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1. Introduction

In [1] I. Vekua has considered an elliptic system of partial differential
equations

(1.1) up — vy = a(z,y)u + b(z,y)v + f(2,y)
uy + vy = c(z,y)u + d(z,y)v + 9(2, ),

where a(z,y), b(z,y), c(z,y), d(z, ), f(z,y), g(z,y) are continuous real functions
of real arguments z and y in a simply connected domain 7', that plays an
important role in theoretical and practical problems of mechanics. The system
(1.1) can be transformed to Vekua complex differential equation

(1.2) U, =MU+NU +1L,
where M(z,2) = M:I:lic_%, N(z,2) = a—-dj;4ic;tib,
L(z,2) = %‘q, U(z,2) = u+ .

By a substitution U = wUp, where w is a new unknown function and Up is
. / R

a regular particular solution of the equation U; = MU (see [2]), the equation

(1.2) is transformed into canonic form

(1.3) w; =Aw+ B

where A =

SE
to
I

S
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2. Of a vector field for canonic Vekua complex differential
equation

A. Bilimovic [3] has developed a geometrical theory of generalized ana-
lytic functions w(z,Z) = u(z,y) + iv(z,y) based on the deviation vector from
the analyticness

(2.1) B=gradu+k x gradv = (ul, — v;)f+ (uy + vz)J

where 7, 7, k are three normal orts.

The vector field of B characterizes different classes of generalized analytic
functions in geometric sense. In this paper the generalized analytic functions in
the sense of Vekua are considered. For that, the differential equation (3.1) is
considered, that can be written as a system of partial equations

(22) W'z —v'y = a(,y)u + b(@, y)v + (=, )
. vy +v'z = b(z,y)u — a(z,y)v + d(z, y)
where A = &5, B = 44, wf = J(up —vy) + 5(uf, +v%)-
From (2.1) it is clear that

(2.3) divB = V2u, rotB = kV?v.

These relations enable a classification of generalized Vekua analytic func-
tions (2.2). For V2u = 0, V?v = 0 the vector field of of B is Laplace, for
V2u =0, VZ2v # 0 the vector field is a solenoid, for V2u #0, V2 =0 the
vector field is a potential, and finally, for V2u # 0, V2v # 0 the vector field
of B is a complex.

Generally, in the case when a class of complex functions or a class of
differential equations that is generalization of the analytic functions, the in-
troduction of vector field classification and discussion of its different types has
more reasons and goals. Behind the geometric interpretation, this classification
enables three consecutive generalizations, from the class of analytic functions
to the most generalized goal class. So, the Laplace vector field corresponds to
the first and the simplest generalization. The solenoid and potential fields are
a strong generalization, and the complex vector field corresponds to the most
generalized case.

In this paper only the Laplace vector field is considered.
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3. Laplace vector field for canonic Vekua complex differential
equation

Relations divB = V2u =0, rotB =kV2?v =0 lead to
(3.1) Upy + Uyy =0,  Vgy + vy =0.

The sum of two equations, the first obtained from (2.2) differentiated by
z and the second differentiated by y, by using the first relation from (3.1) gives

(3.2) (uy — vp)a + (Vg + uy)b = —(ag + by )u + (a5 — bg)v — = dy
Similarly, '
(3:3)  (up —vp)b— (vh +uy)a = (ay — b)u+ (ag +b)v+ ¢, —dy
is obtained.

By the substitution of u}, — v}, and v} + uy from (2.2) in (3.2) and (3.3)
the following equalities are obtained

(a2+b2+a’z+b’y)u+(b;—-a'y)v=—-ac—bd—d;j—c’x

(3.4) (b,z_a;)u+(a2+b2__a;—b;)v=ad—bc—d_f,,+c;/.

According to D. Mitrinovic [4], two cases can be distinguished:
I) Equalities in (3.4) are not identically satisfied. The values of u and v

are solutions of the linear system (3.4)
w C1By; — CyB; = A1C3 — A2Cy ’
A1By — A3By’ A1By — A2 By
where the coefficient are:
A1 =a® + 0 +a, + by, A=Y —ay
By =0, —a,, B;=a%+b%—1bj,—a,
Cr=—-ac—bd—d,—c,, Cp=ad—bc—dy+cy.

These values are particular solution of the elliptical system (2.2).

IT) Equalities (3.4) are identically satisfied for all values of the variables
u and v. In this case, the following conditions must be valid
a® +b%+a; +b,=0
by —a, =0
(3.5) ac+bd —dj,+ ¢, =0
a?+b%— (ap +b,)=0
ad — be — dy +c, = 0.
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The first and the fourth condition from (3.5) form a homogenous linear
system where (a® + b%) and (al, + b,) are variables. As the determma.nt of the
system is D = —2 # 0, the system has only trivial solutions a? + b%> = 0 and
a; + by, = 0. This is valid for a(z,y) = b(z,y) = 0, when the second condition
from (3 5) is satisfied also. The third and the fifth conditions from (3.5) are
reduced to

(3.6) d:z = C;p dy, = —clz’
which means that the function
iC =i(c —id) = d + ic = F(=2)

is an analytic function.

Contrary, if it is supposed that a(z,y) = b(z,y) = 0 and d(z,y) and
¢(z,y) are harmonically conjugated, by its substitution in (2.2) and by differen-
tiation, the equation

" no__,n "n o o__
Ugg + Uyy = Vzz + 0y, =0

is obtained.
So, the following can be formulated

Theorem 3.1. The vector field of B for generalized Vekua analytic
function (1.3) or (2.2) is Laplace if and only if a(z,y) = b(z,y) = 0 and the
functions d(z,y) and c(z,y) are harmonically conjugated.

Remark 3.1. In the case when the conditions from Theorem 3.1. are satis-

fied, the equation (1.3) is transformed into

z' N
with the general solution
(3.8) w(z, z) = -;-/Fdé + ®(2),

where ®(z) is an arbitrary analytic function.
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4. Laplace vector field for p-analytic functions

G. Plozij [5] introduced the following definition for p-analytic function:
The function f(z) = u+iv is named a p-analytic function with the characteristic
p = p(z,y) in domain € if it is defined on that domain and its real and
imaginary part have continuous derivatives of the first order on = and y and
satisfy the system of partial differential equations
(4.1) ul, = %v;, Uy, = —%v;.
Polozij has shown that there is a deep connection between the solutions of the
system (4.1) and the analytic functions. He has investigated some applications
of p-analytic functions in different fields of mechanics also. The system (4.1)
can be written as

1-p
/ / /I /
(4.2) up — v, = P Uy, Uyt Uz = P V-

By the substitution v = v1p, v; is a new unknown function and the system (4.2)
is transformed into

1 1
ul, — viy = —(p;'ul), u; + v}y = —=(pzv1)
p p
or into a corresponding complex form

(4.3) fr=-By-D (=urin)

By the new substitution f = Up—%, U = U(z, %) is a new unknown function,
and the complex differential equation is transformed into canonic form

z

/
1= Pz
(4.4) (=50,

or into the following system of partial equations

uj, — uhy, = a(z,y)ur + b(z, y)u2

(4.5)
uh, + by = b(z, y)ur — a(z, y)u,

, ’ L= = 72
where U = uj + iug, a = %, b= % and divB = V2u;, rotB = kV*us.
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M. Canak, L. Stefanovska and Lj. Protic has shown [6] the following

_Theorem 4.1. The vector field of B for the system (4.5) is Laplace
(div B =0, rot B =0) if and only if p= c = const.

Remark 4.1. In the upcoming text it is shown that p-analytic func-
tions that correspond to the Laplace vector field are opposite for introducing of
so called p-polyanalytic functions that can be used in the approximation theory.

5. Approximation of the non-analytic complex functions
with p-analytic functions

The notion of p-polyanalytic function is given by M. Canak [7]. In this
paper the p-polyanalytic functions of the form

Btz BN
(5.1 Pae2) =Y (357) fu®)
' k=0 »
are considered, where fi(z, Z) are arbitrary p-analytic function defined by (4.1),
(f = u+ ).
The complex form of the system is

where Df = (u}, — vp) + i(uy + vy) = 2f;; (f = uw+iv), is the Kolosov
differential operator known as an areolar derivative.

The characteristic p = p(z, y) in (5.2) is a real function with real variables
z and y. In the case when the corresponding vector field is Laplace, p = const
and the equation (5.2) is transformed into

(5.3) Dlpf +i(1 — p)v] = 0.
Then

pf +i(1 = p)v = p(2)
or
(54) e )

where ¢(z) is an arbitrary analytic function.
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By conjugation on (5.4) and some calculations, the relation

+1 ~1_ i}
- 0= 1(2%)

5.5
(5.5) o o

is obtained.

Let K be a set of continuous complex functions, P, be a set of p-analytic
functions with a constant characteristic (with corresponding Laplace field), and
A be a set of analytic functions (A C P, C K).On the basis of (5.4) and (5.5),
the following operators on the set K are introduced:

_(c+Dw+(c-1w
= 5= :

_(e+Nw—(c—1)w
N 2¢ ’
It is clear that the relation R;!R.w = R.R;'w = w(z, 2) is valid.

There is a unique p-analytic function f(z,Z) with a constant character-
istic p = ¢ that corresponds to any analytic function ¢(z) by using the op-
erator Rep = %"C—lcp - CQ;CIQZ = f(z,Z). Consequently, a unique analytic func-
tion ¢(z) corresponds to any pc-analytic function f(z,Z) by using the operator
R =5 f + 52 f = o(2). :

(5.6) R.w R 'w

Let us consider the complex polynomials

Flz,2) = Zn: (z - z)kac(z,Z), ®(z,2) = En: (z;iz)km(z),

o \ 2t k=0

where f, are arbitrary p-analytic functions with a constant characteristic p =
c and @g(z) are arbitrary analytic functions. The function F(z,%2) is a p-
polyanalytic function and ®(z, %) is an ordinary analytic function. It can be
remarked that the following relations hold:

n _ LU —\k p—

n _ n s k
Rb =R [ () x| = 35 (59" Revn.

On the set of differentiable complex functions in the sense of Kolosov, we intro-
duce a new operator A, as a composition of three operators R, R;! and D via

the relation
(5.7) Acw(z, 2) = ReDR;'w.

This operator is a generalization of the Kolosov operator D and in the special
case (¢ = 1) is reduced as such.
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It is easy to show that the following properties of the operator hold:
IO AOw = R.R;'w = w; AV w = Aw..ARw = A|[AK-Dy)

(1) Afw: (2, 2) £ wa(z, 2)] = Alwi (2, 2)]  Alwa(z, 2)]

(I) Alfy(z,2) =0, (fp€ Fe)

V) A[$ )" f| = £ K (D Belion)

Let w = w(z, Z) be a continuous and arbitrary times differentiable func-
tion in the sense of Kolosov and let us expand it in the complex power series

z—2Zz z—Z

(5.8) w(z2) = fo.(z,2) + (T) flc(z,2)+...+( - )nfnc(z,2)+...

where fo_, fi.,- - - fn. are unknown p-analytic functions with a constant charac-
teristic p = c.

At first let us introduce a mapping ay(,) from the set K to the set A, (g(2)
is an arbitrary analytic function): The function Q = q)w, (w = w(z,2) €
K, Q(z) € A) is obtained from the function w = w(z, Z) when Z is substituted
by g(z), but the z is not substituted. In the function Q = ag4;)w there is no
variable Z, that generally means it is an analytic function. The geometric mean-
ing of this operator is as follows: If Z = g(z) is an equation of a simple smooth
closed contour, then the functions w = w(z, Z) and a4(,)w have the same bound-
ary value on the mentioned contour.

If the operator «, is applied on the both sides of (5.8), then the relation

(c+1)go(2) — (c — 1)po(2)
z 2c

is obtained. But only the subset A, C A whose Taylor series have only real
coefficients is considered. In that case

oo 0o 0o
p(z) = Z arzk = Zakzk = Z arz® = p(2)
k=1 k=0 k=0

(59) C!z‘l.U(Z,f) = aszc(21 2) =«

and the relation (5.9) is transformed into

(c+ 1)po(2) = (¢ = o(2) _
2c

a,w(z,2) = o,
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_ (e+Dpo(z) _ (c=Dpo(2) _ po(2)
2c 2c c

that gives the relations ¢g(z) = ca,w(z, Z) and fo, = Re[ca,w(z, Z)].
By applying the operator A and property (IV) on (5.8), the relations

z2—2z z—2Zz

Aw(z,2) = Rc(ip1) + 2 (—22—) Re(ip2) + ...+ n ( % )n_l Re(ipn) + ...

and

o1 —(c—1Dipy i@ :
0 (2, 2) = auRelign) = @, L LA B0 3y, ¢ ),

are obtained. From these relations, it is found that

1 = ;C,azAw(z,Z) and f1, = R, EazAw(z, 2)] :

By the same procedure the relation

a, A@y = aZZRC[izwg] = 2!122%, (o2 € Ar)
is obtained from where

02 = g A, o = Re[5z0a®ul,
are obtained, or generally,
(5.10) fk. = R [#azA(k)w] ,  (pa2k € Ar, ip2k41 € Ar).

If fi, from (5.10) is substituted in (5.8), then the formal power series in areolar
form of the function w(z, Z) is obtained via

foac) zZ2—2Zz k CO!zAk’LU
(5.11) w(z, Z) =~ z (T) R [—k'z"_]
k=0

M. Canak [8] has proved the following theorem

Theorem 5.1. Let w(z,Z) be a given complez function that is arbitmm
times differentiable in the interval —6/2 < Imz < §/2 and its areolar derivatives
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are limited on it. Then the function w(z,Z) in §-interval can be approrimated
by p-polyanalytic function on the n-th order as

n gk A
o wen= S () R [0

k=0

For the error estimation of the approximation, the Cauchy estimation
can be used and |R| — 0 when n — oo. In the case when the positive
number ¢ = sups, (kK = n+ 1,n + 2,...) exists, when (; are majorants
la;A®w| < ¢, (k=n+1,n+2,..), then the error can be estimated by

© roVew 2 (S)FL__ (6/2
613) R< Y (3) Fsea X (5) S mam o6/
o1 \2 k! N I k! (n+1)!

Remark 5.1. Non-analytic function w(z,Z) can be approximated via

ordinary polyanalytic function and p-polyanalytic function. In the first case the
error of the approximation [9] is

(5/2)n+1

S m+ 1) exp(d/2).

So, the second approximation (5.12)-(5.13) is better because the characteristic
p = ¢ can be chosen to be arbitrary small and such to have an influence on error
estimation.

Remark 5.2. In the case when p = p(z,y), transition from (5.2) to
(5.3) is not possible and the generalization of the theorem 5.1 is very complicated
if the characteristic is a function. That is the reason why in this paper only the
Laplace vector field is considered. :
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