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In this paper we consider an extended model of the Special Relativity via a principal
bundle with structure group SO(3,C) over the base B = R3. From this viewpoint the 4-
vector of velocity is replaced now by a 3 x 3 orthogonal Hermitian matrix. It is introduced 1-
dimensional time parameter and it is parallel to the velocity vector. Starting tom the structure
group SO(3, C) the Lorentz transformations are deduced. So this paper gives a wider view of
the Special Relativity and it gives a relationship between the two approaches.

1. Introduction

When we consider parallel transport of a 4-vector of velocity, the dis-
placed 4-vector is again a 4-vector of velocity. But if we consider the 4-vector of
velocity as a Lorentz boost, then its parallel displacement may not be a boost
but may contain a space rotation, and can simultaneously give information for
both the velocity and space rotation of the considered body. The change of the
angular velocity is studied by parallel displacement of the spin vector separately
from the velocity vector. This is the main motivation for the present paper
where we present a new model, using the 3-dimensional time. We consider in
this paper only linear transformations as in the Special Relativity (SR). The
study of gravitation and inertial forces, where the mentioned anomaly disap-
pears, is left for a forthcoming paper. In this paper the matrices of the group
01(1, 3) will be considered for imaginary time coordinate ict.

Albert Einstein and Henri Poincare many years ago thought about 3-
dimensional time, such that the space and time would be of the same dimension.
At present time some of the authors [1-5,7-9] propose multidimensional time in
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order to give explanation of the quantum mechanics. In [6] it is also proposed
3-dimensional time and replacement of the Lorentz transformation with vector
Lorentz transformations.

2. Basic results

Let us denote by z, y, and z the coordinates in our 3-dimensional space.
Having in mind that the unit component 01( 1,3) of the Lorentz group is iso-
morphic to SO(3, C), we assume that in a'‘chosen moment the set of all moving
frames can be considered as a principal bundle over R3 with structural Lie group
S0(3,C), i.e. R? x SO(3,C). This bundle will be called space-time bundle. If
we consider another moment, the same frames will be rearranged, but they will
also form the same set. The space-time bundle can be parameterized by the
following 9 coordinates {z,y, 2z}, {Zs,¥s,2s}, {Zt,¥t, 2}, such that the first 6
coordinates parameterize the subbundle with the fiber SO(3,R) . So this ap-
proach in the SR will be called 3+3+3-dimensional model. Indeed, to each body
are related 3 coordinates for the position, 3 coordinates for the space orientation
and 3 coordinates to its velocity.

Firstly, we consider the analog of the Lorentz boosts from the 3+1-
dimensional space-time. The next few assumptions are in accordance with the
structure of the group SO(3,C). The coordinates zs,ys, zs, Tt, Yt, 2t are func-
tions of z, y, and z, and assume that the Jacobi matrices

%% % % %
(2.1) V=% % % ead V= | fu
% % %%

are respectively symmetric and antisymmetric. Further, let us denote X =
. _ . _ . . . _[ax,y.z
Ts+1ixy, Y = ys + 1y, Z = 25 + i2¢, such that the Jacobi matrix V = [‘a((mxz]
is Hermitian and V =V +iV*.
The antisymmetric matrix V* depends on 3 variables and its general form
can be written as

(2.2) Vi=—roae——|-v, O vr | .

cy/1 - %: vy, =vz O
From (2.2) we can join to V* a 3-vector ¥ = (vz, vy, v;), which transforms as a
3-vector. Namely, let we choose an orthogonal 3 x 3 matrix P, which determines
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a space rotation on the base B = R3, applying to the coordinates z,y, z. Then
this transformation should also be applied to both sets of coordinates {zs, ys, 25}
and {z¢,y,2¢}. Hence the matrix V* maps into PV*P~1 = PV*PT, which
corresponds to the 3-vector P - 9. Thus ¥ — P - ¥, and ¥ is a 3-vector.

It is natural to assume that V should be presented in the form

V = ' = cos A + isin A.

Assume that A is an antisymmetric real matrix, which is given by

0 —kcosy kcosf
A= [ kcosvy 0 —kcosa |,
—kcosf8 kcosa 0

where ¥ = ¢(cos a, cos 3, cos v) tanh(k) and (cos @, cos 3, cos7) is a unit vector
of the velocity vector. As a consequence we obtain

1 0 Uy vy
(2.3) smAd= ———|-v, O vz |,
cy/1— %'fr vy —vz O
i.e. that V* = sin A is given by (2.2), while the symmetric 3 x 3 matrix cos A is
given by
1

(2.4) (cos A)ij = Vibij + 'ITI—/;VtVJ’

Whel‘e (1/11‘/21‘/3"/4) = : (v:tavyva)ic)'
icy/1-%
From (2.1) and (2.2) the time vector in this special case is given by

-

v
(25) (xtsyt’zt) =TT X (.’L‘, Y, Z) + (x(t)v y?sz?)v
c/1-%

where (22,79, z°) does not depend on the basic coordinates. The coordinates
x4, Y, 2t are independent and they cover the Euclidean space R?2 or an open
‘'subset of it. But the Jacobi matrix [%%—%—‘;fz] is a singular matrix as antisym-
metric matrix of order 3, where the 3-vector of velocity maps into zero vector.
So the quantity (z¢, y¢, 2¢) -0 does not depend on the basic coordinates and hence
we assume that it determines the 1-dimensional time ¢t measured from the basic
coordinates. For example, if velocity is parallel to the z-axis, then z; does not
depend on the basic coordinates because %Ezl = %%‘ = %5; = 0 and hence z; is pro-
portional with the time from the basic coordinaéte system. Further, one can eas-
ily verify that (1— %)~ Y2(5% (z,y,2)) = (1— %)~ V2(@x (cos )7} (a,¢/, 7)) =



196 K. Trencevski

7 x (2,9, 2') for simultaneous points in basic coordinates. So the formula (2.5)
becomes

(2.6) (e, Y, 2) = % x (2., 2') + E- At,

where ¢ is the velocity of light, which has the same direction as 7, i.e. €= g -c.
Notice that for two points which rest (v = 0) and which are considered at the

same moment, i.e. At = 0 in the basic coordinates, it is z; = y; = 2 = 0.

3. Local isomorphism between 01_(1,3) and SO(3,C)
Let us consider the following mapping F' : 01(1, 3) = SO(3,C) given by
I e S AR
o o [ 1 r? s

0 1
—EnVVi -l 1-ppld v

-V ~V3 —Vs Va

(3.1) > M - (cos A + isin A),

where cos A and sin A are given by (2.4) and (2.3). This is well defined because
the decomposition of any matrix from 01(1,3) as product of space rotation
and a boost is unique. Moreover, it is a bijection. Although it is known that
the groups 01(1,3) and SO(3,C) are isomorphic, in the following theorem is
constructed an effectively such an isomorphism [10].

Theorem 1. The mapping (3.1) defines (local) isomorphism between
the groups 01(1,3) and SO(3,C).
Indeed, the mapping
0 c -b iz 0
—-c 0 a 1y
b —-a 0 iz
—ix —iy —iz O

c+iz —-b-—1y
— | —c—1iz 0 a+ iz
b+iy —a-—ix 0

defines an isomorphism between the Lie algebras o(1,3) and o(3,C). This iso-
morphism induces local isomorphism between 01(1,3) and SO(3,C), and it
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induces (local) isomorphism between the two groups. Further it is proved that
this (local) isomorphism is given by (3.1).

If we want to find the composition of two space-time transformations
which determine space rotations and velocities, there are two possibilities which
lead to the same result: to multiply the corresponding two matrices from
S0(3, C) or from O (1,3). Since the result is the same, the three dimensionality
of the time is difficult to detect, and we feel like the time is 1-dimensional. The
essential difference in using these two methods is the following. The Lorentz
transformations give relationship between the coordinates of a 4-vector with re-
spect to two different inertial coordinate systems as it is well known. So they
show how the coordinates of a considered 4-vector change by changing the base
space. On the other side, the matrices of the isomorphic group SO(3,C) show
how the space rotation and velocity change between two bodies, using the cho-
sen base space, by consideration of changes in the fiber. So we have a duality
in the Special Relativity. The use of the group SO(3, C) alone is not sufficient,
because their matrices are only Jacobi matrices free from any motion.

4. Preparation for the main result

(i) Our final goal is to deduce the Lorentz transformations using the group
SO(3,C). We assume that there is no effective motion, but simply rotation for
an imaginary angle. Such a transformation will be called passive motion. The
examination of observation of a moving body can easily be done in the following
way.

Let us assume that v = vy, while v, = v, = 0. In this case the matrix

V = cos A determined by (2.4) is given by V = cos A = diag(l, 11 ) xl—s)
ez Tz

Hence there is no length contraction in the direction of motion (z-direction),

while the lengths in any direction orthogonal to the direction of motion (yz-

—1 2 . . .
plane) are observed to be larger (1 - %;) 4 times. Notice that if we multiply

all these length coefficients by /1 — %; we obtain the prediction from the SR.

If there is an active motion, i.e. there is change of the basic coordi-
nates, we see from the previous discussion that all of the previously described
observed lengths in any direction additionally should be multiplied by the co-
efficient (/1 — ’—c’; Hence the observations for lengths for passive and active
motions together is in agreement with the classical known results. Since the
previous conclusion is deduced by comparison with the consequences from the
Lorentz transformations, and our goal is to deduce the Lorentz transformations,
we should accept the previous conclusion axiomatically.
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(ii) The previous conclusion for the spatial lengths can be supported by
the following conclusion about time intervals. While the observation of lengths
may be done in different directions, the observation of time flow does not depend
on the direction, but only on velocity. The time observed in a moving system

is slower for coefficient /1 — %; for active motions. It is a consequence of the
relativistic law of adding collinear velocities and it is presented by the following
theorem, which is proved in [10].

Theorem 2. Assume that the relativistic law of summation of collinear
velocities is satisfied, and assume that the observed time in a moving inertial
coordinate system with velocity v is observed to be multiplied with f(%), where
f is a differentiable function and the first order Taylor development of f does
not contain linear summand of v/c. Then, f must be f(%) = /1 — %;

Since the 1-dimensional time direction is parallel to the velocity vector,
there is no change in the observation of the time vector which corresponds to
the passive motion. So the observed change for the time vector considered in
the previous theorem comes only from the active motion.

Using the Theorem 2 and the assumption that the 1-dimensional time is
a quotient between the 3-vector of displacement and the 3-vector of velocity, the
following conclusion is deduced in [10]. Let the initial and the end point of a
4-vector r' be simultaneous in one coordinate system S’. Then these two points
in another coordinate system differ for time

akr‘ !
<y

(4.1) ot = ——E—,
1-%

where ¥ is the velocity vector. Notice that (4.1) is also a consequence from the
Lorentz transformations.

(iii) The base manifold R3 is 3-dimensional. It is convenient to consider
it as a subset of C3, consisting of (z, ¥, z, ctz, cty,ct;), where ctz = cty =ct, =0

at a chosen initial moment, and call it complex base. The change of the co-
McosA —MsinA

ordinates can be done via the 6 x 6 real matrix [ . ] , where
MsinA M cos A

M is a space rotation. It acts on the 6-dimensional vectors (Az, Ay, Az,0,0,0)
of the introduced complex base. Multiplying the vectors of the complex base
(Az,Ay,Az,0,0,0) from left with this matrix, we obtain 3-dimensional base
subspaces as they are viewed from the observer who rests with respect to the cho-
sen complex base. Moreover, the pair ((Az, Ay, Az,0,0,0),G) € R® x SO(3,C)
viewed for moving and rotated base space determined by the matrix P €
SO(3,C) is given by (P(Az,Ay,Az,0,0,0)7, PGPT) € R® x SO(3,C).



Special Relativity Based on the SO(3,C) Structural Group ... 199

(iv) Until now we considered mainly the passive motions, while our goal
is to consider active motion in the basic coordinates. The active motion is
simply translation in the basic space, caused by the flow of the time. So besides
the complex rotations of SO(3,C) we should consider also translations in C3.
Now (Act,, Acty, Act,) for the basic coordinates is not more a zero vector. The

time which can be measured in basic coordinates is At = [(At:c)2 + (Aty)? +

(At,)? 1/2. In case of motion of a point with velocity ¥ we have translation in the
basic coordinates for the vector 7At+i¢At. The space part 7At is obvious, while
the time part At follows from (2.6). An orthogonal complex transformation
may be applied, if previously the basic coordinates are translated.

5. Lorentz transformations as transformations on c3

For the sake of simplicity we will omit the symbol ”A” for space coordi-
nates. So we assume that the initial point of the considered space-time vector
has coordinates equal to zero. Assume that z,y,z are basic coordinates. Let
the coordinates zs, ys, zs are denoted by z/,3’,2’ and let us denote 7 = (z,y,2)
and 7/ = («/,9,2'). It is of interest to see the form of the Lorentz boosts as
transformations in C3, while the space rotations are identical in both cases.

Theorem 3. The following transformation in e

(5.1) (1- v_2)-1/2[ - ] _ [cosA —sinA] [F+ 17(t+6t)]

' c? ot + TxXr sinA cosA é(t + t)
via the group SO(3,C) is equivalent to the transformation of a Lorentz boost
determined by the isomorphism (8.1).

Before we prove the theorem we give the following comments. The coef-
ficient 8 = (1 — %)~!/2 is caused by the active motion (i). Obviously we have
translation in the basic coordinates for vector (#(t + 6t), (t + dt)), where 6t is
defined by (4.1). On the other side, according to (2.6) in the moving system we
have the time vector ¥ x r’ /c, which disappears in basic coordinates (7 = 0).

Proof. Notice that if we consider a space rotation P, whic}~1 applies to
all triples, the system (5.1) remains covariant. Indeed, 7,7/, ¥, ¢, U x r’ transform
as vectors, ¢ and 6t, which is defined by (4.1), transform as scalars, while cos A

; : O
and sin A transform as tensors. Hence, if we multiply from left with [ 0 P]

the both sides of (5.1), we obtain
Pr Pcos APT —Psin APT] [PF+ Pt + 6t)]
p [PEt’ + @B‘cﬂ—’—l] - [Psin APT  Pcos APT P&(t + 6t)
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and since P(cos A)PT = cos(PAPT) and P(sin A)PT = sin(PAPT), the co-
variance of (5.1) is proved. So it is sufficient to apply such a transformation P
which maps vector ¥ into (v,0,0) and to prove the theorem in this special case.
Notice that both left and right side of (5.1) are linear functions of z, v, z, t,
z',y’, 2/, t', and so after some transformations it can be simplified. Then the first
three equations of (5.1) reduce to the following three equations respectively

’—_:l.:.;t-.}.).i.’ yl=y’ ZI=Z_
Vi-%

Further, using these three equations, the fourth equation of (5.1) reduces to

t = -t_+t.)é_
2 )
vVi-a
while the 5-th and the 6-th equations are identically satisfied. ]

According to Theorem 3 the well known 4-dimensional space-time is not
fixed in 6 dimensions, but changes with the direction of velocity. Namely this 4-
dimensional space-time is generated by the basic space vectors and the velocity
vector from the imaginary part of the complax base.
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