New Series Vol. 25, 2011, Fasc. 1-2

Mathematical Models-Based
Software Modernization !

Neli Maneva, Kraicho Kraichev and Krassimir Manev

Announced at the Mathematics in Industry Conference,
Sofia, Bulgaria, 11-14 July 2010

Over the years of Software Engineering (SE) existence a great variety of models have
been proposed for any type of SE objects — products, processes and resources. The models
are different in volume, degree of formalism suggested as well as usefulness of the impart
information. The current paper explains briefly a general models-based approach for managing
SE activities and its application to a particular activity — software modernization. The software
artifacts involved in a modernization activity and the models representing them are described.
The results of an empirical study on the application of the proposed mathematical models in
a real-life software modernization project are discussed.

AMS Subj. Classification: 68N30

Key Words: software engineering, mathematical models, software modernization, soft-
ware evolution, software erosion

1. Introduction

Software engineering (SE) is a comparatively new research area, started
in 1969 as an answer to the so called ”software crisis”. Unifying the efforts of
people with both theoretical and software business background, this interdisci-
plinary field is a sophisticated mixture of scientific, technological and managerial
methods and approaches so as to assure an efficient process for producing high
quality software products. But according to some statistical data nowadays
only 10% of the existing and already validated (formally or empirically) scien-
tific methods are used n software development [7]. The SE scientists confess

!This work was partially supported by the Bulgarian National Science Research Fund
through contract 02-102/2009.

132 N. Maneva, Kr. Kraichev, Kr. Manev

that they often use too high level of formal methods description without clearly
defined procedures whether and how the scientific results can be transferred to
practice. The practitioner’s point of view is that the software business is in-
tensive, comprising too many and very complex projects, accomplished under
strong constraints and insufficient resources — financial, human (both in quan-
tity and qualification), time, etc. So any answer to the question how the science
and business in the SE area should collaborate in order to be mutually enriched,
will be highly appreciated by the SE community.

Searching for some science-based solutions, we developed a new approach,
called 3M - Management through Models and Metrics. The general purpose of
this approach is to try to assure continuously improved software development
cycle for a stated real-life SE problem and identified goals to be achieved.

Next section comprises the essence of the proposed 3M approach and
how it can be used for a specific SE activity, namely software modernization.
In Section 3 the content of this activity is briefly described and the results of
experimental software modernization for a real-life project have been presented.
In the Conclusion some further research and development intentions are shared.

2. The 3M approach: Management through Models and Met-
rics

The idea for intellectually manageable software projects encouraged us
to try to develop a new approach, meeting the modern management principles
with the agile SE modeling [7]. We stated that the proposed approach should
be:

e Scientific — to apply some already validated formal and rigorous methods.
We believe in the power of innovations, based on selid theories and will try
to overcome their restricted use till now, explained by scientific methods
complexity, insufficient theoretical background of software practitioners
and lack of automated tools, supporting such approaches;

e General — to be constructed in a way, assuring its feasibility for any SE
activity, identified as significant;

e Flexible — to be efficiently tunable to different application contexts.

The detailed description of the 3M approach is beyond the scope of this
paper, so we only mention its principles and the stepwise procedure for practical
use.

Mathematical Models-Based Software Modernization 133

The approach is based on the next three principles:

a) Interpretation — it follows the modern paradigm of scientific know-
ledge: to move from factologic description of the objective world to dialogic
interpretations, made by a valuable subject with a specific point of view.

b) Reasonable choice — at each critical decision point to apply the scien-
tific method of Comparative analysis [6] so as to assure systematic and efficient
local optimization;

¢) Measurement — involves the systematic use of software metrics, en-
abling software practitioners to gain insight into their work and products deve-
loped. All obtained measures can be analyzed further so as to provide assistance
in management and technical activities.

From managerial point of view this means:

e at any moment modeling should take into account a preliminary defined
goal and the available resources;

e construction of multiple models, presenting different aspects of the an-
alyzed SE objects;

e model evaluation on its applicability, utility and validity — for continuous
quality improvement [5];

e maintained repository of existing models and tools to create and use them.

We propose the following feasible procedure for the 3M-practical use:

Step 1. Analyze in-depth the SE activity under consideration. Identify
the basic SE objects (products, processes and resources), which can be further
studied. Clarify the amount of resources (people, money and time) needed.

Step 2. Repeat the following within the planned resources: state the
goal, construct the model, apply the model, estimate the model through metrics;

Step 3. Summarize the knowledge and experience gained and describe
the set of identified best practices for this SE activity.

Next we describe how the proposed 3M approach can be implemented
for a specific SE activity — software modernization.

3. 3M approach to Software Modernization

3.1. Software system evolution

Software system evolution is the process of the initial development of a
software system followed by its continuous change. These continuous changes
can range from small maintenance fixes all the way to a complete reengineering
of the entire software system. Thus the process of software system evolution

134 N. Maneva, Kr. Kraichev, Kr. Manev

spans the entire time from the start of the development of the initial version of
the particular software system to the end of its life.

Software system evolution activities can be divided into maintenance,
modernization, and replacement [3]. Maintenance involves small and frequent
updates of the system targeted at fixing bugs or introducing small pieces of new
functionality. Maintenance does not mean major reengineering of the system.
Modernization on the other hand consists of more massive changes compared
to maintenance, but retains a significant piece of the existing system. Such
changes could be improving the architecture of the software system or replacing
and/or adapting a legacy software technology. Replacement is the reengineering
of the system from scratch. It incurs a significant cost on the organization and
involves a considerable amount of risk. That is why organizations are reluctant
to re-implement the entire system from scratch.

Maintenance is an indispensable activity in the life cycle of a software
system, but it leads to software erosion. Software erosion is the constant
decay of the internal structure of a software system. It takes place during every
phase of the software development life cycle and is most evident as a result of
software maintenance.

The major symptoms of software erosion include [12]:

e the system breaks in unexpected places after changes are made;

e the system is hard to change because every change forces many other
changes;

e it’s hard to disentangle the system into reusable components;
e system artifacts are hard to read and understand;

e the system grows increasingly isolated from the rest of the organization’s
IT environment;

e adding new functionality becomes increasingly difficult.

As a result of the above, maintenance cost is rising and system develop-
ment projects are usually running over time and over budget.

Next follows a brief description of some causes for software erosion [11,
12]. Knowledge about the internals of a software system decreases over time
mainly because the involved designers and developers change jobs, have been
retired and forget the details of implementation. Even the best documentation
leaves out certain assumptions, bits and pieces, which tend to accumulate over
time leading less-than-perfect understanding of the system. As a result the

Mathematical Models-Based Software Modernization 135

initial design and best practices defined for the system tend to become less
adhered to over time.

One of the goals of software modernization is to manage software erosion.

As it turns out modernization is the middle ground between maintenance
and replacement as it allows organizations to achieve some of the benefits of re-
placement at a fraction of its cost. Modernization also allows a staged approach
in which only part of the system can be improved at a time [2].

3.2. A stepwise 3M-procedure for software modernization

Traditionally software modernization has been confronted as an engineer-
ing and business problem as reported in [3, 9, 10]. Many mathematical models
have been applied to SE activities in the past [7] but to the best of our knowl-
edge mathematical models have not been applied in a consistent manner to
software modernization in particular. The above-mentioned stepwise procedure
for software modernization comprises the following steps:

Step 1 - the software modernization activity is studied and the goals,
scope and goal-oriented artifacts are defined.

Goals

Every software modernization project is unique. Different organizations
have different IT environments, different targets, different time-frames which
result in very different approaches to software modernization. That is why it is
very important to clarify and define the goals of the project at the earliest time
possible. An example of a goal would be: ”The mainframe-based IT system in
plant X must be migrated to run on UNIX servers.”

Scope

Based on these goals the scope of the project must be defined. The scope
defines the set of sub-systems or modules which are subject to modernization.
Some organizations choose a staged approach to modernization, in which the IT
environment is modernized one system or sub-system at a time [2]. In a staged
modernization the scope for each stage is different. The scope depends on the
goals set and it is not unusual to go back and refine the goals already set because
the scope they imply is infeasible, taking into account the available resources.
Depending on the project and software system the scope can be defined in terms
of sub-systems, modules, packages, libraries, I'T environment specifics, etc. For
example the scope of the above goal could be: "The procurement, accounting,
manufacturing, warehousing and delivery sub-systems of the mainframe-based
IT system must be migrated, but not the payroll sub-system.”

136 N. Maneva, Kr. Kraichev, Kr. Manev
Artifacts

Based on the goals and scope the artifacts for modernization must be
defined. Examples of such artifacts are program source code, configuration data,
structured and/or unstructured user data, documentation. Each of the artifacts
must be described. Probably the most important part of this description is
the target artifact, which must materialize as the project execution progresses.
For example: "The legacy JCL-based batch processing must be migrated to
UNIX BASH-based batch processing.” Another important part of the artifact
description is the size of the source artifact. For example: ” The size of the source
artifact is 1 million lines of code.” Number of lines in the source code is just one
of the metrics used. The metric is dependent on the type of the artifact. For
example data in a relational database could be measured in number of tables,
number of fields, number of rows, byte size of a database dump, etc. The size
of the artifact is important, because it sets constraints on the transformation
approach. For example, if the size of an artifact is significant it may not be
feasible to employ a manual transformation and still meet the project goals for
timeframe and budget. When the type of the artifact is data, then the artifact
description must contain elements like source and target data structure, format,
encoding, storage, backup and restore as well as disaster recovery policies, etc.
For each artifact success indicators must also be defined.

Artifact classification

First we determine the available artifacts and classify them. We dis-
tinguish between two different types of artifacts — basic and derived. Basic
artifacts are artifacts manually created by humans — for example, program
source code, scripting code, configuration files, database data definition lan-
guage scripts, manually written documentation. Derived artifacts are arti-
facts which have been created automatically from basic artifacts by software
tools — for example, compiled program code, automatically generated source
code, database dump files, automatically generated documentation.

There are two major differences between these two types of artifacts
from the point of view of a modernization project. Basic artifacts are created
by humans, which means that they contain much more information than do
derived artifacts. Typical examples are program source code comments, variable
and function names, manually written documentation, even source code which
cannot be compiled with the latest version of the compiler. This feature makes
them a good candidate for extracting knowledge about a software system. On
the other hand precisely this feature of basic artifacts makes them difficult to

Mathematical Models-Based Software Modernization 137

process with software tools. The reason is that basic artifacts can exhibit much
less structure compared to derived artifacts, which is a feature of natural human
languages and especially the English language. Typical examples are source code
comments and manual documentation.

Derived artifacts are better structured than basic artifacts, because they
are created in an automatic way. This makes them good candidates for machine
(automatized) processing. On the other hand derived artifacts typically contain
a fraction of the information available in the basic artifacts they started with. A
typical example is source code comments, which are not available in the compiled
executable code. Another example is that the structure of the database data
can be missing from a database dump, whereas it existed in the original data
definition scripts.

Thus both basic and derived artifacts provide pros and cons compared to
each other. That is why the decision which artifacts to use for a particular part
of the modernization project depends on what information the transformation
needs in order to produce the target artifacts. If the information contained
in derived artifacts is sufficient, then use them, because the data lends itself
naturally to machine processing. If the information in derived artifacts is not
sufficient, then basic artifacts or a combination of both basic and derived should
be used.

Sometimes it happens so that the migration project doesn’t have access
to all the artifacts — for example some organizations don’t employ configuration
control and as a result some changes to the source code are lost and the only
available up-to-date artifact is the executable program code. Another example
is organizations which are unwilling to disclose their source code making the
derived artifacts the only available to work with.

In a modernization project the artifacts are used over and over again to
create and re-create the intermediate models used during the transformation
process. Since normally the size of all artifacts as a whole is huge, the time
necessary for software tools to build the models from the available artifacts
can be significant and can sometimes be a bottleneck to the overall speed of
accomplishing the modernization project. That is why speed is of the essence,
which is another reason to use derived artifacts whenever the information they
contain is sufficient for the desired transformation.

The complexity level of the performed analysis depends on the goals set
as well as on the available artifacts. For example if the goal is to modernize
a COBOL subsystem with the target artifact being Java code and the only
available source artifacts are the executables of the COBOL programs, then the
analysis will be more complex compared to the case where the COBOL source

138 N. Maneva, Kr. Kraichev, Kr. Manev

code is available. The reason is that program, block and variable names as well
as comments sometimes convey more information than the program source code
itself.

The next activity is the classification of the available in-scope artifacts
depending on their type into 3 groups — Programs, Data and Others. The
Programs group can contain source code, scripting code, compiled executable
programs, etc. The Data group can contain data definition scripts, database
dumps, raw data, etc. The Others group can contain documentation, configu-
ration files, log files, memory dumps, performance traces, user interface defini-
tions, etc. The artifacts in these 3 groups are further classified into sub-groups
according to different characteristics.

I Basic artifacts l

[l
IProgramer Data H Others l

R —

Source

. Confi
code | - Scripts IDocumentation ﬁ|esg

l
DDL [Manually entered data |

[Derived artifacts]

-
rPrograms “ Data H Others |

Compiled Auto-generated ||| Auto-generated | |Auto-generated
code || source code documentation | /| config files
[|
Auto-generated Database dump
DDL files

Figure 1: Artifacts classification

Mathematical Models-Based Software Modernization 139

For the Programs group these characteristics can be programming lan-
guage (e.g. COBOL, Assembly, C/C++, Java, etc.), execution environment
(e.g. CICS, batch, .NET, App server, etc.) and so on. This classification
depends on the specifics of the particular project.

For the Data group we classify the artifacts according to their structure
- relational, hierarchical, object-oriented, unstructured, etc.

For the Others group we can classify the artifacts into the following sub-
groups: documentation, configuration files, log files, user interface definition
files, etc. Memory dumps and performance traces can be grouped together
with log files. Documentation artifacts can be further divided into internal
(architecture, detailed design, admin guide, development guide) and external
(user guide, tutorials, etc).

The reason for classifying the artifacts into different groups and sub-
groups is to enable the machine processing of the artifacts. The artifacts in
a single group can be processed and analyzed by the same software tool with
different parameters and/or modules used for the different sub-groups. This is
so, because the operations the analysis tool applies on a single group or sub-
group make sense for all elements of this group/sub-group. That is why this
classification of artifacts defines a mapping between the set of artifacts and the
set of analysis tools.

Step 2 - repeat the next activities within the available resources:

Modeling and Application of models

This step starts with building a 1-order (first order) model for each of
the artifacts. For program code, this could be an AST (abstract syntax tree)
based model [1], which stores the behavior of the program, but filters out syntax-
specific information, which is irrelevant for the subsequent analysis. For data
the model could be an entity model, which stores for example the name and
attribute names and types of the entity (for example a relational database table),
but filters out the machine-dependent representation, like file type, encoding,
etc.

1-order models are built automatically by using software tools, which are
configured appropriately. For example, the parsers for COBOL, Java and SQL
are different modules of the same tool, even though they can still be generated
by the same parser generator with the corresponding formal grammar. The
classification of the artifacts described above allows to assign a tool and appro-
priate tool parameters to every artifact. Each of the modules of the tool can
also receive different parameters. For example, to distinguish between different
flavors of COBOL - ANS COBOL, COBOL 1985, COBOL 2002, etc. or SQL —
SQL-86, SQL-92, SQL:1999, etc.

140 N. Maneva, Kr. Kraichev, Kr. Manev

These 1-order models are independent of each other, they don’t contain
links/relationships between them. That is why they are considered at a lower
level of abstraction, which is suitable for only basic analysis. So they are only
an intermediate step on the way and not an aim in itself.

The next activity is to build higher-order models based on the 1-order
models. New models represent a higher level of abstraction [4]. For exam-
ple, control flow graph models are 2-order models which provide information
on the pieces of the program, which can be executed runtime. These models
can be used to pinpoint pieces of a program which can never be executed — so
called dead code. An example of a 3-order model is a trace flow graph model,
which captures additional information related to the actual execution of a pro-
gram. This additional information could be time stamps (real-time or abstract
clock cycles), memory-access data, etc. As shown in [8] this information can be
used, for example, to make conclusions about the performance of the program,
or to assess its currency. These 3-order models differ from the 1-order (and
some 2-order) models — they incorporate information about the relationships
between the different 1-order models — global variable references, inter-program
dependencies, database access by the programs, etc. This additional informa-
tion makes it possible to gain understanding about the software system which
cannot be done with the models of lower orders.

These higher order models are then used to create a visual representation
of the software system. Software architects and systems analysts can use this
visual model in order to understand the software system. This is the part
where human involvement is crucial and ultimately determines the results of the
analysis phase. Software people determine the direction subsequent iterations
of the analysis will take — set of artifacts to be analyzed in more detail, set of
artifacts to exclude, what kind of analysis to perform, etc.

After the architects and analysts are satisfied with the level of under-
standing of the system they have gained, the transformation of the system begin.
This means that the target artifacts must be configured. For example, such con-
figuration could mean that for this functionality/logic Java code for the JBoss
application server and SQL code (both DDL and DML) for the MySQL database
must be generated. After this configuration is done, the software tools are run
to make the generation. Usually at least several iterations are needed in order
to fine-tune the parameters so that the result is optimal regarding the software
architect’s requirements.

Next a model is built, which represents a higher level of abstraction.
Building of the model is automated by custom-developed software tools.

Mathematical Models-Based Software Modernization 141

What follows is the evaluation of the software system based on the in-
formation in the model and the assessment of the degree of software erosion for
each component in particular. The result of this step is a list of components
sorted by the degree of software erosion. Based on this list a few components
are selected in order to be analyzed further. After the analysis the components
are worked on in order to be improved. These improvements range from the re-
latively simple ones like dead code elimination to more complex like refactoring
of an entire sub-system to the extreme. For example, in some cases rewriting
from scratch is the only viable option.

After these improvements the component is evaluated again in order to
get valuable feedback what the effect was and to plan the next iteration accord-
ingly.

We need different models for two main reasons. The first reason is that
a typical enterprize software system comprises artifacts of various complexities.
The second is that we need models at different levels of abstraction. While
some concepts can be analyzed at a lower level of abstraction, others cannot be
grasped until the presentation is on a sufficiently high level of abstraction.

Result interpretation, estimation of models, performance and
achievements evaluation through a set of metrics After the models

have been applied the result is measured using predefined metrics. The values
obtained (measures) need to be interpreted as to how ”good” they are, how
”close” to the specified goal they are. The goal is usually defined as a set of
metric values, which are aimed for. Thus the result interpretation is usually
defined as a function which measures ”distance” from the current metric values
to the desired metric values. Based on the value of this function for the current
metric values, the configuration parameters of the models are adjusted and the
procedure is restarted.

Step 3 — incremental construction of the set of best practices for software
modernization

As aresult of the repeatable execution of the activities in step 2 described
above, a set of best practices for this modernization of the particular artifacts
gradually emerges. This "trial and error” approach results in accumulation of
knowledge and best practices which can lead to more efficient execution of a
similar modernization project in the future.

142 N. Maneva, Kr. Kraichev, Kr. Manev

4. A Case Study: The 3M software modernization of a real-life
project

The IT department of a multinational manufacturing company has been
developing internally and maintaining the company-wide software system for
over 30 years. This system handles every business activity in the company — raw
material procurement, product development and testing, manufacturing, qua-
lity control, warehouse management, goods deliveries, customer management,
accounting, etc.

The system was based on mainframe technologies — the z/OS operating
system, DB2 for z/OS, CICS Transaction Server, CICS and Batch COBOL
(8 million lines of source code), BMS, JCL (0.5 million lines of source code),
Application System code (0.5 million lines of source code), REXX and Assembler
for mainframe.

The difficulties associated with these legacy technologies were the signifi-
cant maintenance costs related to hardware and software license fees, the decline
in the number and availability of skilled mainframe technology experts to main-
tain it as well as the complexity of enhancing the mainframe applications in
order to meet the evolving needs of the company. As a result of these obstacles
the IT department of the company decided to undertake a complete migration
of their software system to a modern hardware and software platform.

These IT assets were migrated to IBM System, running the AIX ope-
rating system, DB2 for AIX, TXSeries for AIX, COBOL for AIX, Bash shell
script, Information Builders WebFOCUS, Java code and C code. A set of cus-
tom tools were developed and used for automating the translation of COBOL
for mainframe code to COBOL for AIX code as well as the translation of Ap-
plication System code to WebFOCUS code. This automated approach allowed
the translation of the huge source code base to be completed much more quickly
and efficiently than would have otherwise been possible.

The mainframe applications have been developed and maintained for over
30 years by different people. The growth of the system over the years had led to
insufficient documentation. As part of the migration project the documentation
was improved.

As a result of this migration the manufacturing company has achieved
a significant decrease in IT operating and maintenance costs and a much more
flexible and future-proof IT environment, much better suited to address the
dynamic requirements of the enterprise.

The modernization project results are quite encouraging because they
confirmed the feasibility of our 3M approach to a specific SE activity, namely
software modernization. It is possible, although very unlikely, that the particular

Mathematical Models-Based Software Modernization 143

industry project chosen is not representative of industry projects in general due
to business processes and/or technological base being too specific, but anyway,
we obtain at least one positive feedback from the practice.

5. Conclusion

The described 3M-method unifies modeling, measurement and manage-
ment in the field of software engineering. This method seems to be a scientific,
general and flexible approach to any SE activity under consideration, support-
ing its automated and efficient performance. We examine the approach in one
modern and crucial for the software industry activity — software modernization.
It has been chosen, because our investigation shows that many mathematical
models have been developed to be used in different SE activities [7] but to the
best of our knowledge such models have not been applied in a systematic and
consistent manner to software modernization in particular. An empirical study
on a real-life software modernization project has been conducted too, in order
to validate the proposed mathematical models-based approach and to examine
it in an industrial setting.

Some possible ideas for further research and development can be:

e to improve the modeling process and the procedure for its application,
expanding the third step — the description of identified best practices;

e to increase the level of automation through a set of software tools, inte-
grated in a framework;

e to continue the experiments in software modernization for projects in a
few other application areas so as to analyze the results from the point of
view of different stakeholders: users, developers, managers, etc.

References

(1] D. Binkley. Source Code Analysis: A Road Map. Future of Software
Engineering (FOSE’07), IEEE-CS Press, 2007.

[2] M. Brodie et al. Migrating Legacy Systems: Gateways, Interfaces € In-
cremental Approach, Morgan Kaufmann publishers Inc., San Francisco,
California, 1996.

8] S. Comella-Dorda, K. Wallnau, R. Seacord, J. Robert. 4
Survey of Legacy System Modernization Approaches, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, 2000.

144 N. Maneva, Kr. Kraichev, Kr. Manev

[4] R. Kirkov, G. Agre. Source Code Analysis - An Overview, Proc.
of Cybernetics and Information Technologies 2010 (CIT 2010), 10, 2010,
60-77.

[5) N. Maneva. Software Engineering Models and their Evaluation, Mathe-
matika Balkanika, New Series, 18, 2004, 149-156.

[6] N. Maneva. Comparative Analysis: A Feasible Software Engineering
Method, Serdica Journal of Computing, 1, No. 1, 2007, 1-12.

[7]R. Pressman. Software Engineering: A Practitioner’s Approach, McGraw-
Hill, New York, 2005.

B]A. Rountev, K. van Valkenburgh, D. Yan, P. Sadayappan.
Understanding Parallelism-Inhibiting Dependences in Sequential Java Pro-
grams, Proc. of the 26-th IEEE International Conference on Software
Maintenance, Timisoara, 2010.

9] R. Seacord et al. Modernizing Legacy Systems, Addison-Wesley Profes-
sional, Boston, 2003.

[10] N. Weiderman, V. Bergy, D. Smith, S. Tilley. Approaches
to Legacy System Ewvolution, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, 1997.

(11] www.hello2morrow. com, last visited October 2010.

(12 A. von Zitzewitz. Golden Rules to Improve Your Architecture, pub-
lished on www.hello2morrow.com, 2008.

Institute of Mathematics and Informatics — BAS, Received 10.09.2010
Sofia 1113, Acad. G. Bonhev str. bl.8, Bulgaria
e-mail: nely.maneva@gmail.com

Musala Soft Ltd.,
Sofia 1057, 36, Dragan Tsankov blvd., Bulgaria
e-mail: kraicho.kraichev@musala.com

Faculty of Mathematics and Informatics, Sofia University
Sofia 1164, 5, James Bourchier blvd., Bulgaria
e-mail: manev@fmi.uni-sofia.bg

