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Nondeduciblity on Strategies in the Temporal Logic of
Knowledge

Catalin Dima', Constantin Enea®

We provide a syntactic characterization of Nondeducibility on Strategies in CTL* with knowl-
edge and past time operators, based on prior work by Halpern and O’Neill. Our characterization is pro-
vided by means of a number of axioms that have to be satisfied by formulas specifying sets of strategies.

1 Introduction

Information flow is one of the main techniques that ensure confidentiality. There are
several intuitions behind information flow, and they have been informally synthesized
in statements about the (non-)dependence of high-level (“confidential”) activity and
low-level (“public) observation and/or deduction. Recently, Halpern and O’Neill [10]
have investigated the possibility to relate some models of information flow with the
semantic framework of Temporal Logics of Knowledge (TLK) [9]. They have shown
that Generalized Noninterference (GNI) [15], Separability (Sep) [16], as well as Nond-
educibility on Strategies [21] and its probabilistic form from [12], can be expressed by
using a multiagent framework. Also syntactic forms for two of these information flow
models were provided, stating that a system satisfies GNI or Sep iff the low-level agent
L cannot rule out that any formula ¢ (from some appropriate class of formulas ¢ in
TLK) may hold —i.e. Pr¢ holds — at any state of the system.

Our purpose here is to provide a syntactic formulation of Nondeducibility on
Strategies (NDS) [21], which is a synchronous notion capturing the concept of infor-
mation flow, notion that is weaker than Sep and stronger that GNI. NDS focuses on
high-level strategies as means for High to interact with the system, and is inspired by
previous work on computing covert channel capacity. One of the characteristics of
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the synchronous model of NDS is that High cannot refuse to interact with the sys-
tem contrary to the case of asynchronous and/or process-based models such as the
Bisimulation-based Non-Deducibility on Compositions (BNDC) [6].

Our approach is to give axiomatic and/or syntactic characterizations of strategy
formulas for High in a multi-agent system S and then, similarly to [10], to define NDS
syntactically as the validity in the set of runs in the system S of all the formulas of
the type Pp¢, for any strategy formula ¢. Strategy formulas for High are basically
formulas that specify “regular” families of pure High strategies — i.e. strategies for
High to interact with the system, in which High makes its decisions by observing only
its local state. They are specified as formulas in the full Computational Tree Logic
with Knowledge and Past (KCTL*P ) which have to satisfy axioms for (1) locality (i.e.
the fact that High can only observe its local state and all his decisions are the same in
different runs having the same local history) (2) independence of the future (i.e. the
impossibility for High to guess the future behavior of the system) and (3) totality (i.e.
the fact that local states represent inputs for High, whose only opportunity to avoid a
state is by choosing his output actions). We also give a class of formulas in the LTL
with past which satisfy these axioms and characterize NDS.

As already said, Halpern & O’Neill [10] have suggested to treat NDS as a spe-
cial case of their semantic framework, by including High strategies (called protocols in
[10]) in the High local state and using an appropriate H-information function. How-
ever, they do not give a syntactic characterization for such H-information functions.
Unfortunately, the semantic approach of [10] cannot be easily lifted to the syntactic
level for several reasons: firstly, the trivial approach to provide a propositional symbol
for each strategy — on the grounds of considering a strategy as an item that is “atomi-
cally” observable for an agent — cannot work, since it involves the manipulation of an
uncountable set of propositional symbols (as there may be uncountably many strate-
gies in a system). Secondly, putting the whole strategy in the local state at each time
point i and therefore separating states that have a “common history” might also cause
problems, because systems would have infinitely many states and would be difficult to
specify for model-checking problems. Our approach avoids these problems by keeping
the original system unchanged, and focusing on the class of formulas that can be used
to specify “regular” sets of strategies in Temporal Logic.

Alternating Temporal Logic (ATL) [1] is a framework for reasoning about strate-
gies in multi-agent systems. However ATL was not an option for specifying NDS for
two reasons: firstly, NDS does not require an adversarial framework, as in ATL. In
fact, between the three participants in the NDS framework (High, Low and the Envi-
ronment), High and Low cooperate to produce information flow, but the Environment
is not their adversary, but rather a “nondeterministic noise injector”. As such, NDS is
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more of a worst case scenario', contrary to the approaches in [11, 2], in which Envi-

ronment tries to avoid information flow. Secondly, to check NDS one has to specify the
existence of rwo High-strategies that can be separated by Low-observations. This does
not seem to be possible in ATL in the semantic framework of the initial system. It might
be possible to specify it in a modified system, in which transitions are labeled with pairs
of H-actions — but this hides the essence of our problem: to specify syntactically what
NDS means for the initial system.

The rest of the paper is divided as follows: we recall the NDS model in the next
section, and the syntax and semantics of KCTL*P in Section 3. Section 4 provides the
axiomatic characterization of strategy formulas, and of Nondeducibility on Strategies
in KCTL*P . We also give a syntactic characterization of a class of strategy formulas.
We show here that the classical formulation of NDS [21] is equivalent with the KCTL*P
formulation. We end with a section of conclusions and comments.

2 Preliminaries on Nondeducibility on Strategies

Throughout the paper S* denotes the set of finite sequences over a set S. The set of
sequences over S of length m is denoted S™ while the set of sequences of length at
most m is denoted SS™. By € we denote the empty sequence and St = S* — {¢}.

A transition system is a tuple Tr = (Q, R, g) where Q is the set of states,
R C Q x Q is the transition relation and g is the initial state. A run of length m in T'r
is a sequence p = (¢i—1 — i), ;<,, Such that R(g;_1,¢;), forany 1 < i < m, and go
is the initial state. We denote len(p) = m the length of the run. A run of infinite length
is then an infinite sequence of transitions p = (gi—1 — ¢;) The set of the runs of
T'r is denoted by Runs(T'r).

Ifp = (gi-1 — @), <;<,,» then the prefix of length j of p, for some 1 < j < m,
is the run p[1..5] = (gi—1 — 5,-)1 <i<; (by an abuse of notation, we will consider that
P[1..0] = go). We will also denote p; < p; when p; is a prefix of length j of pp, for
some 0 < j < len(p2). Moreover, we will use p(j), for any 0 < j < len(p), to denote
the jth state of p, qj-

i>1°

Definition 2.1 ([21]) 4 system for n agents is a tuple A = ((I;; | 1 < k <
n),(Or |1 <k < n),R,(i§ | 1<k < n),(of |1 <k < n)) where I, is the set of
inputs of agent k, Oy, is the set of outputs of agent k, i € Iy is the initial input of agent
k, ok € Oy is the initial output of agent k, and R C @Q x Q is the transition relation,
where Q = I X --- X I, x Oy X --- X Oy, is the set of global states. We require that
R is total, that is, for any q € Q there exists d € Q such that R(q,q).

'In other words, stating NDS involves no quantifier alternation and checking it reduces to a reachability
problem, see [5]
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Note that we consider synchronous systems in which each agent must choose
an output and the inputs are received in the same time.

A system A is total for k’s outputs or k-total if for any q,d € Q such that
R(q,q'), and for any o € O, there exists ¢’ € Q such that ¢’ |Ik><O = (q|;,,0) and
R(q,q"). Hence, the k-totality is equivalent to the fact that agent k can at any time
choose any output to continue the computation.

The k-projection of an A-run p = (gi-1 = ¢i),c;c,,» forany 1 < k < n, is
the run p|, = (gi—1 llkxok g |Ik><0k)1<1<m This run is what agent k sees when p
happens in the system .A. We will define also the k-input projection g L = (gi-1 llk

and the k-output projection plok qz 1 L)

4 Izk) 1<i<m lo 1<i<m’

Definition 2.2 A4 strategy for agent k, for any 1 < k < n, is a mapping
s : (Ix)* — Oy such that s(€) = of. An m-strategy for agent k is a mapping
8t (Ix)S™ — Oy such that s(€) = of

A strategy for agent k encodes the choices that this agent makes as a function
of his observations of the system states. We assume that agent k does not have access
to the whole system state when he makes its decisions. Note also that a strategy defines
an output for k in any system state and provided any system history. By s(e) we will
understand the choice made by observing the initial input ¢, which, by definition, is
of. The set of strategies for agent k is denoted by Str.

If 51 is an m; -strategy for agent k and s, an mo-strategy for agent k, with m; <
ma, we say that sy is a prefix of s; if s2(A) = s1()), for any sequence A € (I)S™:.

Given a strategy s for k and arun p = (g;—1 — q,)1<l<m, we say that s is
compatible with p ifforalli =1,...,m,

s(qf - - af) = ail, -

If s is a j-strategy for k and p = (qi_l — qi) 1<i<m> then we say that s is
compatible with p if for all ¢ < min{m, j}, B

s(at .- af) = gily, -

In other words, s is compatible with p if p|k contains the sequence of “deci-
sions” that agent k makes when acting like s, in accordance with the part of the current
state that he may observe.

The set of strategies for agent k in the system A is denoted Str.(.A). Formally,
Strr(A) = {s € Strx | 3p € Runs(A) such that s is compatible with p}

The set of behaviors observable by i when j acts following strategy s is

Obs;(s) = {p|, | s is compatible with p}
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Definition 2.3 4 system A satisfies nondeducibility on strategies from i to j
(denoted NDS(i, 7)) if Obs;(s1) = Obs;(s2), for any s1,s2 € Strj(.A).

If we consider a system with two agents, a high-level agent H and a low-level
agent L, then NDS(L, H) is exactly the nondeduciblity on strategies from [21].

Example 2.1 Figure 1 shows a part of a system A for 2 agents, named H and
L, respectively. The sets of inputs and outputs for each agent are respectively:

In = {'LOH’z{I}’ On = {OSI,O{{}, IL= {'L(I)J’ZIL’Z%L OL = {05}

The initial inputs for H and L are i and if, and the initial outputs for H and L are
06{ and o{;, respectively. Note also that A is total for H s outputs.

. . i A
ko] )
koo )

ook )

|-H iL oH
it 1§ 0f » of

/
\

Figure 1: A system for 2 agents

Let s1 and so be two strategies for H such that s,(€) = ofl, s1(ifl) = off
s2(€) = ofl and sy(if) = ofl. Notice that

Obsy,(s1) = {(i§, 08) = (if,0f) = (if,0f) — ...},
Obsp,(s2) = {(z 00) - (11 ,00) - (11 ,00) -

(10,00) - (22,00) - (12700) - ---»}

which implies that A does not satisfy NDS(L, H).

3 Temporal logic of knowledge

In the following, we will enhance the systems from the previous section with labeling
functions that associate to each global state a set of atomic propositions.
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Definition 3.1 Let AP = |J, ., AP a family of atomic propositions, with
APy, # 0. A Kripke structure for n agents over AP is a couple K = (A, ), where A
is a system for n agents and m : Q — 24F is the labeling function, such that for any two
states q,q € Q and agent k, ifqllkxok =q llkxok then m(q) N AP, = 7(¢') N AP.

The semantics of a formula in the temporal logic of knowledge is given on
interpreted systems which are defined as usual.

Definition 3.2 Let K be a Kripke structure for n agents over some set of atomic
propositions AP as above. The interpreted system corresponding to K is the couple
Z(K) = (Runs(K),T), where T : Runs(K) x N — 24P s the interpretation function
for the atomic propositions in K defined by ((p,n)) = n(p(n)), for any p € Runs(K)
andn € N.

From now on, we will call a point any pair (p,n), where p is a run of K and
0 < n < len(p). We will denote by Points(Z(K)), the set of points of the interpreted
system Z(K).

On the set of points Points(Z(K)), we will define n equivalence relations (~|
1 < k < n), such that ~ relates states being “similar” to agent k. We will adopt a
synchronous perfect-recall semantics of knowledge and consequently, we will consider
that (p,m) ~k (p',m') whenever m = m’ and p[1..m]|, = p/[1..m]],.

In the following we will use PCTL* , which is CTL* with past [17], as our
supporting temporal logic. The set of formulas is defined as follows:

¢=p|¢|oA¢|O¢| 08| US| @ | WMo | $S¢ | 39,

Where p € UISkSn A.Pk.

We define the satisfaction relation (p,m) |= ¢, where (p,m) € Points(Z(K))
and ¢ is a temporal logic formula as follows:

1. (p,m) = v iff Y holds by interpreting the atomic propositions in 7(p, m) to true
and the other ones to false;

(p’ m) }= —¢ iff (P, m) bé ¢;
(p,m) = ¢1 A 2 iff (p,m) |= ¢1 and (p,m) |= ¢2;
(p)m) i= O¢1 lﬁ‘(p’m + 1) }= ¢1;

(p,m) = ¢1Uo iff there exists j > 0 such that (p,m + j) = ¢, and for every
05t<j’(pam+t) '=¢1;

6. (p,m) = @p1iff m=00rm >1A(p,m —1) = ¢y;

Lo I A
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7. (p,m) = ¢1S¢y iff there exists j < m such that (p,j) = ¢2 and for every
j<t<m, (p,t) F é1;

8. (p,m) |= 3¢, iff there exists o € Runs(K) with p/[1..m] = p[1..m] such that
(o',m) = ¢1.
We define as syntactic sugar O¢ = trueldgp, O¢ = ~Od, ;i Weoe = prld 2 V
O¢1, ¢ = ~M¢1, p1Bps = $1Sp2 V B¢, and V¢; = 3¢y, for any temporal
formulas ¢, and ¢. Also, we will define false = ¢ A —¢, Init = @false and true =
—false.
The Full Branching-Time Temporal Logic of Knowledge with Past, denoted by
KCTL*P, is obtained by adding, for all agent indices 1 < i < n, the knowledge oper-
ators K; to the above temporal logic (e.g. [9]). The semantics of K; is the following:

9. (p,m) = K¢y iff for all o € Runs(K) with (p',m) ~; (p,m) we have that
(o', m) = é1.

We say that a formula ¢ of KCTL*P is valid in some interpreted system Z(K)
and denote this by Z(K) |= ¢ if (p,m) = ¢, for all (p,m) € Points(K). Also, ¢ is
called satisfiable in Z(K) if there exists some point (p,m) € Points(Z(K)) such that
(o,m) = ¢.

We will consider a special set of atomic propositions that identify the outputs
and the inputs of each agent in each state. For simplicity we will denote them in the
same way as the outputs (O | 1 < k < n) and the inputs (I | 1 < k < n). In
the following, we will consider Kripke structures K = (A, 7) over some set of atomic
propositions that includes | J; <<, (Ix UOy) and such that: x((,...i% 0%, ...,0™))N
(Ix U Og) = {i*, 0¥}, for any global state (i!,...i", 0!,...,0") € Qand1 < k < n.

4 Nondeducibility on strategies in the temporal logic of
knowledge

In this section we give a syntactic characterization of nondeducibility on strategies in
the temporal logic of knowledge. In fact, we give a syntactic characterization for the
formulas that specify families of strategies for an agent j to interact with the system
and then specify NDS(3, 5) as the validity of B¢, for any such formula ¢. In the first
subsection we give an axiomatic definition for these formulas and in the next subsection
we give a class of formulas in LTL with past that completely define NDS.

4.1 A necessary condition for NDS

A PCTL* formula ¢ is limit closed if, whenever there exists an infinite sequence of runs
(pi)i>o such that (p;,0) = ¢ and p;[1..i] = pi41[1..7], then there exists a run p with
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p[1..i] = ps[1..7] and such that (p,0) = ¢. Hence, ¢ defines a safety formula, or, in
other words, the set of models of ¢ at 0 is a closed set in the usual topology of infinite
sequences.

Definition 4.1 Let K be a Kripke structure for n agents and Z(K) its corre-
sponding interpreted system. A PCTL* formula ¢ depends only on the past of agent j
if the following axioms hold for ¢:

O] Z(K) = ¢ — WO,
2 I(K) E ¢ - K;3¢.

The first property (call it extensibility), says that once ¢ holds at a certain point
on a run, then it holds throughout the whole run. Note that this implies that ¢ is limit
closed.

The second property states that the choice of the truth value for ¢ at two j-
similar points (p,m) and (¢, m) does not depend on the set of possible continuations
of p respectively g/ after position m.

Example 4.1 Let K = (A, 7) be a Kripke structure for 2 agents over some set
of atomic propositions AP, for which a fragment is depicted in Figure 2 (the two agents
will be denoted H and L, respectively). We consider that:

o Iy = {ifl i 8 ifl i1}, Oy = {ofl, 0}

o Ir= {ié’,i{’,i%’,’ié’,iﬁ’}, OL= {O{J}-

e The initial inputs for H and L are 1{)’ and ié, and the initial outputs for H and
L are o and o, respectively;

e [C is total for H s outputs;

As a first example, consider the formula ¢, = BO@(i7 — (o A @(ill —
of1))). Intuitively, it holds in each point (p, k) of a run that results as (i.e., is compatible
with) an application of any strategy for H in which, in the first point (p,0), H chooses
of!, and in (p, 1), chooses ol!. Hence, ¢, does not hold in states (p, k) with k > 2 and
for which (p,2) € {(i§,i%, 0, ok), (i ,i%, ol of)}, which implies that ¢, depends
only on the past of H.

Example 4.2 Another example of formula that depends only on the past of H

¢2 = WO((if" — (o5 A OGS — ofl))))).



Nondeduciblity on Strategies in the Temporal Logic of Knowledge 227
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Figure 2: A Kripke structure for 2 agents

Again, it is a formula “specifying” a set of strategies in which H chooses d! when
he sees ifl, and then, if he further sees ifl, chooses of!, and, furthermore, if he sees
i&!, chooses once more okl. This formula holds in all points (p, k) where p is either
the infinite run that passes through the point (& ,i%, 08!, ol), or the infinite run that
passes through the point (i i}, of | ol).

Example 4.3 A4 formula that does not depend only on the past of H is ¢35 =
WOOi. This formula may hold at a state (p, k) if there exists in the future a state
(p, k') in which i4! holds, a fact which is avoided by property 2 in Definition 4.1.

Definition 4.2 Let K be a Kripke structure for n agents and Z(K) its corre-
sponding interpreted system. A PCTL* formula ¢ is j-admissible if it is satisfiable, it
depends only on the past of agent j and satisfies the following axiom:

3) I(K) E (6 A3OY) =30 (6 AY),

Jor any propositional formula ) over I;.
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A j-admissible formula describes a set of strategies for agent j, that is, a deci-
sion to issue an action (identified as a propositional formula over ;) at some moment
after passing through some sequence of states that ends in a state identified by a propo-
sitional formula over I;.

Example 4.4 Let K be the Kripke structure for 2 agents from Example 4.1. An
example of an H-admissible formula is

¢4 = BO((f - of) A G — of) A (i — ofh)).

This formula specifies a set of “memoryless ” strategies for H: at each point (p, k), if
the znpui seen by H is il ori}l, then of! is chosen as the next H output, and if the input
is ifl then ol is chosen. In other words, we can associate to ¢4 a set S of strategies

for H such that s(&ifl) = of, s(¢il!) = off and s(&ifl) = oll, for any € € (I)* and

seS.

Example 4.5 An example of a formula that depends only on the past of H but
it is not H -admzss:ble is ¢5 = ID(za — il ) To pmve this take p1 a run as fol-
lows: (i ,’0,01 o) = Gff,if, off, of) — (i "2,01 o) — (if,if,off ,of) —
(a4 ik, ol of) — ... Then (p1,1) ¢>5 A 3 Q 4l but there exist no run p with
p[0..1] = py [0 1] such that (p,2) | ¢5 Nifl.

Proposition 4.1 Let K be a Kripke structure for n agents total for j's outputs,
Z(K) its corresponding interpreted system and ¢ a j-admissible formula, for some
1 < j < n. Then ¢ satisfies the following j-strategy admissibility property:

For any run p in K for which (p,0) |= ¢, there exists a strategy for j, o which
is compatible with p and such that for any other run g in K with which o is
compatible, (¢,0) = ¢.

The converse implication also holds, in the following sense if ¢ is a PCTL'

formula which depends only on the past of agent j and satisfies j-strategy admissibility,
then ¢ is also a j-admissible formula.

Proof. Suppose first that ¢ is a j-admissible formula and p a run in K for
which (p,0) = ¢. Dependence on the past implies that (p,) |= ¢ for all i > 0. We
will construct a strategy o as required, by recursively defining all its k-length prefixes
Ok.

In fact, we will define the sequence of strategies (ox|k > 0) such that oy is a
k-strategy, o, is a prefix of ox1 and oy, satisfies the following:
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(*) ok is compatible with p and for any other run g of length k with which oyis
compatible, there exists an infinite run gy compatible with o}, with p}[1..k] = p’
and such that (¢}, 0) = ¢.

The first strategy in the sequence, oy, is the only strategy of length 0 that exists.
Clearly, oo is compatible with p. Now, for any run g of length 0 such that oy is
compatible with g/, there exists pj = p such that p[1..0] = p’[1..0] and (p},0) |= ¢.

Then, for any k > 1, suppose we have built the strategy ox_1. In the following,
we will construct o} with the property above. Since oy is a prefix of o, we have to
define choices only for sequences of inputs of length k.

Suppose we have some sequence of inputs from I; of length k+1, A = ig . . . i,
with 7y being the initial input of agent j. If there exists no infinite run g in X such that
p'[1..k] |I_.,~ = J, then we choose randomly a value for ok (3 . . . i).

On the other hand, if for all sequences of length k from O;, \' = og.. .01,
with op being the initial output for agent j, there exists 1 < p < k — 1 such that
0p # 0k(i1 .. .1p) then we also choose a random value for oy (i . . . ix).

Finally, in the remaining case, let X = og...0k—1 be the sequence of outputs
from Oj such that 0o, = o (i1 ...14p), forall1 < p < k — 1 (this sequence is unique
because oy, is a function). By the totality of K for j’s outputs, there exists some run
Pxx € Runs(K) such that {iy,0,} C 7(pan(p)), forall0 < p < k — 1, and
ik € (pa,x (k). Ifalso, {ip, 05} C m(p(p)), forall 0 < p < k — 1, and i} € m(p(k)),
we take PAN = p.

From the conditions on the sequence X, we have that oy is compatiblc with
the run p x/[1..k—1] and consequently, there exists an infinite run A With o 5/ [1..k—
1] = pax[1..k — 1] such that (P\x:0) |E ¢. If pxx = p then we choose p))‘ N=P
which obviously, satisfies all the needed requirements.

Hence, (o y, k—1) | ¢ AT ix, which by j-admissibility implies (4} y/, k
DEIO@WBGA zk) The latter means that there exists an infinite run py i, such
that PAN ik[l k- 1] = p/\ ,\,[1 k- 1] P, )\/[1 k- 1] ix € W(p)‘ A’,ik(k)) and
(P, i k) |E ¢. Again, 1fp)\ N = p/\ w» = p then, we choose py x i, = p. We will
define oy (i; . .. ix) = ok, where ox € 7(pa i, (K))-

Now, we will prove that oy, satisfies property (*). Take any run ¢ of length k&
compatible with oy. If we take A = p/[1..k — 1] |I and X = p/[1..k— 1”0 and suppose
that i, € m(p'(k)) then, (o, k) ~; (pa, ,\,,,k,k) where p) y j, is the run used in the
construction of oy.

The fact that (py x ;,, k) |= ¢ implies, by property 2, that (p x i, k) = K;3¢.
Hence, there exists p| compatible with o) with p[1..k] = p’ such that (p},k) = ¢
which implies, by property 1, that (4],0) = ¢.

All that is left for proving is that the strategy o defined by o(A\) = gj5()), for
all \ e I; (|A| denotes the length of the sequence ) satisfies the j-strategy admissibil-
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ity property. But this is an easy corollary of the fact that ¢ is invariant: suppose that g
(infinite run) is compatible with o — therefore, for each k, p3[1..k] is also compatible
with o). By property (*), there exists an infinite run g with p[1..k] = p3[1..k] with
(p%,0) = ¢. Limit closure for ¢ implies then that for p3, which is the unique run with
p3[1..k] = pk[1..k], we have that (p3,0) |= ¢. The fact that o is compatible with p can
be easily deduced from the construction above.

For the converse proof, note first that it suffices to prove the j-admissibility
property only for propositional formulas of the form 1) = i where i € I;. To this end,
suppose that, for some i € I, (p,k) |= ¢ and there exists g/ with p'[1..k] = p[1..k]
and (¢, k+1) = 1.

Note first that Property 1 implies that (p,0) |= ¢. This implies the existence
of a strategy for j, o, compatible with p with the extra properties forming j-strategy
admissibility.

Consider that 7(¢/'(p)) N I; = {ip}, 7(p'(p)) N O; = {op}, for any p > 0
and i = ix41. Denote 0 = o(4; ...14x41). By the totality for j’s inputs there exists an
infinite run p” such that p”[1..k] = p/[1..k] = p[1..k], {i,0} C w(p”"(k + 1)) and o is
compatible with p’. By strategy admissibility, we have that (4’,0) |= ¢ which implies
(0", k+1) = ¢. Since we also have that (¢, k + 1) |= i, Property 3 for ¢ is proved. m

The following definition represents our intended restatement of NDS in
KCTL*P.

Definition 4.3 Let KC be a Kripke structure for n agents, Z(K) its correspond-
ing interpreted system and i, j two agents (i # j). We say that agent i cannot deduce
j-strategies in I(K) (denoted ANS(i, 7)) if for any j-admissible formula ¢ we have
that: :

I(K)  Pig.

The following theorem gives a sufficient condition for a system to satisfy the
NDS restatement from Definition 4.3.

Theorem 4.1 Let K = (A, ) be a Kripke structure for n agents and Z(K) its
corresponding interpreted system. If A satisfies NDS(i, j), for some 1 < i # j <n
and it is total for j's inputs, then Z(K) satisfies ANS(3, j).

Proof. By means of Proposition 4.1, we will actually prove that, if there exists
a formula ¢ which depends only on the past of j and satisfies j-strategy admissibility
but for which Z(K) & P;¢, then A cannot satisfy NDS(i, 5).

Since ¢ is satisfiable there exists some point (p,m) € Points(Z(K)) such that
(p,m) = ¢. By the extensibility property, we have that (p,0) = ¢ and consequently,
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by the j-strategy admissibility, there exists a strategy for j, o, which is compatible with
p and satisfies: for any other run / in K such that o is compatible with g, (p,0) = ¢.

Now, suppose that there exists a point (J, m’) with (p,m’) & P;¢. This
implies that for any infinite run g’ with (p”, m’) ~; (p’,m’) we have that (p”, m’) & ¢.
The latter implies that o is not compatible with g’. Moreover, let o’ be one of the
strategies for j compatible with f.

The above results say that g[1..m']|, - £ & Obs;(), for any & € (I; x O;)*, and
p'L. € Obs;(o’), which imply that A does not satisfy NDS(%, 7). =

4.2 Characterizing NDS using strategy formulas

In the following, we will define the set of strategy formulas which will be used to give
a characterization of nondeducibility of strategies in the temporal logic of knowledge.
This characterization shows that, in fact, NDS(%,j) and ANS(¢,j) are equivalent —
hence, in a certain sense, giving also a proof of the converse of Theorem 4.1.

Let K = (A, ) be a Kripke structure for n agents and Z(K) its corresponding
interpreted system. We define the set of strategy formulas for agent k as follows:

p=i—o|li—(0AOP) | dAd| oV |O¢|Dd]| Wi,

where i € I}, and o € Oy. We will denote by FStr(Z(K)) the set of strategy formulas
for agent k in Z(K).

Strategy formulas are meant to describe strategies. For instance, in the in-
terpreted system Z(K) from Example 4.1, the formula ¢ = ip — (01 A O(i1 —
(02 A O(i2 — 01)))) describes the set of strategies for H, s, with s(i1) = o2 and
S(iliz) = 01.

However, there are strategy formulas that do not correspond to sets of strategies.
Take, for example, the formula ¢ynsat = @ — 0 A4 — o' in which o # o’ which is true
only in the points (p, m) for which i & m((p,m)). Formula ¢ynset can be translated
to the fact that the agent k (whose set of inputs contains ) should in fact not receive 7
as input at point (p, m). It should be clear that there are models in which ¢unsat is not
k-admissible for the agent k.

In the rest of this section, we construct a class of strategy formulas that are k-
admissible. To this end, we will define two functions & : (Ix)* x FStri(Z(K)) —
FP(Ok) and &% : (I;)t x FStri(Z(K)) — FStrg(Z(K)), where FP(Oy) represents
the set of propositional formulas over O (the first argument will be represented as an
index).

Intuitively, for each w € (Ix)™, 6% (¢) represents the propositional formula that
must hold in the position reached after passing through the local states of agent k that
contain the inputs from w when following a strategy which is consistent with ¢ for
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agent k. On the other hand, & (¢) gives the formula that must hold on the next position
after passing through the local states that contain the inputs from w. These functions
are inspired from the derivatives of regular expressions [3] and are defined as follows:

e 5k (true) = true and 6% (false) = false;

e 6F(i — 0) = o and 65 (i — o) = true, for any ¢’ # i;

e 55(i > (0 AO¢)) = oand 55(i — (o A O¢)) = true, for any ' # i;
o 5F(f1 A p2) = 8F(¢1) A 6F(62) and §F(¢1 V ¢2) = 6F (1) V 65 (¢2);
o 65(Op) = true;
o 5f(0¢) = 65(¢);

o 5k(pWi') = 6F(9), for any i # ' and 5F(¢pWi) = true;

€ (true) = true and £¥(false) = false;

o ¢5(i" — 0) = true, for any i, € I;

o ¢5(i = (0 AO9)) = pand &5(i' = (o A Op)) = true, for any i # #/;
o £F(d1 A 62) = EF(d1) AEF(¢2) and EF(d1 V 2) = £F(41) V EF(42);
o (£(O9) = ¢

o F(O¢) = Op A EF(9);

o EF(Wi') = oWi' AEF(9), for any i # ¢ and EF(9Wi) = true;

o 55:(9) = 8F(£5(9)), forallw € (I)*;

o £k.(¢) = EF(EE(9)), forall w € (I)*.

The intuition behind the two functions above is formalized in the following
result:

Proposition 4.2 Let K = (A, ) be a Kripke structure for n agents, (K) its
corresponding interpreted system and ¢ a strategy formula for agent k. Then, for all
m > 0 and for any run p, if we take, for all p > 0, i, € 7(p,p) N Iy, then (p,m) = ¢
if and only if for all j > 0,

(o m+3) | OF iy, (8) A OEE, i, ()-

Proof. We first address the direct proof, which follows by structural induc-
tion:
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Case ¢ = i — o. Note first that £ ;& = o) = true. Then, (p,m) = ¢ is

equivalent with ¢ € w(p,m) = o0 € 7r(p, m) By definition, & * (¢) = oforipy, =i
and 6" (¢) = true for 4,, # i. Consequently, 6% * (#) holds in (p, m) iff ¢ holds there.
Moreover, &¥ (¢) = true, for all w € (Ik)+ "and consequently 6 _ is true in

> Yimw Um4j

(p,m + j7), for all 5 > 0.

Case ¢ = i — (o A O¢1). Then, (p,m) |= ¢ is equivalent with i € 7(p,m) =
(0o € m(p,m) A (p,m + 1) = ¢1). Also 6" " (9) =1 1fzm = 4 and 0¥ " (¢) = true
otherwise, which means that (p,m) = § (¢) Also, ¢k " (9) = 1 Wthh means
(p, m) = O (¢). For the induction step, note first that, if im # i then, 6F  (¢) =
51 » = true, forallw € (I)* and the proof'is finished. Otherwise, we use the fact that

zmw(qS) = 6k (¢1), for all w € (Ix)*, and the inductive hypothesis for (p,m + 1) |=
@1, to obtain the needed result.

Case ¢ = ¢1 A ¢2 and ¢ = ¢1 V ¢a. These cases are obtained directly from the
inductive hypothesis.

Case ¢ = O¢1. Then (p,m) = Oy implies (p,m+1) |= ¢1. Using 6} (¢) = true
and £F (¢) = ¢1 we obtain the base case.

For the induction step, observe first that

€ L (9) = €E(¢1), forallw € (Ix)*

(result that can be proved by induction on the length of w). From this, if we put w =
w’j with j € Iy, we also get

8F w(9) = 8% (ek ,(O9)) = 65(EE (1)) = 65 (1)

and the inductive hypothesis solves the case.

Case ¢ = O¢1. Then (p,m) = O¢; implies (p,m + p) |= ¢1, forall p > 0.
We will prove by induction on j that:

@ & i, (06) =061 AEE i (D) AEE i (B1) A AEE L (61)

The case j = 0 follows directly from the definition of £&°. Now, suppose that (4) holds
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for some j. We will prove that it holds also for j + 1:

€ imy e (OB1) = EF (& ., (O61))
=&k L (061) A efmﬂ.“(d:,...im, (¢1))
A §fm+,-+1(§fm+l...im+j (B1))A--- z,,,+1+1 (&mﬂ (#1))
=0d AEE L., (61) A Ef,,....i,,.+j+l(¢1)/\
A ff,,.+1...i,,,+,~+, (B1)A---A 5fm+,~im+,-+1 (61).

Following an analogous procedure and using (4), we obtain:

(5) 1m lm+J(D¢1).— tm.. 1m+](¢1)/\ ‘lm+1 tm+1(¢1)/\ A‘s:cm+1(¢1)

Now, from (p,m + p) = ¢1, by applying the inductive hypothesis, we obtain that
(pm+p+7j) | OF b gt (61) A OE,M,, dimips; (P1), forall p,j > 0. Conse-
quently, (p,m + j) = 6F imas (@) A st . ime; (#), forall j > 0.

Case ¢ = ¢ Wi. Let us first denote p = min{k € N | 4,4 = i}. Since there may
exist runs in which i never occurs, we take this minimum over N U {oco}.

We may then proceed as in the previous case, and obtain, similarly with (4)
and (5), the following identities, in which ! = min{j,p — 1} (with p — 1 = oo when
p = 00):

©)  OF . (@0Wi)=8F i () ASE L i (1) A ASE L (61)

(D) € (W) = GWINEE (SN AEE L (1)

This ends the proof of the direct implication.
For the converse implication we may proceed analogously. [

Definition 4.4 Let K = (A, ) be a Kripke structure for n agents, Z(K) its
corresponding interpreted system and ¢ a strategy formula for agent k. The formula ¢
is called 6-admissible if for any w € (I;)*, 6% (¢) is satisfiable.

A few words on d-admissible strategy formulas are in order. If & (¢) is not
satisfiable for some w € (I)™, then the formula ¢ just forbids the sequence of outputs
w and does not offer any information about some strategy. This is why we will avoid
this kind of formulas. For J-admissible formulas, we can prove that for any strategy
for agent k, s, and any m € N there exists some J-admissible strategy formula ¢, ,
that describes the choices defined by s on sequences of outputs of length at most m + 1
(the first output is the initial output which is represented by the empty sequence when
defining strategies).
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Proposition 4.3 Let K = (A, ) be a Kripke structure for n agents, Z(K) its
corresponding interpreted system and s a strategy for agent k. Then, for any m € N,
there exists an 6-admissible strategy formula ¢, s for agent k, such that:

Vp € Runs(K) : s is compatible with p[1..m] < (p,0) = ¢m,s.

Proof. We define ¢ms = Aye(r)m Pm,s,ws Where ¢m s, describes the
choices implied by s on the sequence #w. Let w = 4y ... 4n and i; = s(iy ... 1;), for
all 1 < 7 < m. We will define ¢y, s 1, as follows:

ik — (o AOG1 = (01 A .. (0m—1 A O(im = 0m)) - ..).

We can easily prove that ¢y, s is the §-admissible strategy formula needed in the claim
of the theorem. ]

Now, we can characterize the nondeducibility of strategies in the temporal logic
of knowledge.

Theorem 4.2 Let K = (A, ) be a Kripke structure for n agents total for j's
inputs, for some 1 < j < n, and Z(K) its corresponding interpreted system.

1. For any §-admissible strategy formula ¢, the formula BO(Init — ¢) is a j-
admissible formula.

2. A satisfies NDS(i, j), for some 1 < i # j < n, iff for any §-admissible strategy
Sormula ¢:

®) Z(K) = P; mO(Init — 4).

Proof. (=) We will prove that all the formulas of the form MO(Init — ¢)
with ¢ an admissible strategy formula are j-admissible formulas. To prove that axiom
2 from Definition 4.1 holds, let (p, m), (¢/,m) € Points(Z(K)) such that Z(K) k=
WO(Init — ¢) and (p,m) ~; (p’,m). We will construct a sequence of runs from K,
(pk | k > 0) such that po = p', pi41[1..m + k] = pi[1..m + k] and (pk, ) |= &, (4),
for any 0 < p < m + k, where w’; = pr[1..p] Ioj'

Suppose we have build py, for some k > 0. If (pp, m +k+ 1) |= éik (o),

m+k+1
then we take pp41 = pg. Otherwise, by the j-totality of X, there exists py41 such
that pgy1[1..m + k] = pi[l..m + k], pr+1(m + k + 1)|Ij = pr(m + k + 1)|I]_ and
pr+1(m + k + 1)|0_ is one of the outputs for agent j that appears in the disjunction
J

equivalent to & , ().
Wit k+1
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Having build the sequence above we obtain that there exists g/ € Runs(K)
such that p”[1..m] = p[1..m] and p”(m + k) = px(m + k), for any k > 1. Moreover,
we have that (p”,p) = 6%,(¢), for any p > 0, where w, = p"[1..p] |1j. The latter
implies, by Property 4.2, that (¢’,0) = ¢ which terminates our proof for the validity
of the axiom 2 from Definition 4.1.

A similar procedure can be applied to prove that the axiom 3 from Definition
4.2 holds. Consequently, we can apply Theorem 4.1 and obtain the needed result.

(<) Suppose by contradiction that Zx has the property above and A does not
satisfy NDS(4, j). Consequently, there exist two strategies si, s2 € Str;(A) such that
Obs;(s1) # Obs;(s2) which implies that there exists a finite run p € Runs(K) of
length m, for some m € N, such that s; is compatible with p but for any other run
¢’ € Runs(K) with p/[1..m]|, = p|,, s2 is not compatible with g

By Proposition 4.3, for s, and m, we can find an admissible strategy formula
®m,s, such that for any p; € Runs(K), sz is compatible with p;[1..m] iff (p1,0) =
Brmsa-

Consequently, we have that (¢, m) (& P; BO(Init — ¢, s, ), Which contradicts
the hypothesis. =

Example 4.6 Let K be a Kripke structure for 2 agents corresponding to the
system A from Example 2.1.

Let ¢ = il — (off A O — ofl)) be an admissible strategy formula and p
the following run:

@it,if, 05 05) = (it ig, off ,0f) — (ifig, of ,0f) — ...
We can easily notice that (p, 1) = Py, BO(Init — ¢) which implies
Z(K) ¥ P, BO(Init — ¢).
Thus, by Theorem 4.2, we obtain again that A does not satisfy NDS(L, H).

Remark 4.1 Theorem 4.2 cannot be utilized for checking whether a given
Kripke structure K satisfies NDS(i, j), since the set of strategy formulas which must
be model-checked in the formula 8 is not finite. However, using results from [5] or
[20] we may prove that strategy formulas corresponding with memoryless strategies
are sufficient.

Formally, in a system for n agents A = ((Ix | 1 <k <n),(Ox |1 <k <
n), R, (i | 1 <k <n),(0f | 1 <k < n)) astrategy s : (Ix)* — O is a memoryless
strategy if for any w,w € (Ix)* and a € I}, we have that s(wa) = s'(wa). We denote
Strremiess( A) the set of memoryless strategies for agent k in system A.
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Proposition 4.4 A system A satisfies NDS(i, j) if if Obs;(s1) = Obs;(s2), for
any 81,82 € Str;-"e’”le”(A).

Proof. Corollary of Theorem 2 (p.13) of [5], or Theorem 4.6 (p.8) of [20] (see also
Theorem 2 of [4]). ]

Using then Proposition 4.3, we may restrict the application of Theorem 4.2 to a
finite number of strategy formulas.

5 Conclusions

We have investigated here the possibility to define syntactically Wittbold & Johnson’s
notion of Nondeducibility on Strategies. We have identified a class of KCTL*P for-
mulas which can be used to specify families of strategies in a system, and provided a
formulation of NDS in KCTL*P , similar to [10].

An interesting question is whether the dependence on the past axiom 2 can be
expressed without the knowledge operator. A negative answer would also suggest that
knowledge operators strictly increase the expressivity of CTL* (with past).
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