New Series Vol. 25, 2011, Fasc. 4

Strong Insertion of a Continuous Finction between Two Comprable α -Continuous ((C)Continuous) Functions ¹

Majid Mirmiran

Presented by V. Kiryakova

Necessary and sufficient conditions in terms of lower cut sets are given for the strong insertion of a continuous function between two comparable real-valued functions.

2010 Math. Subject Class.: Primary 54C08, 54C10, 54C50; Secondary 26A15, 54C30. Key Words: Strong insertion, Strong binary relation, C-open set, Semi-preopen set, α -open set, Lower cut set.

1. Introduction

The concept of a C-open set in a topological space was introduced by E. Hatir, T. Noiri and S. Yksel in 1996 [5]. The authors define a set S to be a C-open set if $S = U \cap A$, where U is open and A is semi-preclosed. A set S is a C-closed set if its complement is C-open set or equivalently if $S = U \cup A$, where U is closed and A is semi-preopen. The authors show that a subset of a topological space is open if and only if it is an α -open set and a C-open set. This enable them to provide the following decomposition of continuity: a function is continuous if and only if it is α -continuous and C-continuous.

Recall that a subset A of a topological space (X, τ) is called α -open if A is the difference of an open and a nowhere dense subset of X. A set A is called α -closed if its complement is α -open or equivalently if A is union of a closed and a nowhere dense set. Sets which are dense in some regular closed subspace

¹This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan).

354 Majid Mirmiran

are called semi-preopen or β -open. A set is semi-preclosed or β -closed if its complement is semi-preopen or β -open.

We have that a set A is β -open if and only if $A \subseteq Cl(Int(Cl(A)))$ [3].

Recall that a real-valued function f defined on a topological space X is called A-continuous [10] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subset of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [2, 4].

Hence, a real-valued function f defined on a topological space X is called C-continuous (resp. α -continuous) if the preimage of every open subset of \mathbb{R} is C-open (resp. α -open) subset of X.

Results of Katětov [6, 7] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [1], are used in order to give necessary and sufficient conditions for the strong insertion of a continuous function between two comparable real-valued functions.

If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(x) \leq f(x)$ for all x in X.

The following definitions are modifications of conditions considered in [8].

A property P defined relative to a real-valued function on a topological space is a c-property provided that any constant function has property P and provided that the sum of a function with property P and any continuous function also has property P. If P_1 and P_2 are c-property, the following terminology is used:(i) A space X has the weak c-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f, g$ has property P_1 and f has property P_2 , then there exists a continuous function h such that $g \leq h \leq f$.(ii) A space X has the strong c-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f, g$ has property P_1 and f has property P_2 , then there exists a continuous function h such that $g \leq h \leq f$ and if g(x) < f(x) for any x in X, then g(x) < h(x) < f(x).

In this paper, is given a sufficient condition for the weak c-insertion property. Also for a space with the weak c-insertion property, we give necessary and sufficient conditions for the space to have the strong c-insertion property. Several insertion theorems are obtained as corollaries of these results.

2. The Main Result

Before giving a sufficient condition for insertability of a continuous function, the necessary definitions and terminology are stated.

The abbreviations c , Cc and αc are used for continuous , C-continuous and $\alpha-$ continuous, respectively.

Let (X, τ) be a topological space, the family of all α -open, α -closed, C-open and C-closed will be denoted by $\alpha O(X, \tau)$, $\alpha C(X, \tau)$, $CO(X, \tau)$ and $CC(X, \tau)$, respectively.

Definition 2.1. Let A be a subset of a topological space (X, τ) . Respectively, we define the α -closure, α -interior, C-closure and C-interior of a set A, denoted by $\alpha Cl(A)$, $\alpha Int(A)$, CCl(A) and CInt(A) as follows:

$$\alpha Cl(A) = \bigcap \{F : F \supseteq A, F \in \alpha C(X, \tau)\},$$

$$\alpha Int(A) = \bigcup \{O : O \subseteq A, O \in \alpha O(X, \tau)\},$$

$$CCl(A) = \bigcap \{F : F \supseteq A, F \in CC(X, \tau)\} \text{ and }$$

$$CInt(A) = \bigcup \{O : O \subseteq A, O \in CO(X, \tau)\}.$$

Respectively, we have $\alpha Cl(A), CCl(A)$ are α -closed, semi-preclosed and $\alpha Int(A), CInt(A)$ are α -open, semi-preopen.

The following first two definitions are modifications of conditions considered in [6, 7].

Definition 2.2. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho \nu$ implies $x \rho \nu$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

- **Definition 2.3.** A binary relation ρ in the power set P(X) of a topological space X is called a *strong binary relation* in P(X) in case ρ satisfies each of the following conditions:
- 1) If $A_i \rho B_j$ for any $i \in \{1, ..., m\}$ and for any $j \in \{1, ..., n\}$, then there exists a set C in P(X) such that $A_i \rho C$ and $C \rho B_j$ for any $i \in \{1, ..., m\}$ and any $j \in \{1, ..., n\}$.
 - 2) If $A \subseteq B$, then $A \bar{\rho} B$.
 - 3) If $A \rho B$, then $Cl(A) \subseteq B$ and $A \subseteq Int(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [1] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < \ell\} \subseteq A(f,\ell) \subseteq \{x \in X : f(x) \le \ell\}$ for a real number ℓ , then

 $A(f, \ell)$ is called a *lower indefinite cut set* in the domain of f at the level ℓ . We now give the following main result:

Theorem 2.1. Let g and f be real-valued functions on a topological space X with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1)$ ρ $A(g,t_2)$, then there exists a continuous function h defined on X such that $g \leq h \leq f$.

Proof. Let g and f be real-valued functions defined on X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1)$ ρ $A(g,t_2)$.

Define functions F and G mapping the rational numbers $\mathbb Q$ into the power set of X by F(t) = A(f,t) and G(t) = A(g,t). If t_1 and t_2 are any elements of $\mathbb Q$ with $t_1 < t_2$, then $F(t_1) \ \bar{\rho} \ F(t_2), G(t_1) \ \bar{\rho} \ G(t_2)$, and $F(t_1) \ \rho \ G(t_2)$. By Lemmas 1 and 2 of [7] it follows that there exists a function H mapping $\mathbb Q$ into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1) \ \rho \ H(t_2), H(t_1) \ \rho \ H(t_2)$ and $H(t_1) \ \rho \ G(t_2)$.

For any x in X, let $h(x) = \inf\{t \in \mathbb{Q} : x \in H(t)\}.$

We first verify that $g \leq h \leq f$: If x is in H(t) then x is in G(t') for any t' > t; since x is in G(t') = A(g,t') implies that $g(x) \leq t'$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in H(t), then x is not in F(t') for any t' < t; since x is not in F(t') = A(f,t') implies that f(x) > t', it follows that $f(x) \geq t$. Hence h < f.

Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have $h^{-1}(t_1, t_2) = Int(H(t_2)) \setminus Cl(H(t_1))$. Hence $h^{-1}(t_1, t_2)$ is an open subset of X, i.e., h is a continuous function on X.

The above proof used the technique of proof of Theorem 1 of [6].

If a space has the strong c-insertion property for (P_1, P_2) , then it has the weak c-insertion property for (P_1, P_2) . The following result uses lower cut sets and gives a necessary and sufficient condition for a space satisfies that weak c-insertion property to satisfy the strong c-insertion property.

Theorem 2.2. Let P_1 and P_2 be c-property and X be a space that satisfies the weak c-insertion property for (P_1, P_2) . Also assume that g and f are functions on X such that $g \leq f, g$ has property P_1 and f has property P_2 . The space X has the strong c-insertion property for (P_1, P_2) if and only if there

exist lower cut sets $A(f-g,2^{-n})$ and there exists a sequence $\{F_n\}$ of subsets of X such that (i) for each n, F_n and $A(f-g,2^{-n})$ are completely separated

Proof. Theorem 3.1, of
$$[9]$$
.

Theorem 2.3. Let P_1 and P_2 be c-properties and assume that the space X satisfied the weak c-insertion property for (P_1, P_2) . The space X satisfies the strong c-insertion property for (P_1, P_2) if and only if X satisfies the strong c-insertion property for (P_1, c) and for (c, P_2) .

Proof. Theorem 3.2, of [9].

3. Applications

Corollary 3.1. If for each pair of disjoint α -closed (resp. C-closed) sets F_1, F_2 of X, there exist open sets G_1 and G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X has the weak c-insertion property for $(\alpha c, \alpha c)$ (resp. (Cc, Cc)).

Proof. Let g and f be real-valued functions defined on the X, such that f and g are αc (resp. Cc), and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $\alpha Cl(A) \subseteq \alpha Int(B)$ (resp. $CCl(A) \subseteq CInt(B)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f, t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);$$

since $\{x \in X : f(x) \le t_1\}$ is an α -closed (resp. C-closed) set and since $\{x \in X : g(x) < t_2\}$ is an α -open (resp. C-open) set, it follows that $\alpha Cl(A(f,t_1)) \subseteq \alpha Int(A(g,t_2))$ (resp. $CCl(A(f,t_1)) \subseteq CInt(A(g,t_2))$). Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2.1.

Corollary 3.2. If for each pair of disjoint α -closed (resp. C-closed) sets F_1, F_2 , there exist open sets G_1 and G_2 such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then every α -continuous (resp. C-continuous) function is continuous.

Proof. Let f be a real-valued α -continuous (resp. C-continuous) function defined on the X. Set g = f, then by Corollary 3.1, there exists a continuous function h such that g = h = f.

Corollary 3.3. If for each pair of disjoint α -closed (resp. C-closed) sets F_1, F_2 of X, there exist open sets G_1 and G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X has the strong c-insertion property for $(\alpha c, \alpha c)$ (resp. (Cc, Cc)).

proof Let g and f be real-valued functions defined on the X, such that f and g are αc (resp. Cc), and $g \leq f$. Set h = (f+g)/2, thus $g \leq h \leq f$ and if g(x) < f(x) for any x in X, then g(x) < h(x) < f(x). Also, by Corollary 3.2, since g and f are continuous functions hence h is a continuous function.

Corollary 3.4. If for each pair of disjoint subsets F_1, F_2 of X, such that F_1 is α -closed and F_2 is C-closed, there exist open subsets G_1 and G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X have the weak c-insertion property for $(\alpha c, Cc)$ and $(Cc, \alpha c)$.

Proof. Let g and f be real-valued functions defined on the X, such that g is αc (resp. Cc) and f is Cc (resp. αc), with $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $CCl(A) \subseteq \alpha Int(B)$ (resp. $\alpha Cl(A) \subseteq CInt(B)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of $\mathbb Q$ with $t_1 < t_2$, then

$$A(f, t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);$$

since $\{x \in X : f(x) \le t_1\}$ is a C-closed (resp. α -closed) set and since $\{x \in X : g(x) < t_2\}$ is an α -open (resp. C-open) set, it follows that $CCl(A(f,t_1)) \subseteq \alpha Int(A(g,t_2))$ (resp. $\alpha Cl(A(f,t_1)) \subseteq CInt(A(g,t_2))$). Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2.1.

Before stating the consequences of Theorems 2.2, and 2.3, we state and prove the necessary lemmas.

Lemma 3.1. The following conditions on the space X are equivalent:

- (i) For each pair of disjoint subsets F_1, F_2 of X, such that F_1 is α -closed and F_2 is C-closed, there exist open subsets G_1, G_2 of X such that $F_1 \subseteq G_1, F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$.
- (ii) If F is a C-closed (resp. α -closed) subset of X which is contained in an α -open (resp. C-open) subset G of X, then there exists an open subset H of X such that $F \subseteq H \subseteq Cl(H) \subseteq G$.

Proof. (i) \Rightarrow (ii) Suppose that $F \subseteq G$, where F and G are C-closed (resp. α -closed) and α -open (resp. C-open) subsets of X, respectively. Hence, G^c is an α -closed (resp. C-closed) and $F \cap G^c = \emptyset$.

By (i) there exists two disjoint open subsets G_1, G_2 of X s.t., $F \subseteq G_1$ and $G^c \subseteq G_2$. But

$$G^c \subseteq G_2 \Rightarrow G_2^c \subseteq G$$
,

and

$$G_1 \cap G_2 = \varnothing \Rightarrow G_1 \subseteq G_2^c$$

hence

$$F \subseteq G_1 \subseteq G_2^c \subseteq G$$

and since G_2^c is a closed set containing G_1 we conclude that $Cl(G_1) \subseteq G_2^c$, i.e.,

$$F \subseteq G_1 \subseteq Cl(G_1) \subseteq G$$
.

By setting $H = G_1$, condition (ii) holds.

(ii) \Rightarrow (i) Suppose that F_1, F_2 are two disjoint subsets of X, such that F_1 is α -closed and F_2 is C-closed.

This implies that $F_2 \subseteq F_1^c$ and F_1^c is an α -open subset of X. Hence by (ii) there exists an open set H s.t., $F_2 \subseteq H \subseteq Cl(H) \subseteq F_1^c$. But

$$H \subseteq Cl(H) \Rightarrow H \cap (Cl(H))^c = \varnothing$$

and

$$Cl(H) \subseteq F_1^c \Rightarrow F_1 \subseteq (Cl(H))^c$$
.

Furthermore, $(Cl(H))^c$ is an open set of X. Hence $F_2 \subseteq H, F_1 \subseteq (Cl(H))^c$ and $H \cap (Cl(H))^c = \emptyset$. This means that condition (i) holds.

Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets F_1, F_2 of X, where F_1 is α -closed and F_2 is C-closed, can separate by open subsets of X then there exists a continuous function $h: X \to [0,1]$ s.t., $h(F_1) = \{0\}$ and $h(F_2) = \{1\}$.

Proof. Suppose F_1 and F_2 are two disjoint subsets of X, where F_1 is α -closed and F_2 is C-closed. Since $F_1 \cap F_2 = \emptyset$, hence $F_2 \subseteq F_1^c$. In particular, since F_1^c is an α -open subset of X containing C-closed subset F_2 of X, by Lemma 3.1, there exists an open subset $H_{1/2}$ of X s.t.,

$$F_2 \subseteq H_{1/2} \subseteq Cl(H_{1/2}) \subseteq F_1^c$$
.

Note that $H_{1/2}$ is also an α -open subset of X and contains F_2 , and F_1^c is an α -open subset of X and contains a C-closed subset $Cl(H_{1/2})$ of X. Hence, by Lemma 3.1, there exists open subsets $H_{1/4}$ and $H_{3/4}$ s.t.,

$$F_2 \subseteq H_{1/4} \subseteq Cl(H_{1/4}) \subseteq H_{1/2} \subseteq Cl(H_{1/2}) \subseteq H_{3/4} \subseteq Cl(H_{3/4}) \subseteq F_1^c$$
.

By continuing this method for every $t \in D$, where $D \subseteq [0,1]$ is the set of rational numbers that their denominators are exponents of 2, we obtain open subsets H_t of X with the property that if $t_1, t_2 \in D$ and $t_1 < t_2$, then $H_{t_1} \subseteq H_{t_2}$. We define the function h on X by $h(x) = \inf\{t : x \in H_t\}$ for $x \notin F_1$ and h(x) = 1 for $x \in F_1$.

Note that for every $x \in X$, $0 \le h(x) \le 1$, i.e., h maps X into [0,1]. Also, we note that for any $t \in D$, $F_2 \subseteq H_t$; hence $h(F_2) = \{0\}$. Furthermore, by definition, $h(F_1) = \{1\}$. It remains only to prove that h is a continuous function

on X. For every $\beta \in \mathbb{R}$, we have if $\beta \leq 0$ then $\{x \in X : h(x) < \beta\} = \emptyset$ and if $0 < \beta$ then $\{x \in X : h(x) < \beta\} = \cup \{H_t : t < \beta\}$, hence, they are open subsets of X. Similarly, if $\beta < 0$ then $\{x \in X : h(x) > \beta\} = X$ and if $0 \leq \beta$ then $\{x \in X : h(x) > \beta\} = \cup \{(Cl(H_t))^c : t > \beta\}$ hence, every of them is an open subset of X. Consequently h is a continuous function.

Lemma 3.3. Suppose that X is a topological space. If each pair of disjoint subsets F_1, F_2 of X, where F_1 is α -closed and F_2 is C-closed, can separate by open subsets of X, and F_1 (resp. F_2) is a countable intersection of open subsets of X, then there exists a continuous function $h: X \to [0,1]$ s.t., $h^{-1}(0) = F_1$ (resp. $h^{-1}(0) = F_2$) and $h(F_2) = \{1\}$ (resp. $h(F_1) = \{1\}$).

Proof. Suppose that $F_1 = \bigcap_{n=1}^{\infty} G_n$ (resp. $F_2 = \bigcap_{n=1}^{\infty} G_n$), where G_n is an open subset of X. We can suppose that $G_n \cap F_2 = \emptyset$ (resp. $G_n \cap F_1 = \emptyset$), otherwise we can substitute G_n by $G_n \setminus F_2$ (resp. $G_n \setminus F_1$). By Lemma 3.2, for every $n \in \mathbb{N}$, there exists a continuous function $h_n : X \to [0,1]$ s.t., $h_n(F_1) = \{0\}$ (resp. $h_n(F_2) = \{0\}$) and $h_n(X \setminus G_n) = \{1\}$. We set $h(X) = \sum_{n=1}^{\infty} 2^{-n} h_n(X)$.

Since the above series is uniformly convergent, it follows that h is a continuous function from X to [0,1]. Since for every $n \in \mathbb{N}$, $F_2 \subseteq X \setminus G_n$ (resp. $F_1 \subseteq X \setminus G_n$), therefore $h_n(F_2) = \{1\}$ (resp. $h_n(F_1) = \{1\}$) and consequently $h(F_2) = \{1\}$ (resp. $h(F_1) = \{1\}$). Since $h_n(F_1) = \{0\}$ (resp. $h_n(F_2) = \{0\}$), hence $h(F_1) = \{0\}$ (resp. $h(F_2) = \{0\}$). It suffices to show that if $x \notin F_1$ (resp. $x \notin F_2$), then $h(x) \neq 0$.

Now if $x \notin F_1$ (resp. $x \notin F_2$), since $F_1 = \bigcap_{n=1}^{\infty} G_n$ (resp. $F_2 = \bigcap_{n=1}^{\infty} G_n$), therefore there exists $n_0 \in \mathbb{N}$ s.t., $x \notin G_{n_0}$, hence $h_{n_0}(x) = 1$, i.e., h(x) > 0. Therefore $h^{-1}(0) = F_1$ (resp. $h^{-1}(0) = F_2$).

- **Lemma 3.4.** Suppose that X is a topological space such that every two disjoint C-closed and α -closed subsets of X can be separated by open subsets of X. The following conditions are equivalent:
- (i) For every two disjoint subsets F_1 and F_2 of X, where F_1 is α -closed and F_2 is C-closed, there exists a continuous function $h: X \to [0,1]$ s.t., $h^{-1}(0) = F_1$ (resp. $h^{-1}(0) = F_2$) and $h^{-1}(1) = F_2$ (resp. $h^{-1}(1) = F_1$).
- (ii) Every α -closed (resp. C-closed) subset of X is a countable intersection of open subsets of X.
- (iii) Every α -open (resp. C-open) subset of X is a countable union of closed subsets of X.
- Proof. (i) \Rightarrow (ii) Suppose that F is an α -closed (resp. C-closed) subset of X. Since \varnothing is a C-closed (resp. α -closed) subset of X, by (i) there exists a continuous function $h: X \to [0,1]$ s.t., $h^{-1}(0) = F$. Set $G_n = \{x \in X: h(x) < \frac{1}{n}\}$. Then for every $n \in \mathbb{N}$, G_n is an open subset of X and $\bigcap_{n=1}^{\infty} G_n = \{x \in X: h(x) = 0\} = F$.

- (ii) \Rightarrow (i) Suppose that F_1 and F_2 are two disjoint subsets of X, where F_1 is α -closed and F_2 is C-closed. By Lemma 3.3, there exists a continuous function $f: X \to [0,1]$ s.t., $f^{-1}(0) = F_1$ and $f(F_2) = \{1\}$. Set $G = \{x \in X : f(x) < \frac{1}{2}\}$, $F = \{x \in X : f(x) = \frac{1}{2}\}$, and $H = \{x \in X : f(x) > \frac{1}{2}\}$. Then $G \cup F$ and $H \cup F$ are two closed subsets of X and $(G \cup F) \cap F_2 = \emptyset$. By Lemma 3.3, there exists a continuous function $g: X \to [\frac{1}{2}, 1]$ s.t., $g^{-1}(1) = F_2$ and $g(G \cup F) = \{\frac{1}{2}\}$. Define h by h(x) = f(x) for $x \in G \cup F$, and h(x) = g(x) for $x \in H \cup F$. Then h is well-defined and a continuous function, since $(G \cup F) \cap (H \cup F) = F$ and for every $x \in F$ we have $f(x) = g(x) = \frac{1}{2}$. Furthermore, $(G \cup F) \cup (H \cup F) = X$, hence h defined on X and maps to [0,1]. Also, we have $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$.
- (ii) \Leftrightarrow (iii) By De Morgan law and noting that the complement of every open subset of X is a closed subset of X and complement of every closed subset of X is an open subset of X, the equivalence is hold.

Corollary 3.5. If for every two disjoint subsets F_1 and F_2 of X, where F_1 is α -closed (resp. C-closed) and F_2 is C-closed (resp. α -closed), there exists a continuous function $h: X \to [0,1]$ s.t., $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$ then X has the strong c-insertion property for $(\alpha c, Cc)$ (resp. $(Cc, \alpha c)$).

Proof. Since for every two disjoint subsets F_1 and F_2 of X, where F_1 is α -closed (resp. C-closed) and F_2 is C-closed (resp. α -closed), there exists a continuous function $h: X \to [0,1]$ s.t., $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$, define $G_1 = \{x \in X : h(x) < \frac{1}{2}\}$ and $G_2 = \{x \in X : h(x) > \frac{1}{2}\}$. Then G_1 and G_2 are two disjoint open subsets of X that contain F_1 and F_2 , respectively. Hence by Corollary 3.4, X has the weak c-insertion property for $(\alpha c, Cc)$ and $(Cc, \alpha c)$. Now, assume that g and f are functions on X such that $g \leq f, g$ is αc (resp. Cc) and f is c. Since f - g is αc (resp. Cc), therefore the lower cut set $A(f - g, 2^{-n}) = \{x \in X : (f - g)(x) \leq 2^{-n}\}$ is an α -closed (resp. C-closed) subset of X. By Lemma 3.4, we can choose a sequence $\{F_n\}$ of closed subsets of X s.t., $\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n$ and for every $n \in \mathbb{N}$, F_n and $A(f - g, 2^{-n})$ are disjoint subsets of X. By Lemma 3.2, F_n and $A(f - g, 2^{-n})$ can be completely separated by continuous functions. Hence by Theorem 2.2, X has the strong c-insertion property for $(\alpha c, c)$ (resp. (Cc, c)).

By an analogous argument, we can prove that X has the strong c-insertion property for (c, Cc) (resp. $(c, \alpha c)$). Hence, by Theorem 2.3, X has the strong c-insertion property for $(\alpha c, Cc)$ (resp. $(Cc, \alpha c)$).

Acknowledgement

This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

References

- [1] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78, 1971, 1007-1010.
- [2] J. Dontchev, The characterization of some peculiar topological space via α and β -sets, Acta Math. Hungar., **69**, 1-2, 1995, 67-71.
- [3] J. Dontchev, Between $\alpha-$ and $\beta-$ sets, Math. Balkanica (N.S), 12, 1998, 295-302.
- [4] M. Ganster and I. Reilly, A decomposition of continuity, *Acta Math. Hungar.*, **56**, 3-4, 1990, 299-301.
- [5] E. Hatir, T. Noiri and S. Yksel, A decomposition of continuity, *Acta Math. Hungar.*, **70**, 1-2, 1996, 145-150.
- [6] M. Katětov, On real-valued functions in topological spaces, Fund. Math., 38, 1951, 85-91.
- [7] M. Katětov, Correction to, "On real-valued functions in topological spaces", Fund. Math., 40, 1953, 203-205.
- [8] E. Lane, Insertion of a continuous function, *Pacific J. Math.*, **66**, 1976, 181-190.
- [9] M. Mirmiran, Insertion of a function belonging to a certain subclass of \mathbb{R}^X , Bull. Iran. Math. Soc., 28, No. 2, 2002, 19-27.
- [10] M. Przemski, A decomposition of continuity and α -continuity, Acta Math. Hungar., **61**, 1-2, 1993, 93-98.

Department of Mathematics University of Isfahan Isfahan 81746-73441, IRAN

E-mail: mirmir@sci.ui.ac.ir

Received 29.05.2010