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In this paper the sensitivity analysis of E. coli fed-batch cultivation process model is
studied. Non-linear mathematical model includes a system of five ordinary differential equa-
tions to model state variables: biomass, glucose, acetate, dissolved oxygen, as well as the
bioreactor volume. Various local models structures for specific rate functions are examined.
Sensitivity analysis of the parameters with respect to the state variables is performed. Based
on an experimental data set the sensitivity analysis has allowed drawing conclusions about
which parameters will be most easily estimated. As a result a by-stage parameter identifi-
cation procedure is proposed. The identification procedure is tested for model identification
of an E. coli BL21(DE3)pPhyt109 fed-batch cultivation process. The proposed identification
procedure leads to easy and accurate estimation of local models parameters. The procedure
effectiveness is confirmed with a model verification.

1. Introduction

Cultivation processes are characterized by a complicated structure of or-
ganization and independent characteristics, which determines their non-linear
and non-stationary nature. Model formulation for these processes is tradition-
ally performed under conditions of a well-defined medium with single-substrate
limitations, conditions that are not applied to most industrial cultivations, typ-
ically running in a complex medium. On the other hand, the globally valid
unstructured numeric models cannot be used in on-line monitoring and control,
either because they do not reflect metabolic changes or contain too many poorly
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known parameters [3, 18, 29]. Model predictions could be improved using struc-
tured models, but these models incorporate too many equations and unknown
parameters and provide a qualitative, rather than quantitative description of
the process. The structured models are usually so complicated that it is diffi-
cult to use them for industrial scale production. Another alternative is model
construction using functional state concept [24, 28, 29]. Based on this concept
the process is divided into macrostates, called functional states (FS), accord-
ing to certain metabolic pathways that dominate the overall process behaviour.
In each FS the process is described by a conventional type of model, called a
local model, which is valid only in this FS. Thus, more precise mathematical
description is achieved and time-variation of the process parameters is taken
into account.

Once, the functional state local models are defined the next essential step
for the successful model development is the parameter identification. The choice
of a certain optimization procedure is not a trivial task.” The model parame-
ter identification is a big challenge for the traditional optimization methods.
Although various meta-heuristics are used as an alternative to surmount the
parameter identification difficulties the problem with simultaneously estimating
a large number of parameters connected with highly non-linear process dynamics
is of present interest.

Sensitivity analysis could give some transperancy to the parameter influ-
ence on the process behaviour and could contribute to more precise parameter
identification. Sensitivity analysis is a valuable tool for investigating the practi-
cal identifiability of the model parameters [2, 7, 20, 27]. A work fully dedicated
to the identification of biological models, concerning wastewater treatment is
presented in [11]. Sensitivity analysis can be included in parameter estimation
procedures [14, 19, 26], as well as for model reduction [2, 19, 20]. Sensitivity
analysis has found application also in [4-6, 9-10, 15-17]. Knowledge of sensitivity
may also help to identify the driving mechanisms of a process without having to
fully understand the detailed mechanistic interconnections in a complex system.

The present study focuses on the model parameters sensitivity analysis
to elucidate a parameter’s behaviour for use in a model identification procedure.
A set of local models based on the functional state approach is examined. As a
case study a fed-batch cultivation of bacteria E. coli BL21(DE3)pPhyt109 for
bacterial phytase extracellular production is considered. E. coli is still the most
important host organism for recombinant protein production. Cultivation of
recombinant micro-organisms e.g. E. coli, in many cases is the only econom-
ical way to produce pharmaceutical biochemicals such as interleukins, insulin,
interferons, enzymes and growth factors.
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2. Local models for E. coli BL21(DE3)pPhyt109 fed-batch cul-
tivation process

Phytase (myo-inositol hexakisphosphate phosphohydrolase, EC 3.1.3.8
for 3-phytase and 3.1.8.26 for 6-phytase) has become an important feed additive
in the nutrition of monogastric animals since it is able to enhance plant phos-
phorus utilization and to eliminate the negative effects of phytic acid. For all
organisms screened for the enzyme so far the phytase from E. coli had the high-
est specific activity - eight times more than the commercially used Aspergillus
niger phytase [25].

The mathematical description of the E. coli BL21(DE3)pPhyt109 is com-
monly presented according to the mass balance as follows [21-22, 28]:

(0.1) % =X ‘—lj-X

(02) % =—gs X + -f; (Sin — S)

(0.3) % —qaX - %A

(0.4) d—f;ﬁ e X gPh

(0.5) d’(’gz — —gy0, X + k1a(pO} — pO2) — g-po2
(0.6) id‘tf = I

where: X is the concentration of biomass, g/l; S - concentration of substrate
(glucose), g/1; A - concentration of product acetate, g/l; Ph - concentration of
product phytase, g/l; pOs - concentration of dissolved oxygen, %; F - feeding
rate, 1/h; V - bioreactor volume, l; S;i, - concentration of substrate in the
feeding solution, g/l; pO% - saturation concentration of dissolved oxygen, %;
kra - volumetric oxygen transfer coefficient, 1/h. Local models structures and
parameters of specific rate functions gs, g4, gpn and gpo, vary for different FS
[22, 28-29].

There is a strong intuitive appeal in building systems which operate ro-
bustly over a wide range of operating conditions by decomposing them into a
number of simpler modelling or control problems. The concept of functional
state modelling is already applied for description of several fed-batch cultiva-
tions of E. coli [22, 24, 28]. In each FS a simple local model is use and the
considered local models are then combined in a way to yield a global model.
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Table 1: Kinetics equations, used for description of specific growth rate p
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The following assumptions are made in the local models’ development:

— The bioreactor is completely mixed.

— The suspension viscosity in the reactor remains constant during the exper-
iment.

— Variations in the growth rate and in substrate consumption do not sig-
nificantly change the elemental composition of biomass, thus balanced growth
conditions are only assumed.

— Parameters, e.g. pH and temperature, are controlled to certain constant
values.

The local models’ structures, discussed here, are proposed in [21]. The
kinetics equations, used for description of specific rates of cell growth, substrate
consumption, acetate and phytase production and dissolved oxygen utilization
are listed in Table 1. Kinetic equations are selected to be able to describe
the metabolic specificity in the different recognized FS during the considered
cultivation process.

In Model 1 for description of main state variables Monod kinetics is used.
In Model 2 Contois kinetics is considered. In the case of growth inhibition at high
substrate concentration the Andrews growth kinetics is proposed (Model 3). In
Model 4 for description of the specific rates Fujimoto kinetics is applied. Models
5-10 are defined as a combination of different kinetics based on results obtained
from the investigations carried on the first four models [21]. In contrast to
Model 1, in Model 5, it is assumed that variation of acetate production rate,
phytase production rate and dissolved oxygen consumption rate follow Monod
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kinetics according to- the respective variable - acetate, phytase and dissolved
oxygen. Acetate has a critical role as it functions as both a product and a
reactant. In the presence of glucose, E. coli can utilize acetate [8]. Due to
this fact, in Models 5-7 a saturation constant k4 that depends only on acetate
concentration is proposed [13, 21]. Moreover, in the description of the dissolved
oxygen consumption rate a saturation constant k,o, is applied for Models 5-10.
In Model 6, a description of acetate concentration in accordance with Monod
kinetics is proposed. Here specific bacteria growth rate pmax, is introduced.
Phytase production rate proportional to cell growth rate is accepted in Models
5, 6, 9 and 10. In Model 7, the accent is on the description of dissolved oxygen
dynamics. Here specific bacterium growth rate Hmaxpo, s derived from dissolved
oxygen dynamics, is introduced [8]. Model 8 is a simplified version of Models
5-7. Here only the accent on phytase production rate and on dissolved oxygen
consumption rate is kept. The rest specific rates (i, gs and g4) are described
with Monod kinetics. In Model 9 the specific rates u, gs, ga and gpp are
described by Fujimoto kinetics. In Model 10 an acetate production rate that
depends on both acetate and substrate concentrations is introduced. For the
proposed Models 1-10 parameters sensitivity analysis is performed.

3. Local models’ sensitivity analysis

Sensitivity analysis is an important tool when analyzing model character-
istics. The sensitivity coefficients describe the change in the system’s outputs
due to variations in the parameters that affect the system dynamics. High
sensitivity to a parameter suggests that the system’s performance can drasti-
cally change with small variations in the parameter. Vice versa, low sensitiv-
ity suggests little change in the performance. Sensitivity analysis of E. coli
BL21(DE8)pPhyt109 fed-batch cultivation local models is performed using the
sensitivity functions considered in [19, 27]. The mathematical model from (0.1)-
(0.6) is presented as:

dz;
(0.7) d_tj = fj (:L‘l, vy T,y ty D1, pn)

According to [6, 8], the sensitivity functions are defined as:
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where sj; are the sensitivity functions of i-th parameter according j-th
variable, ; - state variables, p; - model parameters.
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Differentiation of the right-hand side (0.7) with respect to p leads to:
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The mathematical model (0.7) and the sensitiyity equations (0.11) to-
gether form the sensitivity model of the considered system. For all ten models,
the state variable vector is presented as z = [X S A Ph pO,]. For example,
the model parameters vector p is:

Model 5: p = [umax ks ka kpn kpo, Ys/x Yax Yen/x Ypo,/x kral;
Model 8: p = [umx ks kpn kpo, Ysyx Yasx Yensx Ypou/x kral;

Model 10: p = [/.l.ma_x Pmax, ks ka kpo, Ys/x Ya/x Yen/x Ypo0./x kLa] :

Solving the sensitivity model of the system, the following parameter val-
ues are used [1, 12]: to = 6.69, X(¢o) = 1.25, S(to) = 0.81, A(tg) = 0.03,
Ph(to) = 3.00, pOa(to) = 21.08, pmax = 0.46, pmax, = 0.21, Pmax,o, = 0.35,
ks =0.012, k = 0.03, k4 = 0.012, kp, = 0.10, kpo, = 0.012, Yg/x = 0.49,
Ya/x = 0.015, Ypp/x = 0.20, Y,0,/x = 0.043, kra = 290.0.

Based on these parameter values, two parameter groups +15% parameter
variation (Group 1) and -15% parameter variation (Group 2), respectively, are
formed. For all ten models, both sensitivity models are analytically worked out
and the sensitivity functions of all 78 parameters are calculated. For Model 8 the
simulated dynamics of X, S, A, Ph and pO, is presented on Fig. 1. On Figs. 2-4,
some simulation curves from sensitivity analysis of Model 8 are presented. For
the rest of the models, the results are similar. Results for the parameter sensi-
tivity, according to the considered state variables X, S, A, Ph and pOs, for three
models (Models 5, 6 and 8), are summarized in Table 2. Due to similarity the
sensitivity patterns for the rest of the models are not presented.

The results of the sensitivity analysis of both sensitivity models (Groups
1 and 2) for Models 1-10 could be generalized as follows:

(i) The highest sensitivity is featured by parameter pimax;
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Figure 1: Simulated dynamics of process variables for Model 8

(i) The following parameters exhibit decreasing degrees of sensitivity in a
similar range:

— Yg/x - according to variables biomass and substrate (considering
Models 1-10),

— Y4 x (considering Models 1-10) and ftmax, (considering Model 6) -
according to variable acetate,

— Ypp/x - according to variable phytase (considering Models 1-10),

— Yp0,/x (considering Models 1-10) and pimax,o, (considering Model 7)
- according to variable dissolved oxygen;

(iii) The influence of the rest of the parameters (ks, k, ka, kpn, kpo, and kra)
is lower, compared to the parameters sensitivity classified in (i) and (ii).

As a result from the sensitivity analysis a by-stage parameter identifica-
tion procedure is proposed. The procedure is conformable to parameter sensi-
tivity and global model structure. The parameters with high sensitivity will be
estimated on the first step based on data of the variable which is affected most.
The parameter division into groups is limited of the global model structure. So,
on the first step of the identification procedure (concerning Models 1-10) three
parameters (Umax, ks and Yg/x) are estimated. The system (0.1), (0.2) and
(0.6) is considered and experimental data set for dynamics of X and S is used.

On the next three steps, consequently the parameters with higher sensi-
tivity according to variables acetate, phytase and dissolved oxygen are identified.

On the second step, for acetate variable the following local models
parameters are identified:

(i) Ya,x for Models 1-4, 8 and 9;
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Figure 4: Model 8 sensitivity of Group 1 in relation to variable acetate
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Table 2: Parameter sensitivity

Model State Parameter sensitivity
variable | the highest — higher — lower — the lowest
X Hmax — YS/X — ks
S Mmax = Ys/x = ks
Model 5 A Mmax — YA/X — ks, kA — Ys/x
Ph pmax = YPh/x — ks, kpn = Yg/x
pO2 Pmax = Ypo,/x = kra = Yg/x — ks
X Mmax = Yg/x — ks
S Hmax — YS/X — ks
Model 6 A Umax, Pmaxa = YA/x = ks, ka = Yg/x
Ph MPmax = Ypr/x = ks = Yg/x
pO2 Pmax = Ypo,/x —* kra = ks, kpo, = Ys/x
X Hmax — YS/X — ks
S Mmax —* YS/X — kg
Model 8 A Kmax —* YA/X — ks — Ys/x
Ph Umax — Ypr/x — ks, kpn = Ys/x
P02 | pmax = Ypo,/x = kra = Ys/x = ks, kpo,

(i) Y4/x and k4 for Model 5 and 7;

(iii) pmaxa> Ya/x and ka for Model 6 and 10.

403

The system (0.1), (0.2), (0.3) and (0.6), estimated parameters (Kmax,
Ys/x and ks) and experimental data set for acetate dynamics are considered.
On the third step, for phytase variable the following local models pa-

rameters are identified:

(i) Ypn/x for Models 1-4, 6, 7, 9 and 10;

(ii) Ypn/x and kpp for Model 5 and 8;

The system (0.1), (0.2), (0.4) and (0.6), estimated parameters (Umax, Ys/x and
ks) and experimental data set for phytase dynamics are considered.

On the fourth step, for dissolved oxygen variable the following local
models parameters are identified:

(i) Yp0,/x and kpa for Models 1-4;

(ii) Ypo,/x, kra and kyo, for Models 5, 6, 8-10;

(iil) maxpo,> Yp02/X> kra and kyo, for Model 7.
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Table 3: Initial conditions of the cultivation parameters
Cultivation to X (to) S(to) A(to) Ph(ty) | pO2 (to)
Ssp =0.2g/1 | 430 h | 3.20 g/1 | 0.84 g/1 | 0.086 g/1 | 5.84 g/1 | 31.28 %
Ssp =0.1g/1 |3.10h | 3.20 g/1 | 0.50 g/1 | 0.087 g/1 | 2.39 g/1 | 33.04 %

The system (0.1), (0.2), (0.5) and (0.6), estimated parameters (fmax,
Yg/x and ks) and experimental data set for dissolved oxygen dynamics are
considered.

With the proposed identification procedure the number of simultaneous
estimated parameter is reduced. For example, for Model 10 instead of the
estimation of the ten parameters in one step, the four groups within three, three,
one and three parameters, respectively, are identified. -Parameters reduction is a
precondition for good performance assessment of the used optimization method
and for obtaining adequate local models with higher degree of accuracy. The
proposed identification procedure is tested for parameter estimation of local
models describing recognized FS in the E. coli BL21(DE3)pPhyt109 fed-batch
cultivation process.

4. Local models parameter estimation of fed-batch cultivation
process of E. coli BL21(DE3)pPhyt109

For modelling of E. coli BL21(DE3)pPhyt109 cultivation experimental
data sets of two different runs are used. The cultivation conditions are pre-
sented in details in [25, 28]. Each experimental data set includes data for the
dynamics of biomass (X), substrate (S), acetate (A4), phytase (Ph) and dis-
solved oxygen (pO2) during the cultivation process. In the first set, used for
local models parameter identification, the substrate concentration is kept at set
point Ssp = 0.2 g/1. The second set of experimental data, where the substrate
concentration is kept at set point Ssp, = 0.1 g/1, is used for model verification.
The initial parameters of the considered cultivation processes are presented in
Table 3. For both cultivation processes substrate concentration in the feeding
solution is 500 g/1 and initial volume is 2.70 1 [25, 28].

A discussion about recognized FS and the rules for recognition is pre-
sented in details in [22, 28]. For the first experimental data set three FS are
recognized [28]:

FS VI: dissolved oxygen limitation state;
FS V: second acetate production state;
FS I: first acetate production state.
Corresponding local models, according to [22, 28] are: Model 8 for FS I;



Sensitivity Analysis of E. coli Fed-batch ... 405

Model 6 for FS IV and Model 10 for FS V. The local models parameters that
have to be estimated are:

FS I p= [uhax k5 kbn Kjo, Yd/x Yi/x Yin/x Ypou/x krall;

FSIV:p= [;u'xIn‘g.x Piaxa k8§ ki k{agz YSI/‘;{ Y,«{Yx ngf‘;//x Yplo‘;/x kLaIV] )

FSV:p= [/‘me /*‘;a,xA kg kX ke 2 Y,s";x YX/X ijh/x Yp‘(/)z/x kLaV] .

Proposed by-stage identification procedure is applied. Due to similarity
only the identification procedure of the local models paramieters in the Model
10 is described.

On the first step the parameters pmax, Yg/x and kg are estimated. The
system (0.1), (0.2) and (0.6), including the specific rates kinetics, proposed in
Model 10 is considered. Experimental data set for dynamics of X and S are
used. On the second step the local models parameters pmax,, Ya/x and ka
are identified. The system (0.1), (0.2), (0.3) and (0.6), including the specific
rates kinetics for acetate production rate, accepted in Model 10 is considered.
The experimental data set for acetate dynamics and the values of the parameters
(Mmax, Ys/x and kg), estimated on the first step, are used. On the third step the
local models parameter Ypp/x is identified. The system (0.1), (0.2), (0.4) and
(0.6), including the specific rates kinetics for phytase production rate, proposed
in Model 10 is considered. The experimental data set for phytase dynamics
and the values of the parameters, estimated on the first step, are used. On the
final step the local models parameters Yp,0,/x, kra and kpo, are identified. The
system (0.1), (0.2), (0.5) and (0.6), already estimated parameters (imax, Ys/x
and kg) and experimental data set for dissolved oxygen dynamics are considered.

The parameter estimation problem was stated as the minimization of a
distance measure J between experimental and model predicted values of the
state variables (X, S, A, Ph and pO3 ):

n m 2
J= ZZ{['Yexp (4) = ¥ mod (Z)]J} — min

i=1j=1

where: J is the optimization criterion; Yexp, Ymod - €xperimental and model
data vectors; n - number of measurements for each state variable; m - number
of state variables.

Obtained results from the model parameters identification are presented
in Table 4. As it could be seen, parameters values in the different FS are
different. As it is well known, the parameters of the cultivation processes models,
and particularly in the cultivation of E. coli BL21(DES)pPhyt109, are time-
varying. The use of global process models could not reflect this fact, while the
functional state approach allows taking into account time-varying of parameters.
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Table 4: Numerical values of the local model parameters
FSI FS IV FSV
Parameter Value Parameter Value Parameter Value
7. 0.52 1/h LA 0.58 1/h Y e 0.54 1/h
Bianxs - [ 0.10 1/h Yihaxa 0.14 1/h
kg 0.076 g/1 [7Ad 0.006 g/1 4 0.04 g/1
T 0.10 g/1 DAL 0.51 g/1 kg 0.10 g/1
Is:{,o2 0.10 % k{,(‘;z 0.006 % kl‘,’oz 0.04 %
Y3/ x 0.16 g/g Ys/x 0.45 g/g Yq) x 0.18 g/g
Yi/x 0.56 g/g Yilx 0.51 g/g YS x 0.62 g/g
Yon/x 0.23 g/g Yor x 0.54 g/g Yen/x 0.28 g/g
Y 0,/ 0.45 g/g Y 0,/x 0.49 g/g Y 0,/ 0.42 g/g
kral 178.01 1/h kra 179.21 1/h kra 179.88 1/h

Thus, an adequate and more precise model is obtained.

Both the real cultivation trajectories and the simulated ones are presented
in Fig. 5. The figure shows the dynamics of the biomass, glucose, acetate,
phytase and dissolved oxygen concentrations for all recognized FS (FS I, FS IV
and FS V). The initial values for the simulation in the new functional state are
the last simulated values in the previous functional state so that the trajectories
were continuous.

The obtained results clearly showed that the developed local models de-
scribed the process dynamics with high degree of accuracy. The proposed local
models structures for each specific rate, related to the corresponding FS, fit
quite well the experimental data.

Model verification

The second independent data set of E. coli BL21(DES3)pPhyt109 fed-
batch cultivation with Sy, = 0.1 g/l was used for the model verification. Here
two F'S were recognized. In the beginning of the cultivation, from 3.1 h to 9.08 h
cultivation time the F'S I was identified, from 9.08 h to 11.12 h cultivation time -
FS V. The developed local models for FS I and FS V were tested for a prediction
of the corresponding F'S behavior in the second data set. The simulation results
from the model verification are presented in Fig. 6.

As it can be seen the results from the verification are good. The present
mismatch between the experimental data used for verification and the developed
model outputs is explained with the fact that the local models were developed
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based on data set from cultivation with Ss, = 0.2 g/1 and the data for verification
are from cultivation with Sg, = 0.1 g/l. On the other hand, failures could be
consequence of inaccurate data (noise, inexact analysis, wrong measurements
etc.). Mentioned above is a preposition that the model predictions are not
with a high accuracy. Nevertheless, the verification results are considered as
satisfactory and it could be concluded that the verification of the developed
local models was successfully fulfilled.

5. Conclusions

In bioprocess modeling, mathematical structures and their parameters,
used to describe microorganisms’ behaviour, constitute the key problem of bio-
process modeling, in particular, the modelling of parameter estimation. In this
paper, the sensitivity analysis of non-linear mathematical model of E. coli fed-
batch cultivation process is studied. Various structures of local models describ-
ing specific rate functions, according to the concept of functional state modelling,
are examined. Sensitivity analysis of the parameters with respect to the state
variables is presented. As a result a by-stage identification procedure is pro-
posed. The identification procedure is tested for model identification of an E.
coli BL21(DE8)pPhyt109 fed-batch cultivation process. The proposed identifi-
cation procedure leads to easy and accurate estimation of local models param-
eters. The procedure effectiveness is confirmed with a model verification. The
results presented here demonstrate the importance of applying the appropriate
sensitivity analysis according to the dynamics of the cultivation process.
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