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Direct theorem in terms of the weighted K-functional for the uniform weighted approx-
imation errors of a class of Bernstein-type operators are obtained for functions from C(w)[0, 1]
with weight of the form (1 — z)” for v0,71 € [—1,0].

AMS classification: 41A36, 41A10, 41A25, 41A17.

Keywords: Bernstein-type operator, Direct theorem, K -functional.

1. Introduction

The class of Bernstein-type operators discussed in this paper are given
for natural n by

Bu(f,2) =) bup(f)Pai(2),
k=0

Where P, (z) = Z) z¥(1 — 2)"* and the functionals b, x(f) satisfy the fol-
lOwing conditions

(L.1) bn,o(f) = f(0) and bnn(f) = £(1);

(1.2) bnk(f) are linear and positive;

(1.3) By (ei,z) = ei(z) for i=0 and i=1;

(1.4) Bn(e2, ) = ea(z) + a(n)z(1 — z).
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Here e; (for i = 0, 1, 2) are the functions e;(z) = z*.

The functional b, (f) for 1 < k < n —1 in the operators B,, takes place
of f (£) in the classical Bernstein operators [4].

Denote the weight function by

(1.5) w(z) = w(yo,v1;z) = 27°(1 — )™ for z € (0,1) and real o, 7.

Our main results will concern the values of the powers 7,1 in the range
[-1,0]. By ¢(z) = z(1 — ) we denote the other weight which is naturally
connected with the second derivatives of operators and the error for the function
ex(z). By D = a% we denote the first derivative operator.

Let C(0,1) be the space of all continuous functions bounded on (0,1)
and let C(w)(0,1) = {f : wf € C(0,1)}. The norm in C(w)(0,1) is given by
lfllc@w)(0,1) = SuPze(0,1) lw(z)f(z)|. The cases of (weighted) continuity at the
end-points of the domain are denoted by [0,1] on the place of (0,1), namely

Cw)0,1] = {f € Cw)(0.1):3 lim w(x)f(z) and lim_ w(m)f(x)} ,

Cowo,1) = { € C)0.1: lim | w@)(@) = lim, w(@)f@) =0}
The space of smooth functions considered in the paper is given by
W2(wp)(0,1) = {g,9' € ACi0c(0,1) : wpD?g € Loo(0,1)},

where AC),(0,1) consists of the functions which are absolutely continuous in
[a, b] for every [a,b] C (0,1) and L(0, 1) denotes the Lebesgue measurable and
essentially bounded in (0, 1) functions.

In this paper we estimate the rate of weighted approximation by B, for
functions in Co(w)[0, 1] + 71, where m; is the set of all algebraical polynomials
of degree 1. This space serves as a natural generalization on C|0,1] for the
unweighted case because C|0, 1] = Cy[0, 1] + .

The weighted approximation error will be compared with the K-functional
which for every f € C(w)(0,1) and t > 0 is defined by

(1.6) Ky (f,t) = inf {|lw(f — )|l + tlwpD?q| : g € W3(wy)(0,1)} .
Our main result is a direct inequality. It is a generalization of the result

in [3], which treats the case w = 1 and Goodman-Sharma operator [1] and [2].

Theorem 1.1. Let w be given by (1.5) with v9,v1 € [—1,0]. Then for
every f € Co(w)[0,1] + 7 and every n € N we have

lw(Baf - DIl < 2K (£, 250)
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" Some remarks:
(1.) Both sides of Theorem 1.1. do not change if f is replaced by f — ¢ for any
q € m. Hence, it is enough to prove Theorem 1.1. for functions f € Co(w)]0, 1].
(2.) Functions from C(w)[0, 1]\(Co(w)[0, 1]+m1) are not considered in Theorem
L.1. because neither ||w(f — Unf)|| = 0 nor Ky (f,n"!) — 0 when n — oo for
such functions.
(3.) We consider 79,71 > —1 because functions B,(f) € Co(w)[0,1] with

Y0, 71 = —1.
(4.) We asume 1311 a(n) = 0 because of the same reasons as in (2.).
n—oo

2. Main result

We first prove four lemmas concerning any operator L which is
satisfying the following two conditions:

(2.1) L is linear and positive operator;
(2.2) L(l,z)=1, L(t,z) = x;

As a corollary from (2.1) and (2.1) we obtain the following property

(2.3) f < Lf for convex function f.

Lemma 2.1. For every function f € Co(w)[0,1] we have ||wL(f)| <
lwf|l, i.e. the norm of the operator is 1.

Proof.
Let we mention that function (w)™! is concave and then from (2.3)) we
have (w)™! > L ((w)™!). The last one, (2.1) and (2.2) give

lwL(HIl = lwL (wf(w)™) |
< lwflHlwL ((w)™) |
< Jlwfl lww) ™l = Jlwf-



34 Parvan E. Parvanov

We define

def [ y(zx—1) 0<Ly<z<1I
K”(”’)‘{x(y—l) 0<z<y<l,

Lemma 2.2. For every f € W2(wyp)

1
L(f,) - f(z) = /0 (LK, @) — Ky(@)) £ () dy.

The above statement is Lemma 3.1 from [3] .

We delﬁne fuw(x) = zfo(z) + (1 — z)f(z) where
dy “ dy
o) == [ g w4 6©= [ e

Lemma 2.3. Let f € W2(wy), then we have

lw(Lf = £ < lwesf” || lw(Lfw = full-

Proof. The function Ky(z) is convex and nonpositive. Then from con-
ditions 2.1 and 2.3 it follows that L(Ky,z) — Ky(z) = 0.

From Lemma 2.2. we have

(Ky,T) — Ky(z)

' (w)e(y)dy.
e(y)

1
L(f,z) - f(z) = /0 L

Taking a norm in the above equality we obtain

ity PR =Ky
s = il = [l [ EED et wroturan|

o i VK@) K@)
(24) < llwef || max ”(L( b o))y ) A w(yzﬂso(y)dy)"
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In the right hand side of the above inequality we have the function
b Ky(z) o y=-1) Yoa(y-1)
2. — gy = d d
@5) /0 wy)ey) Y /0 Yyl — y)iFn Y +/m Yo (1 — y)iFn Y

= d 1 d
=02 [ =g R “”/,,. =
= zfo(z) + (1 — z) fi(z)
= fw(m)

Replacing the result of 2.5 in 2.4 we obtain
lw(Lf = HIl < llwef Il max fw(@) (L(fur2) = ful@)]
= lwof" || lw(Lfw = fu)ll.

Lemma 2.4.

lw(Lfuw = fu)ll < N L (= )%0) |-
Proof. From the definition of f,,, 2.1 and 2.2 we have

(26) 0 < L(fw )~ fu(@)
=L (tfi(t) + (1 = t)fo(t),z) — L(1 - t,z) fo(z) — L(t, z) f1(x)
= L((1 —-1) (fo(t) — fo(2)),2) + L (t (f1(t) — f1(2)).2).
Expanding for ¢ = 0, 1 functions f;(z + t — z) by Taylor’s formula:

- t "
W + / (t — u)fo (w)du;

t—x

t
fl(t)=f1($)+m+/z (t — ) fy (u)du

fo(t) = fo(z) —

and using (from definitions of functions) that fy (u) < 0 and fi(w) < 0 we
obtain

(2.7) (1 =) (fo(t) — fo(z)) < —% ;
(2.8) t(f@t) = fi(@) < fe—5)

- m1+’70(1 —_ x)’h '
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Applying the results of 2.7 and 2.8 in 2.6 we have

0 < w(z) (L(fw, ) — fuw(z))
& i (_ (1—t)(t—z) N t(t — x) )

(1l — x)1+‘n zl+w(l —z)m 'z
= Hz)L ((t - )%, z).

Taking a norm in the above inequality we prove Lemma 2.4. =

Recapitulating results from above four lemmas we obtain

Theorem 2.1. (Jackson-type inequality). Let L satisfies conditions 2.1
and 2.2. Then for every function f € W2(wy) we have

lw(Lf = HI < lwesf I ™ L (E =) ) -

Let we mention that 1.2 and 1.3 are the properties 2.1 and 2.2 for oper-
ators B,. From 1.3 and 1.4 it follows that

1
p(z)

Bn(t?,z) — 22

Bﬂ((t - ‘r)za T) = o(2)

= a(n).
Above result and Theorem 2.1. give

Theorem 2.2. For every function f € W2(wy) we have

lw(Bnf — HIl < a(n)lwef”|.

Theorem 2.2. we use in the proof of Theorem 1.1.
Proof of Theorem 1.1. Let g is an arbitrary function in W?(wep).
Then

lw(Bnf = HIl < w(Bnf = Bag)ll + llw(Bng = 9)ll + llw(g — £)II.

From Lemma 2.1. and Theorem 2.2. we get
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(Bt = Dl < 2hs - o)+l <2 (1l - 9l + 25 1)

Taking an infimum on all g € W2(wy) in the above inequality we prove
Theorem 1.1. (]
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