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The Schwarz function is very efficient in the theory of complex interpolation and
approximation in solving boundary value problems. In this article, application of the Schwarz
function in the theory of the Vekua complex differential equation is considered.

1. Introduction

Schwarz functions appear in the case of transforming the equation of
a simple, smooth, closed (or non-closed) real function L : F(z,y) = 0 into a
complex form. By using conjugate complex variables

(1.1) z=z+1y, Z=zT-—1Y
| z=1(z+32), y=%(-2)

the equation of real function becomes

z2+2zZ z—2
2 ' 2

F(z,y)=F( ) = G(z,2) =0.

This equation under certain conditions can be expressed via z in the form
(1.2) z = 8(2),

where S(z) is an analytic function of complex variable in some domain Q. For
example, the complex form of some real curves is as follows:
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a) A line crossing points z; and 23:

(1.3) Z=S(z) = (m) (z — 2) + 2;

b) A circle with radius 7 and a center in the point 2o:

(1.4) z=5(z) = + Zo;
c) An elipse (z2/y?) + (y?/b%) = 1,(a > b):

2
(1.5) z2=5(z) = a’ +b 2“" VA 5 —

b2

d) A hyperbola z? — y2 = a?:

(1.6) 7 = S(z) = V2aZ — 2%

€) An equation of conic sections az? + 2bzy + cy?® = 1:
(1.7) 22(a — ¢ — 2bi) + 22Z(a + ¢) + 2%(a — c + 2bi) = 4.

The complex equations (1.3) - (1.7) are self-conjugated, which means
that by its conjugation the same equation is obtained. The functions S(2) on
the right side in mentioned equations are Schwarz functions for given curves.

Let L be a simple, smooth and closed contour. An analytic function is
unique defined if the value in every point on the contour is defined. The Schwarz
function for the curve L can be defined as a unique analytlc function S(z), that
in every point z on the curve L its value is Z.

Let g(z) be an analytic function such that the complex equation
(1.8) z=yg(z)

describes a closed or non-closed contour, or a set of isolated points. Further,
the set of points in the complex plane defined by (1.8) will be called K-contour

[1].

In general case, it is clear that an arbitrary analytic function g(z) can-
not be a Schwartz function, because the condition of self-conjugation must be
satisfied. But the condition of self-conjugation is not necessity, because there
are self-conjugated functions that do not represent real curves. For example,
G(z,%z) = zZ+ 1 = 0 is a self-conjugated function, but it is not a real curve.
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Let f be a conformal transformation that transforms a real segment a <

t < b into a simple smooth curve L. The condition of necessity and sufficiency
for the analytic function S(z) to be a Schwarz function [2] is

(1.9) S=FfL

In the well known monograph (3], I. Vekua has considered in many details an
elliptic system of partial differential equations

uly, — vl = a(@, y)u + b(z, y)v + c(z,y)
uy + vy = b(z,y) — a(z,y)v + d(z,y),

<

(1.10)

where a(z,y), b(z,y), c(z,y), d(z,y) are given continuous real functions of real
arguments x and y in a simply connected domain 7". This system takes an
important role in theoretical and practical problems of mechanics. If the second
equation in (1.10) is multiplied by ¢ and after addition to the first equation, the
following canonic Vekua complex differential equation is obtained

(1.11) w; = AW + B,
where
a+1ib c+1id
A = B —
2 2 %
and

wh = o — ) + 5 (u + 95)

It is clear that the general idea of Schwarz functions is expressing the contour
equation in a complex form Z = g(z). Naturally, this idea can be generalized
into the general relation w = g(w), where w = w(z, Z) is a non-analytic complex
function. In the second part of the paper, this relation is used to determinate the
particular solution of the Vekua differential equation (1.11). In the third part,
the notion of a-interpolation is introduced and instead of interpolation nods
the interpolation contours are used represented by equations Z = gi(2), (2 =
0,1,2,...,n). So, the approximation problem of the non-analytic function w =
w(z, Z) is solved via a-interpolation polynomial of the n-th degree. Finally, in
the fifth part, the Vekua equation (1.11) is correlated with the theory of elastic
shells and the Hilbert boundary value problem is considered with some mechanic
interpretations that lead to possibility of application of a-interpolation.
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2. Application of CRC-method to determinate a particular so-
lution of Vekua differential equation

The method CRC (Complex Representation of Contour) is leaded by
Canak [1] and it uses the operator ay(2), a complex presentation of a contour
as Z = g(z) and Schwarz functions. The idea of the application this method
for solving Vekua differential equation is as follows: The general solution of the
equation (1.11) given by Vekua practically can not be used because it contains
infinite series with double singular integrals of Cauchy type, which is gener-
ally difficult for solving. The reason of this is existence of unknown function
in equation (1.11) under the conjugation. Because of that, at first the Vekua
equation (1.11) is reduced to an ordinary auxiliary differential equation. Ac-
cording the idea of Schwarz functions, the general relation w = g(w) is used.
So, simultaneously with the Vekua equation

(1.11) wy = Aw+ B
the auxiliary differential equation
(2.1) w} = Ag(w) + B

is used. The unknown function g(w) is selected such that the function (2.1) is
a finite integrable and convenient for solving.

In practice, usually the most frequent selection is g(w) = Cw + D, i.e.
the linear relation

(2.2) @=Cw+D

where the coefficients C = C(z,%) and D = D(z,Z) must be in a correlation
with the coefficients of the Vekua equation. The relation (2.2) is useful because
it conjugation is

(2.3) w=Cw+ D
and the unique solution of the system (2.2)-(2.3) is

_CD+D

=1-cc’ (CC #1).

(2.4)
For the Vekua equation (1.1) and on the base of (2.2), let the relation

(2.5) Ab+B ==

¥4
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be introduced. The relation (1.11) is transformed into auxiliary differential
equation

w
with the solution
(2.7) w = z2Q(z)

given by S. Fempl [4], Q(z)-is an arbitrary analytic function. By its substitution
in (2.5), the relation

(2.8) AzQ(z) + B=Q(2)

is obtained.
The function @ = Q(z) determinates the equality (2.8) to be identity.
This equality can be written as

(2.9) QR) = ==

As the left side of (2.9) is conjugated analytic function, the right side must be
conjugated also. It is satisfied if the coefficient A = A(z, 2) is

L_Q®)-B

(2.10) 00

The following theorem is formulated

Theorem 2.1. The Vekua complez differential equation (1.11) has par-
ticular solution w = 2Q(z) for every value of the coefficient B = B(z, %), if the
coefficient A is in the form of (2.10).

Example. Let us find a particular solution of the Vekua differential
equation

(2.11) w =
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Solution. The conditions of the theorem 2.1 are satisfied and in this
case the coefficients are: Q(z) = 22, B(z,z) = e*~3%. The following equality is

introduced _
22 _ ez—Sz N

— 2—-3z2 __

w+e =

SRS

52
2Z
The general solution of the auxiliary differential equation w} =
and a particular solution of the equation (2.11) is wy, = z22.

isw = z2Q(2)

Ng

3. An application of CRC-method on an interpolation problem

Definition 3.1. Let g(z) be an analytic function in some domain
and w = w(z,Z) be a continuous complex function, which in the domain can
be developed into a convergent power series by z and Z. Then the compound
function w(z, g(z)) is an analytic function for which the notion oy, w is used.
The operator ag(,) transforms the set of continuous complex functions w =
w(z, Z) into a set of analytic functions and has geometrical meaning as follows:
If Z = g(z) is an equation of a closed contour, then the functions w = w(z, 2)
and ag(,)w have the same limit value on the mentioned contour.

Problem P. Let Lo : Z = go(z), L1: Z = 91(2),...,Lp : Z = gn(2) are
given contours and all analytic functions g;(z),7 = 0,1, ...,n are different. Let
s0(2),81(2),, ..., sn(z) be given analytic functions and w(z,Z) be a given non-
analytic function. The problem is to find interpolation polynomials P,(z, Z) of
n-th order that satisfy the interpolation conditions:

(3.1) Qgo(2)Pn = Qgo()w = 50(2), Qg (2)Pn = ag,(w = s1(2), ...,
Ay, (z)Pn = g, (z)w = 3n(2).

Let us construct a so called areolar -differences:

Qg W — QgoW _ s1(2) — so(2)
g1 — 9o 91(2) — go(2)

= (90, 91)

QgnW = Qg W _ sn(2) — sn-1(2)
9n — gn-1 gn(2) — gn-1(2)

(3.2) = Y(gn—1,9n)

Y (gn-1,9n) — ¥ (gn—-2, gn—1)
In — Gn-2

=1 (gn-2,gn—1,9n)
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1/1(91 1925 ooy gn) — w(QOa 9gi, -
9n — 9o
and let us construct a sequence of functions as follows:
agow — w(z, 2)

(33) 1,0(5,90) - —go—:g—’ 1/)(2’90,91) — 7!’(907 g;z : ?(2;90)

..,gn-—l) — rd)(go,gl, viey gn-l,gn)'

,l/‘}(g())"'agn) - (2,907-“,911—1)

111(5,907 g1, agn) =
gn

~

The interpolation polynomial

(3.4) Pu(z,2) = po(2) + ¢1(2)(Z — go) + p2(2)(Z — g0)(Z — g1) + ...+
' +¢n(2)(Z — g0)(Z — 91)---(Z — gn-1)

is required, where @o(2), ¥1(2), ..., on(z) are unknown analytic functions. By a
substitution of the first interpolation condition aygy(,)Pn = so(z) into (3.4), the
relation ¢g(z) = so(z) is obtained. By the same procedure, by a substitution of
interpolation conditions (3.4), the relations

s1(z) — so(2)

91(2) — go(2) (g0, 91)»

p1(2) =

(P2(z) = ’w(go’ 91,92),
(3.5) :
(pn(z) == w(g()) g1, "'agn)
are obtained.

The polynomial that is required is obtained by the substitution of (3.5) into
(3.4) and it is |

(3.6) Pn(z,2) = s0(2) + (2 — 90)¥(90,91) + (2 — 90)(Z — 91)% (90, 91, 92)+
' +oo + (2= 90)(Z2 — 91)--(Z — gn-1)¥(90, 91, - Gn)-

The formulas (3.3) can be written as

'U)(z, 2) = QgoW + (2 - 90)1/)(2, 90)
w(z, ) = agow + (2 — g0)¥(90,91) + (2 — 90)(Z — 91)¥(Z, 90, 91)

3.7 :

50 w(z,Z) = agaw + (Z — go)¥ (90, 91) + (Z — 90) (2 — 91)¥ (g0, 91, 92)+
oo + (2= 90)(2 = g1)--(Z — gn-1)¥(90, 91, -, Gn )+

+(2 = 90)(Z — 91)---(Z — gn)¥(Z, 90, 91, -+ Gn)-
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If in (3.7) the value of Z is substituted by go(2),g91(%2), ..., gn(2), the relations

ago(z)w = So(z), agl(z)w = sl(z), ...,agn(z)w = Sn(Z)

are valid. It means that by substitution of the last term, the polynomial (3.6) is
obtained such that on the given contours z = g;(z), ¢ = 0,1,2,...,n, it has the
same boundary values as the function w(z, Z) does, so it is an approximation of
the function. The estimation error is the estimation of the last term in (3.7).

The application of this result is shown in the next part of the paper, and
the previous interpolation is applied on Vekua differential equation and on some
of its applications.

4. Hilbert boundary value problem for the equation of elastic
shell voltage

It is known [3] that the equations of momentless position of the elastic
shell voltage are

af
20 AT = X8, (5= 1,2)

TapgT? = Z,

(4.1)

where 11, T12 = T2! T22 are opposite-variant components of the voltage tensor,
and X!, X2, Z are given functions of a point (z!,2?) from the middle shell
surface.

The complex function of the voltage position of the elastic shell is the
function

(4.2) U = fVK(T" —iT'?),
where K is the main curve from the surface. The value f is given via the relation

(4.3) f=fufe—fH>0

where fog = TaTg and mag = NTeg are symmetric covariant tensors of second
order, 7(z!, z?) is a surface radius vector of the surface, and 71 = %r, Ty = %’7
are basic vectors of the coordinate system (z!,z?) and n is the ort from the
surface normal.

Vekua has shown [3] that the equation (4.1) can be reduced on complex
differential equation

(4.4) UL — A(z,2)0 = F(z,2),
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where
) _re s LOK_ 10VF
(45) Alz2) =T +iTe — 7252 VF 0z
and
B 1 ) z ) i 0 Z
(4.6) F(z,z) = §fﬁ X! —ix?— B(Féz"lrgz)‘*‘vf—%—\/—g—

To determine the unknown function U, it is necessary the function to
satisfy some additional condition on the given closed contour L. Usually in
practice, the following boundary value condition is used

(4.7) Re[g(t)U] =~(t), (9=a—iB, |g|#0),

where g(t), v(t) are given functions of a point ¢t € L.
The following condition has the same form

(4.8) N, coso(t) + S, sino(t) = v(t),

where o (t), v(t) are given real functions of a point ¢t € L, and N,,, S, are normal
and tangent forces that affect the surface cross section that has a normal 7. The
mechanical meaning of this condition is: in every point ¢ from the contour L
from the domain T, there is a force (projection of a force vector) that affects
into direction coso(t) and sino(t).

If everywhere on L the condition o(t) = 0 is valid, then the boundary
value condition (4.8) becomes

(4.9) Ny, =~(t),

which means that in every point of the contour a normal force affects.
If everywhere on L the condition o(t) = 7 is valid, then boundary value
condition (4.8) becomes

which means that in every point of the contour a tangent force affects.

In this paper, the boundary value problem (4.9) is considered for the
equation (4.4) and for shells with a positive Gauss curve. Boundary value prob-
lem (4.10) can be discussed in the same way.

The boundary value problem (4.9) can be written in the following form
(3], p-80-81)

(4.11)° Re[(v1 + iv2)2U] = %o(t),
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where v, vy are covariant components of the ort 7, that in the point (=!,z2)
cross the middle surface and lie into the tangent plane and

(4.12) () = (v = N)fVK.
But the condition (4.11) can be written in the form

pU1 + qUz = 7o(t)

(4.13) (p — V12 _ V%, q= 21y, U=U+ iUg)

that is a type of Hilbert boundary value problem.

Generally, there is not a procedure for effective solving of the mentioned
problem. Because of that, in this paper some important cases in practice will
be shown when the solution can be found in the finite form.

I Case: Let

(4.14) A(z,z) =T34, +il'l, — —l—gg LN ./ 0.

In this case, the equation (4.4) is transformed into
(4.15) t = F(2,%)
and has a general solution
(4.16) U= / F(z,2)dz + Q(2) = Uo(z, 2) + Q(2),
where Q(z) is an arbitrary analytic function. By using ‘the notations
Uo(z,2) = uo(z,y) +ivo(z,9), Q(2) = ai(z,y) +igz(z,y),
the boundary value problem (4.13) is transformed into
p(uo + q1) + g(vo + g2) = Yo(t),
or after some calculations
(4.17) pa1 +qq2 = Yo(t) — puo — quo,

the Hilbert boundary value problem to determinate an analytic function Q(z) =
q1 + iqa is obtained by a known solving procedure [5]. By a determination of an
unknown analytic function Q(z), the function U = U; + ¢U; is determined that
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is a solution of the boundary value problem.

II Case: Let one of covariant components of the vector 7, i.e. vy or vy
be zero. Then the boundary condition (4.13) becomes

(4.18) Uy = 7"7@

and the solution of the equation (4.4) is searched whose real component U; on
the contour L is ﬁpg-

Consideration becomes very 1nterest1ng if the solution of the problem
is complex function whose real or imaginary part is a harmonic function with
solenoid or potential vector field. The class of differentiable complex functions
whose real part is a harmonic function with corresponding solenoid vector field is
denoted by Ugy. By harmonic extending a unique harmonic function Ui (z,y) =
a(z,y) can be determined that on L has a value (4.18). To determine the
unknown imaginary part Usz(z,y) of the solution, the equation (4.4) is written

as
1 /0« 6U2 1
2 (6:1: ~ By ) ti3

and by separating the real and imaginary part

(g_: _ %) — (a1 +iag) (@ — iUs) = f1 +ifa,

(4.19) %~ gy~ 2uo— 20l =2A
. %%_%—Z—Zaga+2a1U2—2f2

are obtained. Eliminating Us from (4.19), the partial equation

8U; AU
(4.20) ay L~ al——3 = B(z,y)

is obtained where 8 = 2(fia1 + f2a2) + 2a(a? + a3) — a142 — a2.g%_
System of ordinary differential equations

dr dy _ dU,
a2(m1y) - _al(z’y) ﬂ(x)y)

(4.21)

corresponds to the equation (4.20)
Let us suppose that the first integrals of this system are

(422) "2 (wa Y, U2) =, <P2(33, Y, U2) = C2.
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Then the general solution of (4.20) is

(4.23) G(p1,92) =0,

where G is an arbitrary differential function. Let us suppose that (4.23) can be
expressed in the form

(4.24) Uz = ¥{z,y, p[¢(z,y)]},

where ¢ is an arbitrary differential function and 1, £ are known functions. By
substitution of (4.24) into the first equation of (4.19), the following differential
of the first order with ¢ as an unknown function

(4.25) Z—Z - (%’5 + g—z%%) = 2a1a — 2a29{z, y, p[€(z,y)]} = 2

is obtained. If it is possible to solve this equation, then by substituting the
value of ¢ into (4.24), the imaginary part of the solution of the boundary value
problem can be obtained.

Example 4.1. Find the solution of the Vekua differential equation
(4.26) U, - (a+ia)U =

that belongs to the class Ugp, and its real part on the unit circle L : 22 4+ 32 =
1, (lz]) =1)iscost, (ReU|L = cost).

Solution. By solving the Dirichlet boundary value problem for unit
circle, it is found that the required harmonic function U;(z,y), (U = U;+iU;)
is Uy = z. Then the system (4.19) is transformed into

1- U} —2aUs =0

(4.27) Us, +2aUs = 1

and by addition of these equations, the following partial differential equation
(4.28) U, — U{,v =0
is obtained. Its general solution is

(4.29) Ua(z,y) = o(z + ),



Schwarz Function for Vekua Complex Differential Equation 159

where ¢ is an arbitrary differentiable function. By its substitution in the second
equation of (4.27), the ordinary differential equation

(4.30) O(z+y)+2ap(z+y)—1=0

is obtained with a general solution
1
(4.31) P(z,y) = ce 22 + o~ = Up(z,9)-

Finally, the solution of the boundary value problem is U = U; + Us.

III Case: Let be v; = 45, then the boundary condition (4.13) is

(4.32) Us = 7°qﬂ

)

i.e. let us find the solution of the equation (4.4) whose imaginary part Uz on
the contour L takes the value ’7—"‘]@. This case is equivalent as the previous one.

Remark 4.1. It is shown that voltage position of the elastic shell can
be described via generalized analytic function of the Vekua type where the a-
interpolation is very useful. So, if on the middle surface of the shell n+1 different
closed contours are selected and if the values of the function w(z,Z) on these
contours are given, then by using a-interpolation this function is approximated
by a polynomial that is convenient for numerical treatment. The calculation is
simpler in the case of rotational shells, because for the contours the system of
circles Z = a;/z may be chosen (g; = a;/z-are Schwarz functions) and than the
@,/ interpolation can be applied.
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