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A Parallel Branch-and-Bound Algorithm with

Restarts for Solving the Hierarchical
Covering Location Problem
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The Hierarchical Covering Location Problem (HCLP) is an-NP-hard problem. In this
paper we describe an efficient Brand-and-Bound algorithm for solving HCLP, implemented
using openMP to achieve parallelization. This is a general approach to achieving High Per-
formance Computing and can be applied to other optimization problems solvable by Branch-
and-Bound algorithms.
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1. Introduction

Covering location problems encompass a range of applications concerning
the location of various kinds of facilities which cover the so-called demand areas.
A "service distance” determines whether a demand point is covered by an estab-
lished facility. The hierarchical covering models are a sub-class in which there
are facilities that provide different levels of service. Such models are applied
to problems of establishing health care facilities, for example. In the two-level
hierarchical model, facilities on the first level (for example: clinics) provide only
the basic service and cover a small area, while the facilities on the second level
(in this case: hospitals) provide both, the basic and the advanced levels of health
care. Other applications of such models include education facilities, production-
distribution systems etc. The objective of such optimizations is to maximize the
area covered by these facilities, while respecting certain preset constraints.

In this paper we consider the 2-level hierarchical maximal covering loca-
tion problem (HCLP). It is a well-studied problem and it is known to be NP-hard
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as a generalization of the p-median problem. HCLP is usually solved by using
heuristic methods ([1], [2], [3]). However, an exact method presented herein is
equally efficient, since high performance computing techniques were applied to
a sophisticated branch-and-bound algorithm, which itself is optimized to solve
large scale problem instances.

The parallelization approach presented herein can be applied to any
branch-and-bound algorithm with binary variables. Our computational results
demonstrate the effectiveness of this approach, sometimes achieving super linear
speedups. The results are compared to the exact solutions obtained by using
the CPLEX solver.

This paper is organized as follows: in section 2, the mathematical formu-
lation of the problem is presented; in section 3, the pseudo-code for the parallel
branch-and-bound algorithm is presented and explained; in section 4 computa-
tional results are given and in section 5 we draw some conclusions about our
approach.

2. Problem formulation

The integer linear programming model for solving HCLP from [1] is used:

(1) maz ) F; X;
JjeJ
(2) daiYi+ Y biZi > Xj,5 €
el el
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where the parameters are:
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J = {0,1,2,...M — 1} is the set of demand areas,
I={0,1,2,...N — 1} is the set of potential facility sites,
F; is the population of the demand area j,

a;; = 1 if the demand area j can be covered by level 1 service offered at a level
1 facility located at i € I,

a;j = 0 otherwise,

bi; = 1 if the demand area j can be covered by level 1 service offered at a level
2 facility located at i € I,

b;; = 0 otherwise,

ci; = 1 if the demand area j can be covered by level 2 service offered at a level
2 facility located at i € I,

cij = 0 otherwise,
P = the number of level 1 facilities to be located and
= the number of level 2 facilities to be located.
The binary decision variables X},Y;, Z; have the following meaning:
X; =1 if the demand area j is covered by both level 1 and level 2 service,

X; = 0 otherwise,
Y; = 1 means that a level 1 facility is established at location i € I,

Y; = 0 otherwise,

Z; = 1 means that a level 2 facility is established at location i € I,

Z; = 0 otherwise.

Therefore, considering the definition of F; and Xj;, the objective func-
tion (1) maximizes the population covered by the established facilities. The
constraint set (2) ensures that a demand area j is included in the covered pop-
ulation only if either a level 1 facility or a level 2 facility that can cover it is
established. Similarly, the constraint set (3) states that a demand area j must
be covered by an established level 2 facility. aij, b;; and c;; parameters used in
the constraint sets (2) and (3) are pre-calculated from the input data to deter-
mine whether a demand area 7 is within a predefined service distance radius of
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a facility j, for the specified level of service. Finally, the constraints (4) and (5)
limit the number of level 1 and level 2 facilities, respectively.
The model contains 2 * M + 2 constraints and 2N + M variables.

3. Parallel Branch-and-Bound algorithm with restarts

In order to solve HCLP, it is necessary to set precisely @Q out of N Z-

variables to 1. There are (z) combinations for doing this. Similarly, there are

() combinations for choosing the Y-variables.

In all BnB algorithms, the running time is extremely dependant on the
selection of the order in which the decision variables are processed. If the ”cru-
cial” variables are selected at a low depth of the branching, the search tree will
be narrowed down, thus reducing the running time. In the case of the HCLP
problem, the Z variables are more significant, because they represent the facili-
ties that provide both level 1 and level 2 service and thus completely determine
if a demand area is covered (both constraints (2) and (3) are satisfied). The Y
variables only partially determine if a constraint (2) is met.

Further, if ¢ and d are such that (Q —¢) < (N —d)/2, then it follows that
(g:g) < ( N ;_‘:_1). Therefore, when BnB is searching for a solution at depth = d,
the size of the remaining sub-tree will be smaller if the number of variables
already set to 1 was ¢ than if it was ¢ — 1.

For these reasons, the branch-and-bound algorithm is implemented in
two stages. In the first stage, the Z binary variables are determined, and in
the second stage, the Y variables. Branching is realized via auto-recursive calls,
first by setting the value of a selected binary decision variable to 1, then to 0.
A greedy strategy is adopted: variables that add most to the current solution
are first selected. This is in line with first trying the value of 1 for variables.

Finally, for the same reasons as discussed above, the size of the search
tree would be smallest if we could somehow already know the best solution and
first process those Z variables that are set to 1 in the best solution. Because of
this, the following strategy is adopted: the BnB algorithm runs until a solution
better than the currently best solution is found. When such solution is found,
the BnB stops and restarts, this time first processing the Z variables from the
previous best solution. This is repeated until the BnB finishes without finding
a better solution, which means that the search space is exhausted and no better
solution exists.

The ”"Bound” part of the BnB is implemented by solving the linear pro-
gramming (LP) relaxation of HCLP in which X, Y and Z variables are real
numbers between 0 and 1. Such relaxation of the problem has polynomial com-
plexity and can be solved very efficiently by using standard methods. An exter-
nal library is used for finding the LP relaxation solution.
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Table 1: Encoding of the first 3 Z-variables for each thread
Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7
Ojojojojpoprjpofrfofofryrfrfofofrfofrfrfrfoftr]1T]1
1) | 20) | 20) | 22) | 200) | 200) | 22) | 200 | %0) | 262) | 200) | 200) | 2 | 20) | 240) | 202) | 200) | 200) | 2 | 20) | 240) | 260) | 200 | 200

In every node of the search tree, the LP relaxation solution is obtained
by passing the currently fixed Z and/or Y variables and calling the LP solver. If
such solution cannot be better than the current best binary solution, the search
of that sub-tree is abandoned and the BnB algorithm backtracks.

Parallelization is used to speed up the search process. In the initialization
phase, depending on the parameter k, such that threads = 2%, first k ”"best” Z
variables are selected. Then, each of these Z variables is set to 0 or 1 (depending
on a thread) and the BnB algorithm is called in parallel on every thread. The
following table shows the encoding of the first k Z variables for each thread. In
this example, k = 3, threads = 8. _

After the same k Z variables were initiated differently for each thread,
the BnB algorithm is called in parallel for all threads at the same time. As
previously stated, as soon as any thread finds a better solution than the current
best solution, all threads are restarted, going through the same initialization

process.
The pseudo-code of this algorithm follows.

ParallelBnB (k)
{

//Z variables of the current best solution
previousBestZ = array of N 1s

repeat {
K = findIndexesOfBestZLocations (k)

//this section is executed in parallel
in parallel do {
//every threads reads its ThreadID, from O to k-1
get ThreadID
empty Z array
for i = 0 to k-1 {
Z(K(i)) = binary digit on the position "i" in ThreadID
}
//q=the number of so far established Z locations. q<=k<=(Q
q = number of 1s in the binary encoding of ThreadID
call BnB(ThreadID,q,k)
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//threads finish when they complete the search or
//when they receive the restart signal
wait until all threads finish
} end parallel
} until no restart signal received
//if there was a restart signal then some thread has improved
//the best solution so we must go back and search again using
//the new best solution as a start
//if no restart - the search was completed without improving
} end ParallelBnB

//First stage of BnB, for selecting the Z variables
BnB(ThreadID, q, depth)
{

stop if restart signal received;

//Q Z-locations established. Now find Y locations
if (q==Q)
{
empty Y array
//go to the second stage of BnB, to select Y variables
selectY(ThreadID, 0, 0);
return;

}

//BOUND. .
//The binary solution we are looking for cannot be better
//than the real solution with the currently established Zs
if (LPSolution(Z array) <= bestValue)

return;

//find "best" Z candidate location
z = findIndex0fBestZ();

Z(z) = 1;
//BRANCH. 1 more Z-location established.
BnB(ThreadID,q+1,depth+1) ;

//check if there are enough Z locations left
if (depth+Q-q<n)
{
Z(z) = 0;
//BRANCH. No new Z-locations established
BnB(ThreadID,q,depth+1);
}
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} end BmnB

//Second stage of BnB, for selecting the Y variables
selectY(ThreadID, p, depth)
{

stop if restart signal received;

//BOUND. The binary solution we are looking for cannot be better
//than the real solution with the currently established Zs and Ys
if (LPSolution(Z array,Y array) <= bestValue)

return;

y = findIndex0fBestY();
//if this is the last location that can be established

if (p+1==P) {
Y(y) = 1;
X array = 1/0 as in constraints (2) and (3)

value = objective function
//if we improved the best result
if (value > bestValue)
{
//set the global best solution
bestValue = value;
store current solution as the best solution,
store Z array into previousBestZ array,
send restart signal to all threads

}
return;
}
Y(y) = 1;

//BRANCH. 1 new Y location established.
selectY(ThreadID,p+1,depth+1);

//check if there are enough Y locations left

if (depth+P-p<N)

{
Y(y) = 0;
//BRANCH. O new Y locations established.
selectY(ThreadID,p,depth+1);

}

} end selectY

//Finds k "best" Z locations which are used to initialize BnB
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findIndexesOfBestZLocations (k) {
empty set K
for i = 0 to k-1
call findIndex0fBestZ() and add that index to the set K
return set K
} end findIndexesOfBestZLocations

//Finds one "best" unused Z location
findIndex0fBestZ()
{

//we first try with the Zs from the previous best solution
find i, i in previoustBestZ, if Z(i) not defined
with the maximum value of variable add(i)
//How much this Z adds to the current population covered.
//This is the population covered by Z(i),
//but not already covered by other established Zs
add(i) = additional population covered by Z(i)
if found such i, return its index

//if not found do the same for other Zs
find i, i not in previoustBestZ, if Z(i) not defined
with the maximum value of variable add(i)

add(i) = additional population covered by Z(i)

return its index
} end findIndexOfBestZ

//Finds one "best" unused Y location
findIndexOfBestY() {
find i, if Y(i) not defined
with the maximum value of variable add(i)
//How much this Y adds to the current population covered.
//This is the population covered by Y(i),
//but not already covered by other established Zs and Ys
add(i) = additional population covered by Y(i)

return index i of best Y
} end findIndexOfBestY
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4. Computational Results

The parallel BnB algorithm for solving HCLP was implemented using the
C programming language and parallelization was achieved by using the openM P
library. The same test instances were used as in [1]. One instance, g5, which
proved to be the most difficult, was tested 3 times, with different values of P
and Q. The results obtained by the parallel BnB were compared to the results
obtained by the CPLEX 10.1 solver. Both BnB and CPLEX tests were carried
out on an Intel Core i7-860 2.8 GHz with 8GB RAM memory under Windows
7 Professional operating system. This processor has 8 cores and each BnB test
was run 4 times, using 1, 2, 4 and 8 threads (cores) respectively. CPLEX 10.1
does not take advantage of multi-core processors.

Since both CPLEX and BnB are exact methods, the objective function
result was always the same in each of the 5 test runs (1 CPLEX and 4 BnB),
for every test instance.

The small test instances, with N = M < 100 posed no challenge neither
to BnB nor to CPLEX, with solving times very close to 0. The solving time
for test instances with N = M = 150 depended mostly on the value of the @
parameter, again proving that determining the Z variables is more important
for the running time than the Y variables.

It is important to note that the BnB algorithm does not necessarily take
the same solving path when run with different number of threads, because of
the restart” strategy. The order in which threads are launched is not deter-
ministic; also, the processor (core) usage is allocated by the operating system
and therefore it is also not deterministic. When one thread obtains a better
solution it sends the restart signal to other threads that at that point still have
not finished. For the non-deterministic reasons stated above, when run with
various numbers of threads, this causes different order in which currently best
solutions are obtained, which further causes different order of restarts. This
only affects the time needed to reach the solution that later cannot be further
improved. Once such solution is obtained and no more restarts are done, the
BnB becomes completely deterministic. This is reflected in the test results.

The columns in the following table are: "name” is the name of a test
instance, followed by N, M, Q and P parameters; ”"obj” shows the objective
function result which is always the same for CPLEX and BnB; columns ” Time”
and ”Sol.Time” represent the total solving time and the initial time when the
best solution was reached, respectively. In the case of the BnB this is also
the time of the final restart. Finally, for BnB, the number of Z and Y nodes
traversed is shown, as well as the number of LP relaxation cuts.
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The test results shown above demonstrate that the BnB algorithm reaches
optimal solutions extremely quickly, much faster than the CPLEX solver. For
the most difficult test instance g5b BnB took 6.46 to reach the optimal solution,
while CPLEX solver took 138.164sec. The instances gbb and g5c were created
from the original instance g5 by changing the parameters P and Q. For the
original instance g5, the differences are much bigger: BnB took 0.19sec to reach
the optimal solution, while CPLEX took 45.836sec.

For those difficult test instances, BnB might take long time to exhaust
the search space and thus prove that the solution reached is actually the optimal
one. However, when run using 8 processor cores, BnB is still faster than the
CPLEX solver. For the test instance g5b this time was 146.16sec while CPLEX
took 173.589sec. It is important to note that CPLEX uses various optimization
techniques and cuts which this implementation of BnB does not use.

Parallelization resulted in significant speedups. On some instances, par-
allelization resulted in super linear speedups of the time until optimal solution
is reached. However, it is difficult to judge the effects of parallelization because
of the non-deterministic reasons stated above. Larger test instances are needed
to better understand the benefits of parallelization.

5. Conclusions

In this paper we presented a parallel branch and bound algorithm with
restarts, for solving the Hierarchical Covering Location Problem (HCLP). This
is a general approach and can be applied to various other problems with binary
variables.

The test results prove the effectiveness of this approach and the advan-
tages of this method over another exact method, CPLEX. Unfortunately, larger
test instances were not available, but considering the way the BnB algorithm
is designed it can be assumed that the time needed to reach the "best” (or at
least near-optimal) solution would still be very short. A potential use of this
approach is for solving extremely large instances that cannot be solved to opti-
mality. Using hybrid methods, BnB can be used to obtain ”very good” solutions
very quickly and these solutions can be used as a starting solution for sorne other
methods (for example: an evolutionary algorithm).

Our future research in this area will focus on generalizing the approach
presented herein and applying it to other optimization problems.



566 P. Stanojevié

References

(1] M. Maric et al. One Genetic Algorithm for Hierarchical Covering Loca-
tion Problem, 9th WSEAS International Conference on EVOLUTIONARY
COMPUTING (EC’08), Sofia, Bulgaria, May 2-4, 2008.

[2] Espejo, L.G.A. et al. Dualbased heuristics for a hierarchical covering
location problem, Computers & Operations Research, Vol.30, 2003, pp. 165
180.

3] Galvao RD et al. A Lagrangean heuristic for the mazimal covering
location problem, European Journal of Operational Research, 88, 1996; pp.
114-23.

Faculty of Mathematics,
Belgrade University

Studentski Trg 16

Belgrade, 11000 SERBIA
E-MAIL: djapedjape@gmail.com



