.$$

The space of smooth functions considered in the paper is given by

$$W^{2}(w\varphi)(0,1) = \left\{ g, g' \in AC_{loc}(0,1) : w\varphi D^{2}g \in L_{\infty}(0,1) \right\},\,$$

where $AC_{loc}(0,1)$ consists of the functions which are absolutely continuous in [a,b] for every $[a,b] \subset (0,1)$ and $L_{\infty}(0,1)$ denotes the Lebesgue measurable and essentially bounded in (0,1) functions.

In this paper we estimate the rate of weighted approximation by \tilde{B}_n for functions in $C_0(w)[0,1] + \pi_1$, where π_1 is the set of all algebraical polynomials of degree 1. This space serves as a natural generalization on C[0,1] for the unweighted case because $C[0,1] = C_0[0,1] + \pi_1$.

The weighted approximation error will be compared with the K-functional which for every $f \in C(w)(0,1)$ and t > 0 is defined by

(1.6)
$$K_w(f,t) = \inf \left\{ \|w(f-g)\| + t \|w\varphi D^2 g\| : g \in W^2(w\varphi)(0,1) \right\}.$$

Our main result is a direct inequality. It is a generalization of the result in [3], which treats the case w = 1 and Goodman-Sharma operator [1] and [2].

Theorem 1.1. Let w be given by (1.5) with $\gamma_0, \gamma_1 \in [-1, 0]$. Then for every $f \in C_0(w)[0, 1] + \pi_1$ and every $n \in \mathbb{N}$ we have

$$||w(\tilde{B}_n f - f)|| \le 2K_w\left(f, \frac{\alpha(n)}{2}\right)$$

Some remarks:

- (1.) Both sides of Theorem 1.1. do not change if f is replaced by f q for any $q \in \pi_1$. Hence, it is enough to prove Theorem 1.1. for functions $f \in C_0(w)[0,1]$.
- (2.) Functions from $C(w)[0,1]\setminus (C_0(w)[0,1]+\pi_1)$ are not considered in Theorem
- 1.1. because neither $||w(f U_n f)|| \to 0$ nor $K_w(f, n^{-1}) \to 0$ when $n \to \infty$ for such functions.
- (3.) We consider $\gamma_0, \gamma_1 \geq -1$ because functions $\tilde{B}_n(f) \in C_0(w)[0,1]$ with $\gamma_0, \gamma_1 = -1$.
- (4.) We assume $\lim_{n\to\infty} \alpha(n) = 0$ because of the same reasons as in (2.).

2. Main result

We first prove four lemmas concerning any operator L which is satisfying the following two conditions:

$$(2.1)$$
 L is linear and positive operator;

(2.2)
$$L(1,x) = 1$$
, $L(t,x) = x$;

As a corollary from (2.1) and (2.1) we obtain the following property

$$(2.3) f \le Lf for convex function f.$$

Lemma 2.1. For every function $f \in C_0(w)[0,1]$ we have $||wL(f)|| \le ||wf||$, i.e. the norm of the operator is 1.

Proof.

Let we mention that function $(w)^{-1}$ is concave and then from (2.3)) we have $(w)^{-1} \ge L((w)^{-1})$. The last one, (2.1) and (2.2) give

$$||wL(f)|| = ||wL(wf(w)^{-1})||$$

$$\leq ||wf|| ||wL((w)^{-1})||$$

$$\leq ||wf|| ||w(w)^{-1}|| = ||wf||.$$

We define

$$K_y(x) \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} y(x-1) & 0 \le y \le x \le 1; \\ x(y-1) & 0 \le x \le y \le 1, \end{array} \right.$$

Lemma 2.2. For every $f \in W^2(w\varphi)$

$$L(f,x) - f(x) = \int_0^1 (L(K_y,x) - K_y(x)) f''(y) dy.$$

The above statement is Lemma 3.1 from [3] .

We define
$$f_w(x) = x f_0(x) + (1-x) f_1(x)$$
 where $f_0(x) = -\int_x^1 \frac{dy}{y^{1+\gamma_0} (1-y)^{\gamma_1}}$ and $f_1(x) = -\int_0^x \frac{dy}{y^{\gamma_0} (1-y)^{1+\gamma_1}}$.

Lemma 2.3. Let $f \in W^2(w\varphi)$, then we have

$$||w(Lf - f)|| \le ||w\varphi f''|| ||w(Lf_w - f_w)||.$$

Proof. The function $K_y(x)$ is convex and nonpositive. Then from conditions 2.1 and 2.3 it follows that $L(K_y, x) - K_y(x) \ge 0$.

From Lemma 2.2. we have

$$L(f,x) - f(x) = \int_0^1 \frac{L(K_y,x) - K_y(x)}{\varphi(y)} f''(y)\varphi(y)dy.$$

Taking a norm in the above equality we obtain

$$||w(Lf - f)|| = \left| \left| w \int_0^1 \frac{L(K_y) - K_y}{w(y)\varphi(y)} w(y) f''(y)\varphi(y) dy \right| \right|$$

$$(2.4) \quad \leq ||w\varphi f''|| \max_{x \in [0,1]} \left| w(x) \left(L \left(\int_0^1 \frac{K_y(x)}{w(y)\varphi(y)} dy, x \right) - \int_0^1 \frac{K_y(x)}{w(y)\varphi(y)} dy \right) \right|.$$

In the right hand side of the above inequality we have the function

$$(2.5) \qquad \int_{0}^{1} \frac{K_{y}(x)}{w(y)\varphi(y)} dy = \int_{0}^{x} \frac{y(x-1)}{y^{1+\gamma_{0}}(1-y)^{1+\gamma_{1}}} dy + \int_{x}^{1} \frac{x(y-1)}{y^{1+\gamma_{0}}(1-y)^{1+\gamma_{1}}} dy$$

$$= -(1-x) \int_{0}^{x} \frac{dy}{y^{\gamma_{0}}(1-y)^{1+\gamma_{1}}} dy - x \int_{x}^{1} \frac{dy}{y^{1+\gamma_{0}}(1-y)^{\gamma_{1}}} dy$$

$$= xf_{0}(x) + (1-x)f_{1}(x)$$

$$= f_{w}(x).$$

Replacing the result of 2.5 in 2.4 we obtain

$$||w(Lf - f)|| \le ||w\varphi f''|| \max_{x \in [0,1]} |w(x) (L(f_w, x) - f_w(x))|$$

= $||w\varphi f''|| ||w(Lf_w - f_w)||$.

Lemma 2.4.

$$||w(Lf_w - f_w)|| \le ||\varphi^{-1}(\cdot)L((t - \cdot)^2, \cdot)||.$$

Proof. From the definition of f_w , 2.1 and 2.2 we have

$$(2.6) 0 \leq L(f_w, x) - f_w(x)$$

$$= L(tf_1(t) + (1-t)f_0(t), x) - L(1-t, x)f_0(x) - L(t, x)f_1(x)$$

$$= L((1-t)(f_0(t) - f_0(x)), x) + L(t(f_1(t) - f_1(x)), x).$$

Expanding for i = 0, 1 functions $f_i(x + t - x)$ by Taylor's formula:

$$f_0(t) = f_0(x) - \frac{t - x}{x^{\gamma_0} (1 - x)^{1 + \gamma_1}} + \int_x^t (t - u) f_0''(u) du;$$

$$f_1(t) = f_1(x) + \frac{t - x}{x^{1 + \gamma_0} (1 - x)^{\gamma_1}} + \int_x^t (t - u) f_1''(u) du$$

and using (from definitions of functions) that $f_0''(u) < 0$ and $f_1''(u) < 0$ we obtain

$$(2.7) (1-t)(f_0(t)-f_0(x)) \le -\frac{(1-t)(t-x)}{x^{\gamma_0}(1-x)^{1+\gamma_1}};$$

(2.8)
$$t(f_1(t) - f_1(x)) \le \frac{t(t-x)}{x^{1+\gamma_0}(1-x)^{\gamma_1}}.$$

Applying the results of 2.7 and 2.8 in 2.6 we have

$$0 \le w(x) \left(L(f_w, x) - f_w(x) \right)$$

$$\le w(x) L \left(-\frac{(1-t)(t-x)}{x^{\gamma_0} (1-x)^{1+\gamma_1}} + \frac{t(t-x)}{x^{1+\gamma_0} (1-x)^{\gamma_1}}, x \right)$$

$$= \varphi^{-1}(x) L \left((t-x)^2, x \right).$$

Taking a norm in the above inequality we prove Lemma 2.4.

Recapitulating results from above four lemmas we obtain

Theorem 2.1. (Jackson-type inequality). Let L satisfies conditions 2.1 and 2.2. Then for every function $f \in W^2(w\varphi)$ we have

$$\|w(Lf-f)\| \leq \|w\varphi f^{''}\| \|\varphi^{-1}(\cdot)L\left((t-\cdot)^2,\cdot\right)\|.$$

Let we mention that 1.2 and 1.3 are the properties 2.1 and 2.2 for operators \tilde{B}_n . From 1.3 and 1.4 it follows that

$$\frac{1}{\varphi(x)}\tilde{B}_n((t-x)^2,x) = \frac{\tilde{B}_n(t^2,x) - x^2}{\varphi(x)} = \alpha(n).$$

Above result and Theorem 2.1. give

Theorem 2.2. For every function $f \in W^2(w\varphi)$ we have

$$||w(\tilde{B}_n f - f)|| \le \alpha(n) ||w\varphi f''||.$$

Theorem 2.2. we use in the proof of Theorem 1.1.

Proof of Theorem 1.1. Let g is an arbitrary function in $W^2(w\varphi)$. Then

$$||w(\tilde{B}_n f - f)|| \le ||w(\tilde{B}_n f - \tilde{B}_n g)|| + ||w(\tilde{B}_n g - g)|| + ||w(g - f)||.$$

From Lemma 2.1. and Theorem 2.2. we get

$$||w(\tilde{B}_n f - f)|| \le 2||w(f - g)|| + \alpha(n)||w\varphi g''|| \le 2\left(||w(f - g)|| + \frac{\alpha(n)}{2}||w\varphi g''||\right).$$

Taking an infimum on all $g \in W^2(w\varphi)$ in the above inequality we prove Theorem 1.1.

References

- [1] T. N. T. Goodman and A. Sharma, A Bernstein-type Operator on the Simplex. Mathematica Balkanica (new series), 5,2, 1991, 129-145.
- [2] T. N. T. Goodman and A. Sharma, A Modified Bernstein Shoenberg Operator. Proc. of Conference on Constructive Theory of Functions, Varna'87, Publ. House of Bulg. Acad. of Sci., Sofia, 1987, 166-173.
- [3] P. E. Parvanov and B. D. Popov, The Limit Case of Bernstein's Operators with Jacobi-weights. Mathematica Balkanica (new series), 8, 1994, 165-177.
- [4] G. G. Lorentz, Bernstein Polinonials. Mathematical Expositions, 8, University of Toronto Press, (1953).

Dept. of Mathematics and Informatics University of Sofia 5 James Bourchier Blvd. 1164 Sofia, Bulgaria

E-mail: pparvan@fmi.uni-sofia.bg

Received 03.03.2010