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The work examines four parametric family of algorithms for calculating the estimates
on the number of binary tables (matrices), caused by monotonous Boolean functions. Estimate
calculating algorithms (ECA) are based on the classification of the recognition subject in the
class depending on the value of quantitative performance - estimates (where comes the name of
the method).We prove that under some additional restrictions on the set of admissible tables,
algorithms of this family have a high accuracy of recognition.

AMS Subj. Classification: 62H30
Key Words: pattern recognition

1. Description of the model

The set of objects to be recognized by the system is described by n binary
features, i.e. o; = {0,1},i = 1,2,...,n. The tables for training and supervision
are sets of admissible rows, broken down into two classes - m for the training
table and ttable for control. Sets of sets of admissible rows for the classes K3
and K> are described as follows:

Let f(z) = f(z1,%2,...,Zn) is monotonic Boolean function;

D, = {z = (z1,Z2, ..., zn)|f(x) = 1} is the set of function units;

Do = {z = (21, Z2, .., Tn)| f(x) = 0} is the set of zeros for function f(z).
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The point z € D, is defined as a limit point in the set D; such item for
which there is such y € Dg that p(z,y) = 1. (This p(z, y) is distance in terms of
Hemming, i.e. a number of different components). Similarly is determined limit
point in the set of zeros of monotonic Boolean function: the point z° € Dy is
called the limit, if there is a point 3’ € D; such that p(z]y) = 1.

Let I'y is the set of limit points of the set D; and I'g is set of limit points
of Dy. The set I' = I'g|JTI'; is formed the set of limit points of the Boolean
function f(z) .

Let ¢ is any natural number. We define the following subsets DY - the
set of units and D§ - the set of zeros of the function:

DY = {z|z € Dy and p(z,T') > ¢}, D§ = {z|z € Do and p(z,T) > ¢},

where p(z,I') = minp(z,z), z€T .

The set of admissible objects for the class K; coincides with the set of
coordinates of points belonging to the set DY (briefly coincides with the set DY).

Similarly, the set of admissible rows for the class K, forms the set D§. In
further work with tables T3, T5 filled with admissible rows from built thus sets
we will denote with 7Y, Ty .

But any arbitrary algorithm belonging to the class algorithms A(k, €, 41, d2)
described in [1] are supplied sequentially to recognition rows (objects) of a fixed
control table, as decision set and use table. We defined the quality of the algo-
rithm by the proportion of correctly recognized control rows:

Q) = o,

where t'is s number of correctly identified rows of the table T3 by algorithm A.
The extremal algorithm A* € A(k, ¢, 8, 0d2) is determined as:

Q(A")=  sup  Q(A).

A€A(k,e,61,62)

As performance characteristics of the given family (a class) A(k,¢, d1,d2)
of the algorithms on a set of ordered pairs {(TY, T5)} of admissible tables is
used value, specified by the condition:

Qu(A*) = min Q(A%).
? @y @)
The task is to find the minimum value of the parameter (if it even exists

for the function f), where the algorithm detects extreme permissible faultless
couple tables. We will attempt to formulate a criterion for correctly (faultless)
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recognition to formulated procedure to reduce the checks in order to solve the
problem. We will show that for a sufficiently wide class of monotonic function
there is an integer non-negative value of ¢, such that for any pair 73, T of
corresponding set, the algorithm is recognized unmistakably.

2. Criterion for correct recognition

Let the rows of K; and K> be arbitrary and not intersected subsets G
and Gs of the set of tops of unit n-metric cube Ej.

= — min p(z ;
R(Gh) max [zrlneaglp(xl,y) zzeGzp( 2,9)]

= — min p(z1 ,2
R(G2) max [gleag;czp(xz,z) zleGlp(l )

R(G) = max{R(G1), R(G2)}-

Theorem 1. The eztremal algorithm recognizes correctly each pair of
admissible tables if and only if R(G) < 0.

Proof. Sufficiency. Let R(G) < 0. Consider algorithm A € A(k,e,61,02)
with parameters k, ¢ satisfying the conditions (parameters d1, d; are not fixed so
far):

(1) e+ 1< m(G),
(2) n—k+¢e>MG),
where

m(G) = min min p(z, 2), M(G) = max{M(G1), M(G2)}
z€G) y€G2

and
M(Gy) = max p(z, z), M(Gs) = Jmax. p(z, z).

Inequalities system (1), (2) is compatible, as the sets G1 and G do not
intersect, and m(G) > 1, but by condition R(G) <0, where M(G). <n-1. .
Let us T} = (51,52, .- - Sem), To = (51, 5%, - - %,) have arbitrary admis-

sible tables for training and supervision, ie
S; € Gy, Si+m € Gy, 1=1,2,...,m,

S; € Gy, Sj44 €Gay 7 =1,2,...,t
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Algorithm with parameters satisfying conditions (1), (2), assigned, ac-
cording to (1), the following estimates for the row Sj, (1 <¢<t):

s _ZZ( n—P(Sq:S') )( P(Szi\,si) )’

q=1 A=0

Z Z( n—P(Sq’ 7 )( P(Sci\asf) )

g=m+1 A=0
Therefore the following inequalities have been satisfied:

€ - ’ '
I" i 1"2 > m - min [min (n A%T) )(p(S,S) )—-—
S§'€G1 | 5€G1 £~ k=X A

(3) — max Eo(n_kpisisl) )(p(S),\S’) )],i=1,2,...,t

A=l

i.e,
p(z1,y) < p(z2,9),

for any
z1,y € G1,722 € Gs.
We receive:
i n—-p(xl,y) p(zl)y) > i n_p(‘r2ay) p($2,y)
= k— )\ A - — k=X A ’

Since p(z1,y) < M(G1) S M(G) <n—k+e¢, p(x2,y) > m(G) > e+ 1 (see
(1) and (2)) has been fulfilled, then according to the inequality:

S (P PEnw) Y ((pleny) ) S s (nmpleny) ) (eleny)
k—A A k—A A ’
A=0 A=0
for arbitrary and inequality (3) follows:

(4) YT >m i=12,...,t

Reflecting similarly with respect to any order of the class K> of the control table,
we get:

S

(5) Iy Ty >m i=i+1,i+2,...,2.
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Let us consider the value Fﬁ%%'z_ of arbitrary row S’ € G;. Since, under (4)

! -1
(6) ry . > [1 4 maxsec, T3
r+r3 = rs = ming: ry’
1 2 1 + maxgseq, I—‘% S'eGy 11
1

Similarly for arbitrary row §’ € G is fulfilled:

/ -1
(7) r iq [ maxseg, I'5 ]
1‘\.15" + Fg’ - mingreqg, F“g’

and using inequalities (6) and (7) we obtain:

rs’ rs
min < min — 5 >
{ser T LTy s rg'}

LH;U;T&G’)(“%&@)

()0
Let the parameters 41,2 are such that
& (n=m@ ) (MmO,
9) 5 < m, 525[1+}§:(<n£1_\4/(/\\0)%gM§G))) )

From inequalities (4),(5),(8) it follows that the algorithm with parame-
ters k, ¢, 61,02 satisfying the system of conditions (1),(2),(9) will unmistakably

recognize in each pair admissible tables. This sufficiency is proven.
II. Necessity. Let an extremal algorithm work faultlessly on any pair of

admissible tables. It will be shown that the inequality R(G) < 0 is satisfied.Let
us assume the contrary, ie R(G) > 0. Let for the certainty R(G1) = 0 has been
met, then z;,y € G1,x2 € G2 exist, such that p(z1,y) = p(z2,y). Let us build a

training table in the following way:

S;=z1, Sitm=1z2, 1=12,...,m
The table for control contains at least one row, equal to y in the K class,
then:
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F?—F’é=m[i( n-kpim;,y) ) ( p(zj\,y) )_

A=0

~((n—p(z2,9) \ [ pl22,)
S (e ) (737 =0
A=0

for any value of each parameters k, €.

For the arbitrary algorithm of the family algorithms A(k,¢,d;,d2) the
decision rule will include the row y in the class K3 or will refuse to classify
it, i.e. the extremal algorithm will not work properly, which contradicts to the
assumption that R(G;) > 0 assumption leads to contradiction. This need has
been demonstrated.

Let us introduce the following:

Ri(p) = R(DY), Ro(y) = R(D§), R(p)=max{Ri(), R1(p)}-
-

Corollary 1. Let ¢ is fized and such that the sets DY and D§ are not
empty. The eztremal algorithm works unmistakably for each pair admissible tables
(TY,T¥) then only when R(yp) < 0.

If set f(z1,z2,...,Tn) monotonic Boolean function it can be found ¢
such that DY and D§ both are not empty, and R(yp) < 0 then the corresponding
model is unmistakably recognized in the class of algorithms. The largest interest
causes "the richest"set of admissible rows corresponding to maximum ¢ satis-
fying inequality R(yp) < 0. The problem of finding a value of the parameter ¢
allows a trivial solution by the method of complete exhaustion, but for large
enough n, the volume of work is large.

3. Structure of the sets DY and D§

Let z € E,,, z = (z1,%2,...,Zn)andbyJ; is denoted the set of all unit
coordinates of point x, i.e. J; = {j|z; = 1}. Obviously, for z < y, J; € J, and
conversely, if J; C Jy then point x precedes y, i.e. z < y and J; = Jy if and only
ifz=uy.

Lemma 1. The distance between p(z,y) = |(Jz UJy)\ (Jz NJy)| (By
ly| is denote cardinality of the set).

Proof. The distance between tops z,y of the unit n-metric cube is
equal to the number of non-coincidence coordinates, i.e. if J, = jlz; # vj,
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j€{1,2,...,n}, then p(z,y) = |Jz|. If zj # yj, then j€ JoUJy, § € J=NJy
and therefore j € (J; U Jy)\(Jz N Jy). If 2; = y; = 1, then j € Jy N Jy. In case
zj =y; =0 (1 < j < n)itis obtained that j ¢ (Jr U Jy). Therefore, we can
record j ¢ (Jp U Jy) \ (Jz N Jy). Where it follows that J, = (Jz U Jy) \ (Jz N Jy).
The lemma is proven. u

Corollary 2. Corollary: If z < y, then p(z,y) = |Jy\Jz|.

Let f (z1,z2,...,Zn) is given monotonic Boolean function, setting with
the parameter sets and of admissible rows.

Theorem 2. For any ¢ (¢ > 0, ¢ € N) there are monotonous Boolean
functions f)(x), f (x) such that a set of the units of the function [y (z) coin-
cides with the set DY and the set of zeros of the function fg (z) coincides with
D§.

4. Structure of the sets RY and R§

Let for a function f (z) and arbitrary ¢ be constructed the corresponding
functions f} (z) and f3(z). We denote by Wi (¢) a set of "lower units"of the
function f} (z) and by W§ (¢) the set of "top zeros"of the function.

Theorem 3.
Let us DY # @0, D§ # @0, then to Ry (p) and Ro () is fulfilled:

10 R =n— mi in |JpNJy|+ min [Jz\J.
@0 m = g { i, Ve B

11 R =0 — i in |JpNJy|+ min [Jz\Jz|
(11) o(p) =n Ielgg/:?rzw){ye%g(w)l = N Jyl S Im Ve

Proof. By definition
R = max | max p(zx, — min p(z z) .
1(p) ;lelD‘{’ [yeD‘f p( y) 2eD¢ (z, }

Let us consider the functions:

Y1 = mmax p(z,y) and o= ek p(z, 2),

which are defined in the set DY. Then R () can be presented as follows:

Ry(p) = max [¥1(z) — Yo(z)] -
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Lemma 2. Lemma 2. If x < z’, = € DY then 1) P1(z) = ¥1(2’), 2)
Yo(z) < o(z’).

Proof. First we will prove inequality 1) Let z = (z1,Z2,...,Zn), ¢’ =
(z'1,2'2,...,2'y) and Z = (aj,a2,...,an) be such a point, that condition
max.¢py p(z', 2) = p(a’, #') is satisfied.

Let us consider the point z” = (81, B2, ..., Bn), where

B = 1, i € Jp\Jz
T ) i, i € N\(Jp\Jz)-

It is obvious that 2/ < 3" or z’ = 7, and therefore 2 € D¥. We will show
that p(z',%') < p(z,2") if i € N\ (¢r\Jz), than z; = 2/, 8; = a;. If i € Jp\Jz
than z; = 0,z;’ = 1,8; = 1, a; > 0 and therefore the number of non-coincidence
values for the coordinates of pair of points z’, Z’ is not superior to the number
of non-coincidence values for the coordinates for the pair z’, 27, i.e. inequality is
satisfied: p (2/,%') < p(z, 2").

Then for ¥, (z), which is fulfilled:
Y1(x) = max (=),

z€Df p(z,2)2p(2,2") 2p(a" 2 )=max, ¢ pp p(z",2)p(2’,2) =1
i.e. proved assertion 1) of the lemma. And to prove the second statement:
Let 2/ = (C.!l,dg,. .. ,dﬂ), Z = (&1,&2,. - ,dn) .
Consider a point " = (ﬂl,ﬁz, e ,,3n) as

/§' _ 0, z€ le\Jx
=9 &, i€ N\(Jo\Ja).

Point 2’ < 2’ or 2/ = 7", i.e. 2 € D§. We will show that p(z,z") <
p(z’,Z'). Let us assume that i € N\ (Jpr\Jz), then z; = =/, Bi = @i Ifi € Jp\Jz
than z; = 0,z; =1, B,- = 0,&; < 1 and therefore the number of non-coincidence
values for the coordinates for the pair is not superior to the number of non-
coincidence values for the coordinates for the pair z,z”, i.e. the inequality is
satisfied: p(z,z") < p(2’, Z').

Then for g (z), which is fulfilled:
¢0(z) = max (:L‘,) )

2€D§p(z,2)2p(x,2")2p(x’ &) =max ¢ pe p(z',2)p(z' :2)=Y0
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i.e. proved assertion 2) of the lemma. ]
Lemma 2 has been demonstrated and it is a lower unit = of function f‘}, (z)

(i.e. z € Wl(yp)), such that:
(12) Ry (p) =¥1 (z) — %o (z)

. Let
i(z) = p(z,y"), y 2y, y € Wi(p),

(13) Yo(z) = p(z,2"), z 2 2", z € W(p)-
We will prove the following two lemmas:
Lemma 3. The distance between p(z,y") =n — |(Jo U Jy)|.
Proof. According to lemma 1 has been
)= (U (5150
met but J; N J,» = N, the existing index would applier & ¢ Jp,a & Jy,a €
{1,2,...,n} and then p(z,y") > p(z,y"), Jym = {a} U Jy will be fulfilled,

which contradicts to the condition %7 (z) = p(z,y”). So we can make the con-
clusion that

(15) p (@) = |N\[ |
moreover
(16) Jz N Jyll =Jz;N Jy.

Actually J;NJ, C JzNJy», since Jy, C Jy», on the other hand JyNJy» C JzNJy,
because otherwise an index a € J; N J, would not exist, such that o ¢ Jy
and could be found point y” € DY, Jyn = Jy\ {a}, which in turn contradicts
to the condition ¥, = p(z,y"). By permission (15) in (16), we obtain that
p(z,y") =n—|J: NIyl .

Lemma 4. The distance between

(17) p(z,2") =n—|(Jz\J:)|-
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Proof. : According to lemma 1.p(z,2") = |(JoUJz») \ (Jz Jan)] is
satisfied, but J,» C J,. Let us assume otherwise - there is an index a € J,»
and a ¢ J,. Consider the point 2" € D§,J,» = Jy\{a}. It is condition
p(z,2") < p(z,2") is met: contrary to the condition g (z) = p(z,2"). Since it
follows that J|J J,» = Jy and p(z,2") = |Jz\ (Jz () Jz»)|. We will show that
JeNJpr = Jz N J,.

1. Jz N J € Jz N J, since 2” < z.

2. Let a € J; N J,. Let us assume that a ¢ J,». Consider the point 2"’
satisfies the condition: J,m = J,#U{a}. Then it follows that 2" € D§, p(z,2") <
p(z, z"), contrary to the condition ¥p(z) = p(z,2"”), i.e. the assumption that
a ¢ J,» is incorrect and therefore the condition a € J,». Where J;NJ» C JxNJ,
is implemented. From 1. and 2. it follows that J;NJ,» C JzNJ,, JoNJ» C JNJ,
we receive:

P(z,zﬂ) = le\(anJzN = |Jz\Jz|-

It follows that lemma 4 is proved. ]

From (12)-(15) it follows, that there are z,y € W1 (p),z € W{ () points
such that:
Ry (p) =n—|JzNJ:| = |J=\ |

From the above, by determining R; (¢)(10) follows. Similarly the equality
(11) for Rg (p) is obtained.You will note that (11) for Ro (y) can be obtained
from proven equality (10), which replaces the funetion by its dual function [3,4,5]:

f*(z1,22,... ,Tn) = f_(il,:l-:z,...,:fn),
f*g (.'131,.’132,... 71:11) = ﬁlp(-’il,im--- ajn)-
Under construction f‘;(:z:) and fg(z) the functions are fulfilled:
f *(];7 (xlsz2)-")xn) = fg(jl’i2v--'1in)’

f*g (131,172,...,1'")=f7‘1p(f:1,1-22,...,:-in),

and therefore R} () = R‘,’ (¢). Then, if we denote by W} (i) the set of the lower
units of the function f *‘}, (z) and with [WJ (¢) a top set of zeros of the function
f*% (2), if z € W (¢), y € WQ (¢) and only if, Z € W (») and § € W () as

= (:1:1,:1:2,...,:1:"), T= (.’fl,:i‘z,...,.’fn)
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y=(y1)y2a"-)yn), g=(g1ag2)---’ﬂn)y
i.e. Jz = jj and Jy = jg
According to (10)

R! (p) = n—2 € W}(p)min{y € W(p)min |J; [ Jy|+2 € W (p)min | J:\J: ]}

is fulfilled, and theorem 3 is proven. u

Thus, under the proven theorem finding the parameter ¢ ensures unmis-
takably the recognizing and crawl sets DY and Df is replaced by the crawl set
of their end points.

5. Concluding remarks

In the text the existence of the parameter value ¢ (for a function f) is
not mentioned for which extremal faultless recognition algorithm performed on
each pair of admissible tables. We will show a class of monotonic functions for
which such values of parameters exist. Let (n, 7) be the set of Boolean functions
defined on the collections, whose number of units is in the range from [3] — 7
to [§] + 7 (in the collections we set the choice of values for the coordmates)
We beheve that outside this interval with fewer units in the collection, the val-
ue function is equal to 0, where a larger number of units is equal to 1. Then

¢ < [2] — 7 for each function f € ¥(n,) the sets D{ and D§ are not empty.
On the other hand a set of many collections, correspondmg to the lower units
of the function f}(z) contains not less than [§] — 7 + ¢ units, and each set of

many sets, correspondmg to the zeros of functions f¢(z) contain no more than
[ ] + 7 — ¢ units. Where according to the criteria for recognition and faultless
formula (10) (11), it follows that ¢ > [% ] + 7 for each function f € ¥ (n,7) the
extremal algorithm from famlly of algorithms A (k, €, 61, d2) made recognition for
each pair admissible tables (77,73 ) unmistakably .

Let 7 < [2] and T be mteger [2] + 7 < [2] — 7 is satisfied, where we can
make a conclusion that there is at least one parameter value ¢, such that the ex-
tremal algorithm made recognition for each pair admissible tables unmistakably.

According to [2]

( )(1+an)
(19) [¥(n,7)| =2
where o, = ce™ 1, c is constant. Furthermore, the number of Boolean functions

is true assessment [2]:
)(Hﬁn)

[SIE R

ol 3
ol 3

( )(1+an) (
(20) 2 <Y(n) <2
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where o, = de™ 4,8, = %ﬂ, c, " are constants.

Let 9 (n) be the number of monotonous Boolean functions for which
there is a parameter, extremal algorithm from family of algorithms A (k, ¢, 8;,d2)
made recognition for each pair admissible tables (T}, Ty) unmistakably. Then
according to (19) and (20) we obtain:

log $(n) ~ log 9(n) ~ ( [’%‘] ).
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