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Approximation of the Risk Process - a Survey

Elisaveta I. Pancheva, Ivan K. Mitov

An insurance model can be interpreted as a point process N’ = {(Tk, Xk) : k =1,2,...}
on a particular time-state space. The time components T mark the customers’ claim arrival
times and the state components X} model the claim sizes. The basic idea of an approximation
of the risk process associated with A is to normalize properly the time-state space in such a
way that the resulting sequence of point processes {(Tnk, Xnk) : k = 1,2,..}, n =1,2,... is
vaguely convergent. First an accompanying model with deterministic time points is considered
and after that the general problem with random time points is investigated. The investigation
is done under different assumptions on Tx and X so that different kinds of approximations

arise.

1. Introduction

An insurance risk model Z can be considered as determined if a data
point process N' = {(Tk,Xk) : k = 1,2,...} is given on the time-state space
S = (0,00) x (0,00) where

a) the state coordinates X represent the claim sizes. We assume that
they are independent random variables (rv’s).

b) The time coordinates Tj are interpreted as the claim arrival times.
We assume that they are strictly increasing: 0 < T3 < T < ... < T, — 00.

c) Both sequences Ty and X, are supposed to be independent.

With the point process N/ we associate three random processes:

e the counting process N (t) := ¥ 1{,<¢} = max{k : T <t} which counts
the number of claims in the interval (0,¢]. (Here and latter 14 denotes
the indicator of the event A.)

e the accumulated claim process S(t) := z;k";(‘l) Xk;



308 E.I. Pancheva, 1.K. Mitov

e the risk reserve process R(t) := u+ ct — S(t), where u = R(0) is the initial
capital and ¢ > 0 is the premium income rate.

As a measure of risk one usually takes the probability of ruin ¥ (u) =
P(R(t) < 0 for some t > 0 | R(0) = u). In few cases 9(u) can be calculated
explicitly. In most cases, however, one solves the problem either giving upper
and lower bounds for 1(u) or approximating the risk process R(t).

It is transparent that the uncertainty of the risk process is borne by the
accumulated claim whose distribution function (df) has the form

P{S(t) < z} = fj P{S(t) < z | N(t) = n}P{N(t) = n}
k=0

(1.1) = i(FX1 *...x Fx )(z)P{N(t) = n}.
k=0

In view of (1.1), in fact an approximation of S(t) is pursued.

The main goal of our survey is to offer a unified approach to the approx-
imation of the risk process. As a ”"back testing” we check our approach on the
well known diffusion approximation (Section 3) and the a-stable approximation
(Section 4). Then, in Section 5, we pay attention to a new approximation using
a Sato process. It seems that for first time it was introduced by I. Mitov in his
Ph.D.Thesis [6] (see also Mitov et al.[7]).

2. Preliminaries

Let us make use of the basic idea to change time and space. We ap-
ply continuous and strictly increasing in both coordinates mappings (,(¢,z) =
(Ta(t),un(z)), » > 1 in a way that the claim sizes X,x = u,!(Xx) become
smaller but their number N,(t) increases properly. Here N,(t) = N(1n(t)) =
max{k : Tpr = 7, 1(Tk) < t}. In this way we are supplied with a sequence of
point processes N, = {(Thk,Xnk) : £k = 1,2,...}, n > 1, and associated ran-
dom processes Ny(t), Sn(t) = Ef;{t) Xnk and Ry (t) = un + cpt — Sp(t). If we
succeed in showing that R, = Rp in D, then we might consider Ry as a weak
approximation of the initial risk process R.

This approach consists of three steps:

Step 1 (accompanying point process N )-

The classical limit theory for sums of independent rv’s is related to point
processes with deterministic time points M(,“) = {(tnk, Xnk) : £ =1,2,..}. Let
X, be the same normalized claim sizes as in the point process N,,. The time
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points t,r are chosen so that the corresponding counting function k,(t) =
max{k : t,x < t} is finite for every fixed n and ¢, tends to co as n — oo, and
(under certain conditions on X,j) the weak convergence

kn(.)
(2.1) Zn()=Y Xpx=>2Z() in D
k=1

holds. Note that k,(t) is not uniquely determined by (2.1) and depends on the
tails 1 — P{X,x < z}.

We denote the class of all nondecreasing cadlag functions y : (0,00) —
(0, 00) equipped with the topology of the weak convergence by M(0,0), M C
D. It is a Polish space. Denote by P the set of all probability measures on M.

The limit process Z has independent increments and sample paths in M.
For such processes it is known (cf. Whitt [9]) that:

- the finite dimensional distributions are determined by the univariate
marginal distributions;

- any sequence of nondecreasing processes is tight;

- the set P is closed with respect to the weak topology.

Therefore it is sufficient to prove the convergence Z,(t) 4 z (t) for all
t in a dense subset of (0,00) in order to state the weak convergence Z, = Z
in D. Moreover, if the limit process is stochastically continuous, then the weak
convergence (2) holds under the Skorohod’s Ji-topology.

Step 2 (random time change).

Here we call random time change any mapping 6 : (0,00) — (0,00),
8(0) = 0 and 6(s) — oo for s — oo, which is stochastically continuous and
has sample paths in M(0,00). Given both counting processes Ny (of the point
process with random time points) and k, (of the accompanying point process
with deterministic time points) there exists a random time change 6,(t) (cf.
Pancheva, Kolkovska and Jordanova [8]) such that

(2.2) No(t) £ kn(0n(t)).

On M (0, 00) a convergence in the Skorohod’s M-topology coincides with
a pointwise convergence on a dense subset of (0, 00), which itself coincides with a
convergence for all continuity points of the limit function. Hence, it is sufficient
to assume that

(2.3) 0.(t) S 0(t), n — oo

for all ¢ in a dense subset of (0,00). Then 6, = 6 in the M;-topology and the
limit time process # has sample paths in M.
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Step 3 (continuity of the composition).
Now the accumulated claim associated with the point process N, =
{(Tnk, Xnk) : k =1,2,...} can be expressed as

Nn(t) kn(6n (1))
Sn®)= D Xnk= D Xnk=2Znobn(t).
k=1 k=1

The composition Z, 068, maps M (0, c0) x M (0, c0) into M(0, c0). The indepen-
dence of T),x and X,; implies the independence of 8,, and Z,,. Both convergences
(2.1) and (2.3) then mean that

(Zn,0n) = (Z,0) € M xM.

Unfortunately, the composition map is in general not continuous at (Z, @) in the
M, -topology. Whitt ([9], Theorem 13.2.4) gives conditions for the M-continuity
of the composition. These conditions are equivalent to the statement that both
processes Z and 6 do not jump simultaneously. Finally, under this condition,
one may claim that

(2.4) Sp=2Znobp=>Zo0h=:8

in the M;-topology. In a case when both Z and 6 are stochastically continuous
the weak convergence (2.4) holds also in the stronger J;-topology on M.

3. Diffusion approximation
In this section we specify the initial model Z as follows. Define the
interarrival times by Yj := Ty — Tk—1, k > 1, Tp = 0 and assume that

i) {Y%} are independent and identically distributed random variables (iid
rv’s) with finite variance a%, and expected value EY = %, A > 0;

ii) {Xx} are iid rv’s with 0% < co and EX = p.

Iglehart [4] investigated this model and suggested a Brownian motion
approximation of the accumulated claim process. Indeed, by Donsker Invariance
Principle,

(]
(3.1) Zn() = k; )5’;;7_:‘ = B(.) in D(0,00).
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The sample paths of the Brownian motion B(t) are a.s. continuous. On the
space C (of all continuous functions), C C D, the Skorohod’s J;-topology coin-
cides with the uniform topology.

From (3.1) we already know what kind of time-space transforms to choose,
namely ¢, (¢, z) = (nt, Tz\/ﬁ) Hence, in the new coordinates, we have

Ty X
= = — = : >
A {(T"k n 2 oxﬁ) = 1}

and

Np(t) = ;1 I%t} = N(nt).

Under assumption i) the Law of Large Numbers (LLN) claims that

N(nt) L = At, n — oo.

On(t) :=
Further, in view of (2.2) and (3.1), we observe that k,(t) = [nt] and
Np(t) = N(nt) = [nbn(t)] = kn(6n(t)).

Under assumption ii) the accumulated claim process Sy(t), associated with A,
can be expressed as

Nn(t) kn(On(2)) X,
Sp(t) = Xnk =
N(nt) — /\nt)_'_ Aunt
vn oxv/n’

= Z,(6a(t)) + "(

Thus, the risk process in the new coordinates is defined as R, (t) := :;( ntn =
it p ,N(nt) — Ant
— — == 1) — Zn(On(t)) = —(————).
e+ 2 eV = Za(0n(8) — (D=

In order to guarantee the weak convergence of R, we assume additionally that
a second order LLN holds, namely

iif) M@=t 2o co.

The risk process in the new coordinates is connected with an increasing
humber of customers in [0,¢]. Thus it is reasonable to assume that the initial
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capital u = u(n) increases with n whereas the safety loading p = (55 —1) = p(n)
decreases in n in such a way that

iv) 28 5 ug, 2p(n)y/n - po, n—> 0.

ax n
Then
Ra(t) = Ro(t) = uo + pot — \V/2B(t) in D,
where we have used the selfsimilarity B(At) 4 )\1/2p (t) of the Brownian motion.

4. a-stable Levy motion approximation

In this section we look at the results of Meerschaert and Scheffler [5]
through the three-steps approach to the risk process approximation performed
in Section 2. The initial model Z is specified here by assuming that

i) the claim sizes {Xj} are iii rv’s whose df belongs to the domain of
attraction of an a-stable law (briefly X € DA(Z,)) with a € (0, 1);

i) the interarrival times {Y} are iid rv’s, Y € DA(Dg), B € (0,1).

Under these conditions the stable Functional Central Limit Theorem
(FCLT) claims that there exist normalizing sequences B(n) > 0 and b(n) > 0
such that for all ¢ in a dense subset in (0, 00)

[n?]

4.1) Za(t) —Z = —">Z(t), Z(1) =
and

T[nt] nt .
(4.2) 0] Z —>D(t), D(1) =

The limit process Z(t) is an a-stable one-sided Levy motion and hence %-

selfsimilar and stochastically continuous. Its sample paths belong to M(0, 00).
Similarly, the process D(t) is one-sided [-stable Levy motion, stochastically
continuous with sample paths in M(O, 00). Consequently,

Z,=Z and b( )=>D() in M
with respect to the J;-topology.
Define the hitting time process of D(.) by E(t) := inf{z : D(z) > t}. It
is B-selfsimilar, hence stochastically continuous, but not any more a Levy pro-
cess. Its sample paths belong to M (0, 00). Take a sequence b(n) asymptotically
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inverse to b(n) in the sense that b(b(n)) ~ n. Then convergence (4.2) implies
the weak convergence of the random time changes

N(n.)

bn) = E(.), n = oo,

O0n(.) ==

in M(0, co) with respect to the Jj-topology (cf. Theorem 3 in Bingham [1]).
Now take convergence (4.1) along the subsequence {n' = b(n)}. We get

(4.3) Z.() :=[b(£‘] Xe L z0) in M.
k=1 B(b(n))

Convergences (4.2) and (4.3) suggest the choice of the proper time-space changes,
namely (,(t,z) = (nt, =-~—). Then we have

’ B(b(n))
T X
Consequently,

Nyp(t) = N(nt) = b(n)0n(t) = kn(0n(t))
and
Nn(t) b(n)0n (t) X
Sn t) = Xn = = —
0= 2 %= 2 By

Recall that from Section 2, in order to use the continuity property of the com-
position

Z], 0 0,(t).

Z!l obp=>ZoE

in M with respect to the Skorohod M;j-topology, we need one more assumption,
namely

iii) both limit random processes do not jump together with probability
1.
Now, the risk process R,(t), associated with Ny, can be expressed as

_ROW) _ ) emnt o
Bo® = By ~ Bom) T Bamy )

In addition assume that the initial capital and the income rate increase with n
In a way that
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. un c(n)n
iv) B(b(n))—>uo, Eéﬁ)?;ﬁ_)co’ n — oo.

Finally, we may claim that
R,(t) = Ro(t) = uo + cot — Z(E(t)) in D.

Here the random time-changed a-stable Levy motion ZoFE is not anymore a Levy
process but a 3/« -selfsimilar process whose increments are neither independent
nor stationary.

To this section also belongs the risk approximation studied by Furrer
et al. [3]. In their model the claim sizes X} are iid rv’s with EX = p and
X € DA(Z,), a € (1,2). The interarrival times Y} are iid rv’s such that the
counting process Ny (t) is a renewal process satisfying the first and second order
LLN:

Np(t) — nAt

B(n) —0, n— oo

Na() — At and
n
"Then, under the usual assumptions, the limiting risk process has the form
Ro(t) = up + cot — A/ Z,(t), where Z, is the a-stable Levy motion.

5. Approximation by a subordinated Sato process

Definition. A selfsimilar random process with independent but not
necessarily stationary additive increments is referred to as a Sato process (cf.
Embrechts and Maejima [2]).

In this section we drop the assumption of identically distributed claim
sizes and specify the initial insurance model Z by the assumptions:

i) The claim sizes X} are independent Pareto-distributed rv’s with

ck*\* "
P(Xy >z)= - for > Ck° «a€(0,1);

ii) the interarrival times Y}, are iid rv’s whose df G has a regularly varying
tail 1 — G(z) ~ z PL(z) with B € (0,1) and L(z) - slowly varying function.

In this very heavy-tailed case the stable FCLT applies and we get that
there exist normalizing sequences C(n) > 0 and b(n) > 0 such that the weak
convergences

5.1 Sn(.) : 52 X S
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and
Ty _ 2 Y
e bn) ~ 25wy PV

hold in M. The process S(t) in (5.1) is a Sato process with stochastically
continuous sample paths in M(0, o). Its selfsimilarity parameter is H = §+1/c.
The limit process D(t) in (5.2) is the S-stable Levy motion. As before we denote
its hitting time process by E(t) and obtain from (5.2) that

= E(.), n — oo.

6u() = N(bin).)

Now, it is clear that the time-space changed initial point process has the form:

The associated random processes are:
e the counting process Ny, (t) = N(b(n)t) = n,(t) = kn(On(t)),
e the accumulated claim Sy(t) := 7 ") X, = Eno"(t) —(“7 Sn 0 On(t),
e the risk process R,(t) := E(C'I)‘&P %’1—% SAPEE _ G, 0 On(t).

Let us assume condition iii) from the previous section and

. cnbn
iv) &6 — o, —cp, M — 00.

Then we observe that
Ro(t) = Ro(t) = uo + cot —So E(t) in D.

. d -
Moreover, using the selfsimilarity of S and E, since E(1) = D (1) one gets

SoE(t) £ (P%l) s,

The last simple formula appears to be very useful in simulating the subordinated
Sato process (cf. Mitov et al. [7]).
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