Mathematica Balkanica

New Series Vol. 26, 2012, Fasc. 3-4

Around One Michael's Theorem on Selections

Mitrofan Choban¹, Ekaterina Mihaylova², Stoyan Nedev³

Presented at MASSEE International Conference on Mathematics MICOM-2009

In this paper, using the language and techniques of set-valued mappings, we give a new characteristic of paracompactness (Theorems 2, 3 and 3) and fully paracompactness (Theorems 4 and 4). This improves, in particular, some results of E.Michael.

MSC 2010: 54C65, 54D20, 54D30.

 $\it Keywords:$ set-valued mapping, paracompact space, fully paracompact space.

1 Introduction

In [9] Michael has proved the following:

Theorem 1.1 If $\theta: X \to Y$ is a lower semi-continuous closed-valued mapping of a paracompact space X into a complete metric space Y, then there exist a lower semi-continuous compact-valued mapping $\phi: X \to Y$ and an upper semi-continuous compact-valued mapping $\psi: X \to Y$ such that $\phi(x) \subseteq \psi(x) \subseteq \theta(x)$ for every $x \in X$.

Let X and Y be non-empty topological spaces. A set-valued mapping $\theta: X \to Y$ assigns to every $x \in X$ a non-empty subset $\theta(x)$ of Y. If $\phi, \psi: X \to Y$ are set-valued mappings and $\phi(x) \subseteq \psi(x)$ for every $x \in X$, then ϕ is called a selection of ψ .

Let $\theta: X \to Y$ be a set-valued mapping and let $A \subseteq X$ and $B \subseteq Y$. The set $\theta^{-1}(B) = \{x \in X : \theta(x) \cap B \neq \emptyset\}$ is the inverse image of B, $\theta(A) = \theta^1(A) = \bigcup \{\theta(x) : x \in A\}$ is the image of the set A and $\theta^{n+1}(A) = \theta(\theta^{-1}(\theta^n(A)))$ is the n+1-image of the set A. The set $\theta^{\infty}(A) = \bigcup \{\theta^n(A) : n \in \mathbb{N}\}$ is the largest image of the set A (see [5]). A set-valued mapping $\theta: X \to Y$ is called lower (upper) semi-continuous if for every open (closed) subset H of Y the set $\theta^{-1}(H)$ is open (closed) in X.

In [2, 3, 4] was proved the following conversion of Theorem 1:

Theorem 1.2 For a T_1 -space X the following are equivalent:

- 1. X is paracompact.
- 2. For every lower semi-continuous closed-valued mapping $\theta: X \to Y$ into a complete metric space Y there exists an upper semi-continuous compact-valued mapping $\psi: X \to Y$ such that $\psi(x) \subseteq \theta(x)$ for every $x \in X$.
- 3. For every lower semi-continuous mapping closed-valued mapping θ : $X \to Y$ into a discrete space Y there exists an upper semi-continuous compact-valued mapping $\psi: X \to Y$ such that $\psi(x) \subseteq \theta(x)$ for every $x \in X$.

The aim of the present article is to extend the assertions of Theorem 1 and to propose a characteristic of fully paracompactness (see Theorem 4). The article continues the investigations from earlier articles [5, 6] of the authors. Any paracompact space is considered to be Hausdorff. We use the terminology from [7, 14]. By |A| we denote the cardinality of a set A and $\mathbb{N} = \{1, 2, ...\}$. We consider only the covering dimension of spaces.

2 On paracompact spaces

A set-valued mapping θ is called *simple* if $\theta^{\infty}(x) = \theta(x)$ for every $x \in X$.

Remark 2.1 For a set-valued mapping $\theta: X \to Y$ the following 1,2 and 3 are equivalent:

- 1. $\theta^{\infty}(x) = \theta(x)$ for every $x \in X$;
- 2. $\theta^2(x) = \theta(x)$ for every $x \in X$;
- 3. For every $x, y \in X$ either $\theta(x) \cap \theta(y) = \emptyset$ or $\theta(x) = \theta(y)$.

Remark 2.2 Let $\theta: X \to Y$ be a set-valued mapping. Then $\theta^{\infty}(x) = \theta(x)$ is a simple set-valued mapping.

Proposition 2.3 Let $\theta: X \to Y$ be a simple closed-valued mapping of a space X into a space Y. Then:

1. If θ is lower semi-continuous and Y is first-countable, then $\theta^{-1}(\theta(x))$ is a G_{δ} -set of X for every $x \in X$. 2. If θ is upper semi-continuous and Y is a metric space, then $\theta^{-1}(\theta(x))$ is a G_{δ} -set of X for every $x \in X$.

Theorem 2.4 Let $\theta: X \to Y$ be a lower semi-continuous closed-valued mapping of a paracompact space X into a complete metric space Y. Then there exist a lower semi-continuous compact-valued mapping $\phi: X \to Y$, an upper semi-continuous compact-valued mapping $\psi: X \to Y$, a metric space Z and a continuous single-valued mapping $g: X \to Z$ such that:

- 1. $\phi(x) \subseteq \psi(x) \subseteq \theta(x)$ for every $x \in X$;
- 2. $\nu: X \to Y \times Z$, where $\nu(x) = \phi(x) \times \{g(x)\}$ for every $x \in X$, is a lower semi-continuous compact-valued mapping;

- 3. $\lambda: X \to Y \times Z$, where $\lambda(x) = \psi(x) \times \{g(x)\}$ for every $x \in X$, is an upper semi-continuous compact-valued mapping;
 - 4. $\lambda^{\infty}(x)$ is a separable metric subspace of $Y \times Z$ for every $x \in X$.

Proof. Let d be a complete metric on Y. Put $V_n(y) = \{z \in Y : d(y, z) < 2^{-n}\}$ for every $y \in Y$ and every $n \in \mathbb{N}$. If $y \in Y$ and F is an non-empty subset of Y, then $diam(F) = \sup\{d(y, z) : y, z \in F\}$ and $d(y, F) = \inf\{d(y, z) : z \in F\}$. Assume that $diam(\emptyset) = 0$ and $d(y, \emptyset) = \infty$. Fix a sequence $\{\xi_n = \{V_\alpha : \alpha \in A_n\} : n \in \mathbb{N}\}$ of open locally finite covers of Y such that $diam(V_\alpha) < 2^{-n}$ for every $\alpha \in A_n$ and every $n \in \mathbb{N}$.

By virtue of Theorem 1 there exist two lower semi-continuous compactvalued mappings $\phi_1, \phi: X \to Y$ and two upper semi-continuous compact-valued mappings $\psi_1, \psi: X \to Y$ such that $\phi(x) \subseteq \psi(x) \subseteq \phi_1(x) \subseteq \psi_1(x) \subseteq \theta(x)$ for every $x \in X$. Put $W_{\alpha} = \phi_1^{-1}(V_{\alpha})$ for every $\alpha \in A_n$ and every $n \in \mathbb{N}$.

Since ψ_1 is an upper semi-continuous compact-valued mapping, then $\xi'_n = \{\psi_1^{-1}(V_\alpha) : \alpha \in A_n\}$ is a locally finite open cover of X. By construction, $W_\alpha \subseteq \psi_1^{-1}(V_\alpha)$. Thus $\gamma_n = \{W_\alpha : \alpha \in A_n\}$ is an open locally finite cover of X for every $n \in \mathbb{N}$. Since $\psi^{-1}(V_\alpha)$ is an F_σ -set and $\psi^{-1}(V_\alpha) \subseteq W_\alpha$, there exists an open F_σ -set U_α of X such that $\psi^{-1}(V_\alpha) \subseteq U_\alpha \subseteq W_\alpha$. Therefore $\eta_n = \{U_\alpha : \alpha \in A_n\}$ is an open locally finite cover of X for every $n \in \mathbb{N}$.

There exists a family $\{f_{\alpha}: X \to [0, 1]: \alpha \in A_n, n \in \mathbb{N}\}$ of continuous functions on X such that $\sum \{f_{\alpha}(x): \alpha \in A_n\} = 2^{-n}$ and $X \setminus U_{\alpha} = f_{\alpha}^{-1}(0)$ for every $\alpha \in A_n$ and $n \in \mathbb{N}$. Put $\overline{\rho}(x,z) = \sum \{|f_{\alpha}(x) - f_{\alpha}(z)|: \alpha \in A_n, n \in \mathbb{N}\}$ for $x,z \in X$. By construction, $\overline{\rho}$ is a continuous pseudometric on X. There exist a metric space (Z,ρ) and a continuous mapping $g: X \to Z$ such that $\rho(g(x),g(z)) = \overline{\rho}(x,z)$ for every $x,z \in X$.

Fix $x \in X$. Put $A_n(x) = \{\alpha \in A_n : x \in U_\alpha\}$. Thus $\psi(x) \subseteq \cup \{U_\alpha : \alpha \in A_n(x)\}$ for every $n \in \mathbb{N}$. Let $\lambda(x) = \psi(x) \times \{g(x)\}$ and $\nu(x) = \phi(x) \times \{g(x)\}$. The mapping $\lambda : X \to Y \times Z$ is upper semi-continuous compact-valued and the mapping $\nu : X \to Y \times Z$ is lower semi-continuous compact-valued. If $x \in X$ and $\Psi(x) = \psi(g^{-1}(g(x)))$, then $\mathcal{B}(x) = \{U_\alpha : \alpha \in A_n, n \in \mathbb{N}\}$ is a countable base of the subspace $\Psi(x)$ in Y. Let $p : Y \times Z \to Y$ and $q : Y \times Z \to Z$ be the natural projections, $z \in Z$ and $H \subseteq q^{-1}(z)$. Fix $x \in \lambda^{-1}(H)$. Then $\lambda(x) = \psi(x) \times \{g(x)\}$ and $\lambda(x) \cap H \neq \emptyset$. Thus there exists $(y, z) \in \lambda(x) \cap H$. Hence g(x) = z. Therefore $\lambda(\lambda^{-1}(H)) \subseteq q^{-1}(z)$. Hence, by construction, $\lambda^{\infty}(x)$ is a separable metric subspace of $Y \times Z$ for every $x \in X$.

Let $\{\varphi, \psi, \phi, \theta\}$ be set-valued mappings of a space X into a space Y. We say that:

 $-\{\varphi,\psi\}$ is a Michael pair of mappings of X into Y if $\varphi:X\leftrightarrow Y$ is a lower semi-continuous compact-valued mapping, $\psi:X\leftrightarrow Y$ is a upper semi-

continuous compact-valued mapping and $\varphi(x) \subseteq \psi(x)$ for every $x \in X$;

- $-\{\psi,\phi,\theta\}$ is a Michael triple of mappings X into Y if $\phi:X\leftrightarrow Y$ is a lower semi-continuous compact-valued mapping, $\psi,\theta:X\leftrightarrow Y$ are upper semi-continuous compact-valued mappings and $\psi(x)\subseteq\phi(x)\subseteq\theta(x)$ for every $x\in X$;
- $-\{\varphi,\psi,\phi,\theta\}$ is a Michael quadruple of mappings of X into Y if $\varphi,\phi:X\leftrightarrow Y$ are lower semi-continuous compact-valued mappings, $\psi,\theta:X\leftrightarrow Y$ are upper semi-continuous compact-valued mappings and $\varphi(x)\subseteq\psi(x)\subseteq\phi(x)\subseteq\theta(x)$ for every $x\in X$.

In the proof of Theorem 2 we establish the validity of the following assertion.

Proposition 2.5 Let ψ, ϕ, θ be a Michael triple of mappings of a normal space X into a metric space Y. Then there exist a metric space Z and a continuous single-valued mapping $g: X \to Z$ such that:

- 1. $\nu: X \to Y \times Z$, where $\nu(x) = \phi(x) \times \{g(x)\}$ for every $x \in X$, is a lower semi-continuous compact-valued mapping;
- 2. $\lambda: X \to Y \times Z$, where $\lambda(x) = \psi(x) \times \{g(x)\}$ for every $x \in X$, is an upper semi-continuous compact-valued mapping;
 - 3. $\lambda^{\infty}(x)$ is separable for every $x \in X$.

3 On finite-dimensional paracompact spaces

Theorem 3.1 Let $\theta: X \to Y$ be a lower semi-continuous closed-valued mapping of a paracompact space X into a complete metric space Y and $\dim X \leq n$. Then there exist two metric spaces Z and S, a continuous single-valued mapping $g: Z \to Y$, a continuous single-valued mapping $h: S \to Z$ and an upper semi-continuous mapping $\psi: X \to Z$, such that:

- 1. $dimZ \le n$ and dimS = 0.;
- 2. $h: S \to Z$ is a closed mapping and with the fibers $h^{-1}(z)$ of cardinality at most n+1;
 - 3. $|\psi(x)| \le n+1$ and $g(\psi(x)) \subseteq \theta(x)$ for any $x \in X$;
- 4. $\lambda: X \to S$, where $\lambda(x) = h^{-1}(\psi(x))$ for every $x \in X$, is an upper semi-continuous finite-valued mapping;
 - 5. $\lambda^{\infty}(x)$ is a separable subspace for every $x \in X$.

Proof. There exists a complete metric space (B,d) and a continuous open mapping $f: B \to Y$ such that dimB = 0 (see[1]). The mapping $\varphi: X \to B$, where $\varphi(x) = f^{-1}(\theta(x))$ for each $x \in X$, is lower semi-continuous and closed-valued. Since X is a paracompact space and $dimX \leq n$, there exist (see [2, 3, 13]) a sequence $\{\gamma_n = \{U_\alpha : \alpha \in A_n\} : n \in \mathbb{N}\}$ of open locally finite

covers of X, a sequence $\{\eta_n = \{F_\alpha : \alpha \in A_n\} : n \in \mathbb{N}\}$ of closed locally finite covers of X, a sequence $\{\xi_n = \{V_\alpha : \alpha \in A_n\} : n \in \mathbb{N}\}$ of families of open subsets of B and a sequence $\{\pi_n : A_{n+1} \to A_n : n \in \mathbb{N}\}$ of single-valued mappings such that:

- 1. $F_{\alpha} \subseteq U_{\alpha} \subseteq cl_X U_{\alpha} \subseteq \varphi^{-1}(V_{\alpha})$ and $diam V_{\alpha} < 2^{-n}$ for all $n \in \mathbb{N}$ and $\alpha \in A_n$;
- 2. $U_{\alpha} = \bigcup \{U_{\beta} : \beta \in \pi_n^{-1}(\alpha)\}, \bigcup \{cl_B V_{\beta} : \beta \in \pi_n^{-1}(\alpha)\} \subseteq V_{\alpha} \text{ and } F_{\alpha} = \bigcup \{F_{\beta} : \beta \in \pi_n^{-1}(\alpha)\} \text{ for all } n \in \mathbb{N} \text{ and } \alpha \in A_n;$
 - 3. If $x \in X$, $n \in \mathbb{N}$ and $A_n(x) = \{\alpha \in A_n : x \in F_\alpha\}$, then $|A_n(x)| \le n+1$;
- 4. There exists a family of continuous non-negative functions $\{u_{\alpha}: X \to [0,1]: n \in \mathbb{N}, \alpha \in A_n\}$) such that $U_{\alpha} = u_{\alpha}^{-1}(0)$ and $\Sigma\{u_{\beta}(x): \beta \in A_n\} = 2^{-1}$ for all $x \in X$, $n \in \mathbb{N}$ and $\alpha \in A_n$.

Put $A(x) = \{\alpha = (\alpha_n :\in \mathbb{N}) : \alpha_n \in A_n(x), n \in \mathbb{N}\}$. If $\alpha = (\alpha_n :\in \mathbb{N}) \in A(x)$, then $V(\alpha) = \cap \{V_{\alpha_n} :\in \mathbb{N}\}$. For any $x \in X$ we put $\psi_1(x) = \cup \{V(\alpha) : \alpha A(x)\}$. Then $\psi_1 : X \to B$ is an upper semi-continuous mapping, $|\psi_1(x)| \le n+1$ and $\psi_1(x) \subseteq \varphi(x)$ for any $x \in X$.

Put $\rho_1(x,z) = \sum \{|u_{\alpha}(x) - u_{\alpha}(z)| : \alpha \in A_n, n \in \mathbb{N}\}$ for all $x,z \in X$. By construction ρ_1 is a continuous pseudometric on X. There exist a metric space (Z_1,ρ) and a continuous mapping $g_1: X \to Z_1$ such that $\rho(g_1(x),g_1(z)) = d_1(x,z)$ for every $x,z \in X$. By virtue of Mardešić's factorization theorem, there exist a metric space Z_2 and two continuous single-valued mappings $g_2: X \to Z_2$ and $g_3: Z_2 \to Z_1$ such that $\dim Z_2 \le n$ and $g_1 = g_3 \cdot g_2$ (see [8, 10]). One can assume that the spaces Z_1 , Z_2 and Z_3 are complete metrizable.

Put $Z=B\times Z_2$ and $\psi(x)=\psi_1(x)\times\{g_2(x)\}$ for any $x\in X$. Let $g(s,z\times)=f(s)$ for any point $(s,z)\in Z$. By construction, $\psi:X\to Z$ is a upper semi-continuous mapping, $|\psi(x)|\leq n+1$, $\psi(x)\subseteq \varphi(x)$ and $g(\psi(x))\subseteq \theta(x)$ for any $x\in X$. Let $x\in X$, $n\in \mathbb{N}$ and $L_n(x)=\{\alpha\in A_n:x\in F_\alpha\}$. If $x,z\in X$ and $g_1(x)=g_1(z)$ (i.e. $\rho_1(x,z)=0$), then $L_n(x)=L_n(z)$ for any $n\in \mathbb{N}$. Let $q:B\times Z_2\to Z_2$ be the natural projections, $z\in Z_2$ and $H\subseteq q^{-1}(z)=B\times\{z\}$. Then $\psi(\psi^{-1}(H))\subseteq q^{-1}(z)$. Thus $\psi^\infty(x)$ is a separable subspace of Z and $\psi^\infty(x)\subseteq B\times\{g(x)\}$ for each $x\in X$. By virtue of Morita's theorem, there exist a metric space S and a closed continuous single-valued mapping $h:S\to Z$ such that dim S=0 and the fibers $h^{-1}(z)$ are of cardinality at most n+1 (see [8,11]).

If the space Y is discrete, then $B=Y, \, \psi^\infty(x)$ is a discrete subspace of Z and $\psi^\infty(x)\subseteq Y\times\{g(x)\}$ for each $x\in X$. In fact we have

Theorem 3.2 Let $\theta: X \to Y$ be a lower semi-continuous closed-valued mapping of a paracompact space X into a discrete space Y and $\dim X \leq n$. Then there exist two metric spaces Z and S, a continuous single-valued mapping

- $g: Z \to Y$, a continuous single-valued mapping $h: S \to Z$ and a upper semi-continuous mapping $\psi: X \to Z$, such that:
 - 1. $dimZ \leq n$ and dimS = 0;
- 2. $h: S \to Z$ is a closed mapping and with the fibres $h^{-1}(z)$ of cardinality at most n+1:
 - 3. $|\psi(x)| \le n+1$ and $g(\psi(x)) \subseteq \theta(x)$ for any $x \in X$;
- 4. $\lambda: X \to S$, where $\lambda(x) = h^{-1}(\psi(x))$ for every $x \in X$, is an upper semi-continuous finite-valued mapping;
 - 5. $\lambda^{\infty}(x)$ is a countable discrete subspace for every $x \in X$.

4 Fully paracompact spaces

A space X is called *fully paracompact* if X is a regular space and for every open cover ω of X there exist an open refinement ξ of X and a sequence $\{\xi_n : n \in \mathbb{N}\}$ of open star-finite covers of X such that $\xi \subseteq \bigcup \{\xi_n : n \in \mathbb{N}\}$. Recall that a family ζ of subsets of X is *star-finite* if the set $\{H \in \zeta : H \cap L \neq \emptyset\}$ is finite for every $L \in \zeta$. Every fully paracompact space is paracompact.

A space X is called *strongly paracompact* if X is a Hausdorff space and every open cover ω of X has an open star-finite refinement. Every strongly paracompact space is fully paracompact.

Let τ be a cardinal number. Denote by $B(\tau)$ the topological product of a countably family of discrete spaces of cardinality τ . The space $B(\tau)$ is called the Baire space of weight τ ([7], Example 4.2.12). If $\mathbb R$ is the space of reals and the cardinal number τ is uncountable, then the space $B(\tau) \times \mathbb R$ is fully paracompact and not strongly paracompact [12].

Recall that a family $\{U_{\alpha}: \alpha \in A\}$ is called σ -discrete (σ -locally finite) if $A = \bigcup \{A_n: n \in \mathbb{N}\}$ and the family $\{U_{\alpha}: \alpha \in A_n\}$ is discrete (locally finite) for every $n \in \mathbb{N}$.

A family $\{H_{\alpha} : \alpha \in A\}$ is said to have a σ -discrete decomposition if there exist a sequence $\{\{P_{\beta} : \beta \in B_n\} : n \in \mathbb{N}\}$ of discrete families of sets and a sequence $\{p_n : B_n \to A : n \in \mathbb{N}\}$ of single-valued mappings such that $A = \bigcup \{p_n(B_n) : n \in \mathbb{N}\}$ and $\bigcup \{P_{\beta} : \beta \in p_n^{-1}(\alpha), n \in \mathbb{N}\} = H_{\alpha}$ for every $\alpha \in A$.

Theorem 4.1 Let $\theta: X \to Y$ be a lower semi-continuous closed-valued mapping of a fully paracompact space X into a complete metric space Y. Then there exist a lower semi-continuous compact-valued mapping $\phi: X \to Y$, an upper semi-continuous compact-valued mapping $\psi: X \to Y$, a metric space Z and a continuous single-valued mapping $g: X \to Z$ such that:

- 1. $\phi(x) \subseteq \psi(x) \subseteq \theta(x)$ for every $x \in X$;
- 2. $\nu: X \to Y \times Z$, where $\nu(x) = \phi(x) \times \{g(x)\}$ for every $x \in X$, is a lower semi-continuous compact-valued mapping;

- 3. $\lambda: X \to Y \times Z$, where $\lambda(x) = \psi(x) \times \{g(x)\}$ for every $x \in X$, is an upper semi-continuous compact-valued mapping;
 - 4. $\lambda^{\infty}(x)$ is a separable metric subspace of $Y \times Z$ for every $x \in X$;
 - 5. dim Z = 0.

Proof. Let d be a complete metric on Y. Fix a sequence $\{\xi_n = \{V_\alpha : \alpha \in A_n\} : n \in \mathbb{N}\}$ of open locally finite covers of Y such that $diam(V_\alpha) < 2^{-n}$ for every $\alpha \in A_n$ and every $n \in \mathbb{N}$.

By virtue of Theorem 1 there exists an upper semi-continuous compactvalued mapping $\psi_1: X \to Y$ such that $\psi_1(x) \subseteq \theta(x)$ for every $x \in X$. Fix a mapping $\psi: X \to Y$ such that $\psi(x) \subseteq \psi(x)$ for every $x \in X$. Put $W_{\alpha} = \psi^{-1}(V_{\alpha})$ for every $\alpha \in A_n$ and every $n \in \mathbb{N}$. Since ψ_1 is an upper semi-continuous compact-valued mapping, then $\xi'_n = \{\psi_1^{-1}(V_{\alpha}) : \alpha \in A_n\}$ is a locally finite open cover of X. By construction, $W_{\alpha} \subseteq \psi_1^{-1}(V_{\alpha})$ and $\gamma_n = \{W_{\alpha}: \alpha \in A_n\}$ is a locally finite cover of X for every $n \in \mathbb{N}$.

There exist a sequence $\{\xi_{nm} = \{U_{\beta} : \beta \in B_{nm}\} : n, m \in \mathbb{N}\}$ of open star-finite covers of X and a sequence $\{\xi_n = \{U_{\beta} : \beta \in B_n\} : n \in \mathbb{N}\}$ of open locally finite covers of X such that:

- 1. $B_n \subseteq \bigcup \{B_n m : m \in \mathbb{N}\}\$ for any $n \in \mathbb{N}$;
- 2. For each $n \in \mathbb{N}$ and $\beta \in B_n$ the set $A(n,\beta) = \{\alpha \in A_n : U_\beta \cap W_\alpha \neq \emptyset\}$ is finite.

For each $n \in \mathbb{N}$ there exists a decomposition $\{B_{\mu} : \mu \in Z_{nm}\}$ of the set B_{nm} such that:

- each set B_{μ} is countable and the set $H_{\mu} = \bigcup \{U_{\beta} : \beta \in B_{\mu}\}$ is open-and-closed in X;
 - $-H_{\mu} \cap H_{\nu} = \emptyset$ for all distinct elements $\mu, \nu \in Z_n m$.

By construction, $H_{\mu} = \bigcup \{cl_X U_{\beta} : \beta \in B_{\mu}\}$. For each $x \in X$ and $n, m \in \mathbb{N}$ there exists a unique element $\mu(x, n, m) \in Z_{nm}$ such that $x \in H_{\mu(x, n, m)}$. On each Z_{nm} we consider the discrete topology and put $Z = \Pi\{M_{nm} : n, m \in \mathbb{N}\}$ and $g(x) = (\mu(x, n, m) : n, m \in \mathbb{N})$ for each $x \in X$. Since the covers $\{H_{\mu} : \mu \in M_n\}$ are discrete, $g: X \to Z$ is a single-valued continuous mapping.

Fix $x \in X$. Let $B_n(x) = \bigcup \{B_n \cap B_{\mu(x,n,m)} : m \in \mathbb{N}\}$ and $A_n(x) = \bigcup \{A(n,\beta) : \beta \in B_n(x)\}$ for every $n \in \mathbb{N}$, $A(x) = \bigcup \{A_n(x) : n \in \mathbb{N}\}$ and $\mathcal{B}(x) = \{V_\alpha : \alpha \in A(x)\}$. Then M(x) = M(z) provided g(x) = g(z). The family $\mathcal{B}(x)$ is a countable base of the set $\psi(g^{-1}(g(x)))$. Hence, by construction, $\lambda^{\infty}(x)$ is a separable metric subspace of $Y \times Z$ for every $x \in X$. Suppose that $\{\phi, \psi, \psi_1\}$ is a Michael triple of mappings. The proof is complete.

Now we continue the arguments from the proof of Theorem 4. Fix $n, m \in \mathbb{N}$. We put $B(n, m, \mu) = B_n \cap B_\mu$ and $A(n, m, \mu) = \{\alpha \in A_n : W_\alpha \cap U_\beta \neq \emptyset \}$ for some $\beta \in B(n, m, \mu)$ for any $\mu \in Z_{nm}$. The set $A(n, m, \mu)$ is countable or

finite. Thus $A(n, m, \mu) = \{\alpha_k(\mu) : k \in N(\mu) \subseteq \mathbb{N}\}$. Put $C(nmk) = \{(\mu, \alpha_k(\mu)) : \mu \in Z_{nm}, \alpha_k(\mu) \in A(n, m, \mu)\}$ and $V_\beta = W_{\alpha_k(\mu)} \cap H_\mu$ for any $\beta = (\mu, \alpha_k(\mu)) \in C(nmk)$. Consider the single-valued mapping $p_{nmk} : C(nmk) \to A_n$, where $p_{nmk}(\mu, \alpha) = \alpha$ for any $(\mu, \alpha) \in C(nmk)$. By construction, we have:

- the family $\gamma_{nmk} = \{V_{\beta} : \beta \in C(nmk)\}$ is open and discrete in X;
- the family $\xi_{nmk} = \{V'_{\beta} = g(V_{\beta}) : \beta \in C(nmk)\}$ is open and discrete in Z;
 - $-W_{\alpha} = \bigcup \{V_{\beta} : \beta \in C(nmk), m, k \in \mathbb{N}\}.$

Therefore we prove the following assertion.

Proposition 4.2 Let $\varphi, \psi: X \to Y$ be two set-valued mappings of a fully paracompact space X into a metric space Y, the mapping ψ is upper semicontinuous and $\varphi(x) \subseteq \psi(x)$ for each $x \in X$. Then for any σ -locally finite family $\{V_{\alpha}: \alpha \in A\}$ of the space Y there exist a metric space Z and a continuous single-valued mapping $g: X \to Z$ such that:

- 1. dim Z = 0;
- 2. $\lambda: X \to Y \times Z$, where $\lambda(x) = \psi(x) \times \{g(x)\}$ for every $x \in X$, is an upper semi-continuous compact-valued mapping;
 - 3. $\lambda^{\infty}(x)$ is a separable metric subspace of $Y \times Z$ for every $x \in X$;
- 4. The family $\{g(\varphi^{-1}(V_{\alpha})): \alpha \in A\}$ has a σ -discrete decomposition in Z.

Corollary 4.3 Let $\theta: X \to Y$ be a lower semi-continuous closed-valued mapping of a fully paracompact space X into a complete metric space Y. Then there exist a metric space Z, a lower semi-continuous compact-valued mapping $\phi: X \to Z$, an upper semi-continuous compact-valued mapping $\psi: X \to Z$, and a continuous single-valued mapping $g: Z \to Y$ such that:

- 1. $g(\phi(x)) \subseteq g(\psi(x)) \subseteq \theta(x)$ for every $x \in X$;
- 2. $\psi^{\infty}(x)$ is a separable metric subspace of Z for every $x \in X$;
- 3. dim Z = 0.

Theorem 4.4 If X is a fully paracompact space, then for every lower semi-continuous mapping $\theta: X \to Y$ into a discrete space Y there exist a discrete space D, a single-valued mapping $f: D \to Y$, an upper semi-continuous finite-valued mapping $\psi: X \to D$, a lower semi-continuous mapping $\varphi: X \to D$, a metric space Z and a single-valued continuous mapping $g: X \to Z$ such that:

- 1. $\varphi(x) \subseteq \psi(x)$ and $f(\psi(x)) \subseteq \theta(x)$ for every $x \in X$;
- 2. For every $x \in X$ the set $\psi(g^{-1}(x))$ is countable;
- 3. If $\lambda(x) = \psi(x) \times \{g(x)\}$ and $\phi(x) = \varphi(x) \times \{g(x)\}$, then $\lambda: X \to D \times Z$ is upper semi-continuous and $\phi: X \to D \times Z$ is lower semi-continuous, moreover $\lambda^{\infty}(x)$ is a countable discrete subspace of $D \times Z$ for every $x \in X$;
 - 4. dim Z = 0.

Proof. Assume that X is is fully paracompact and $\theta: X \to Y$ is a lower semi-continuous mapping into a discrete space Y. Then $\gamma = \{Uy = \theta^{-1}(y) : y \in Y\}$ is an open cover of the space X and there exist an open refinement ξ of X and a sequence $\{\xi_n = \{V_\alpha : \alpha A_n : n \in \mathbb{N}\}$ of open star-finite covers of X such that $\xi \subseteq \bigcup \{\xi_n : n \in \mathbb{N}\}$. We can consider that $\xi = \{V_\alpha : \alpha D\}$, $D \subseteq \bigcup \{A_n : n \in \mathbb{N}\}$ and the cover ξ is locally finite. For any $\alpha \cup \{A_n : n \in \mathbb{N}\}$ there exists an open subset H_α of X such that:

- $clXH_{\alpha} \subseteq V_{\alpha};$
- $-\eta = \{H_{\alpha} : \alpha D\}$ is a cover of X;
- $-\eta_n = \{H_\alpha : \alpha A_n\}$ is a cover of X for any $n \in \mathbb{N}$.

On D we consider the discrete topology. For each $\alpha \in D$ we fix a point $y = f(\alpha) \in Y$ such that $V_{\alpha} \subseteq Uy$.

For each $x \in X$ we put $\psi(x) = \{\alpha \in D : x \in cl_X H_\alpha\}$ and $\varphi(x) = \{\alpha \in D : x \in H_\alpha\}$. By construction, $\psi: X \to D$ is upper semi-continuous, $\varphi: X \to A$ is lower semi-continuous, $\varphi(x) \subseteq \psi(x)$ and $f(\psi(x)) \subseteq \theta(x)$ for every $x \in X$. For each $n \in \mathbb{N}$ there exists a decomposition $\{A_\mu: \mu \in M_n\}$ of the set A_n such that: - each set A_μ is countable and the set $W_\mu = \bigcup \{H_\alpha: \alpha \in A_\mu\}$ is open-and-closed in X; - $W_\mu \cap W_\nu = \emptyset$ for all distinct elements $\mu, \nu \in M_n$.

By construction, $W_{\mu} = \bigcup \{cl_X H_{\alpha} : \alpha \in A_{\mu}\}$ and for each point $x \in X$ there exists a minimal number $l(x) \in \mathbb{N}$ such that $\psi(x) \subseteq \bigcup \{A_n : n \leq l(x)\}$. On each M_n we consider the discrete topology and put $Z = \prod \{M_n : n \in \mathbb{N}\}$ and $g(x) = \{\mu(x,n) : n \in \mathbb{N}\}$ for each $x \in X$. Since the covers $\{W_{\mu} : \mu \in M_n\}$ are discrete, $g: X \to Z$ is a single-valued continuous mapping. Fix $x \in X$. Put $Z(x) = \{(\mu_n : n \in \mathbb{N}) \in Z : \mu_i = \mu(x,i) \text{ for any } i \leq l(x)\}$. The set Z(x) is closed-and-open and $g^{-1}(W(x) = \cap \{W_{\mu(x,n)} : n \leq l(x)\}$. Let $D(x) = D \cap (\bigcup \{A_{\mu(x,n)} : n \in \mathbb{N}\})$. The set D(x) is countable and $\psi(x) \subseteq D(x)$. Fix $s \in X$. Then g(s) = g(x) if and only if D(s) = D(x). Thus $\psi(g^{-1}(x)) \subseteq D(x)$. This complete the proof.

Assume that for any sequence $\{U_n : n \in \mathbb{N}\}$ of open-and-closed subsets of X the set $\cap \{U_n : n \in \mathbb{N}\}$ is open. In this case the mapping $g : X \to Z$ is continuous if on Z we consider the discrete topology. Let $h(\alpha, z) = f(\alpha)$. Then $h : D \times Z \to Y$ is a single-valued mapping, the mapping $\lambda : X \to D \times Z$ is upper semi-continuous and finite-valued, $h(\lambda(x) \subseteq \theta(x))$ and $\lambda^{\infty}(x)$ is a countable subspace of $D \times Z$ for every $x \in X$. Therefore from ([5], Theorem 2) it follows

Corollary 4.5 Let X be a fully paracompat space and for any sequence $\{U_n : n \in \mathbb{N}\}$ of open-and-closed subsets of X the set $\cap \{U_n : n \in \mathbb{N}\}$ is open. Then the space X is strongly paracompact.

Theorem 4.5 For a T_1 -space X the following are equivalent: 1. X is fully paracompact.

- 2. For every lower semi-continuous closed-valued mapping $\theta: X \to Y$ into a complete metric space (Y,d) and an open locally finite cover $\{H_\alpha: \alpha \in A\}$ of of the space Y there exist a lower semi-continuous compact-valued mapping $\phi: X \to Y$, an upper semi-continuous compact-valued mapping $\psi: X \to Y$, a metric space Z and a single-valued continuous mapping $g: X \to Z$ such that:
 - 2.1. $\phi(x) \subseteq \psi(x) \subseteq \theta(x)$ for every $x \in X$;
 - 2.2. $\phi(X) \subseteq \bigcup \{H_{\alpha} : \alpha \in A\};$
- 2.3. The family $\{g(\psi^{-1}(H_{\alpha})): \alpha \in A\}$ has a σ -discrete decomposition in Z;
 - 2.4. dim Z = 0;
 - 2.5. For each point $x \in X$ the subspace $\psi(g^{-1}(g(x)))$ is separable.
- 3. For every lower semi-continuous closed-valued mapping $\theta: X \to Y$ into a complete metric space (Y,d) there exist a lower semi-continuous compact-valued mapping $\phi: X \to Y$, an upper semi-continuous compact-valued mapping $\psi: X \to Y$, a metric space Z, a single-valued continuous mapping $g: X \to Z$ and an open base $\{H_{\alpha}: \alpha \in A\}$ of Y such that:
 - 3.1. $\phi(x) \subseteq \psi(x) \subseteq \theta(x)$ for every $x \in X$;
 - 3.2. $\psi(g^{-1}(g(x)))$ is a separable metric space for every $x \in X$;
- 3.3. The family $\{g(\psi^{-1}(H_{\alpha})): \alpha \in A\}$ has a σ -discrete decomposition in Z;
 - 3.4. dim Z = 0.
- 4. A space X is regular and for every lower semi-continuous mapping $\theta: X \to Y$ into a complete metric space Y and an open locally finite cover $\{H_\alpha: \alpha \in A\}$ of of the space Y there exist a lower semi-continuous mapping $\psi: X \to Y$, a metric space Z and a simple-valued continuous mapping $g: X \to Z$ such that:
 - 4.1. $\psi(x) \subseteq \theta(x)$ for every $x \in X$;
 - 4.2. $\psi(g^{-1}(g(x)))$ is a separable metric space for every $x \in X$;
- 4.3. The family $\{g(\psi^{-1}(H_{\alpha})): \alpha \in A\}$ has a σ -discrete decomposition in Z;
 - 4.4. dim Z = 0.
- 5. For every lower semi-continuous mapping $\theta: X \to Y$ into a complete metric space Y and an open locally finite cover $\{H_\alpha: \alpha \in A\}$ of of the space Y there exist an upper semi-continuous mapping $\psi: X \to Y$, a metric space Z and a simple-valued continuous mapping $g: X \to Z$ such that:
 - 5.1. $\psi(x) \subseteq \theta(x)$ for every $x \in X$;
 - 5.2. $\psi(g^{-1}(g(x)))$ is a separable metric space for every $x \in X$;
- 5.3. The family $\{g(\psi^{-1}(H_{\alpha})): \alpha \in A\}$ has a σ -discrete decomposition in Z;

5.4. dim Z = 0.

- 6. A space X is regular and for every lower semi-continuous mapping $\theta: X \to Y$ into a discrete space Y there exist a set-valued mapping $\psi: X \to Y$, a metric space Z and a simple-valued continuous mapping $q: X \to Z$ such that:
 - 6.1. $\psi(x) \subseteq \theta(x)$ for every $x \in X$;
 - 6.2. $\psi(g^{-1}(g(x)))$ is a separable metric space for every $x \in X$;
- 6.3. The family $\{g(\psi^{-1}(y)): y \in Y\}$ has a σ -discrete decomposition in Z;

6.4. dim Z = 0.

Proof. Implications $1 \Rightarrow 2$ and $1 \Rightarrow 3$ follows from Proposition 4. Implications $2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 6$ and $3 \Rightarrow 5 \Rightarrow 6$ are obvious.

 $(6\Rightarrow 1)$: Let $\omega=\{U_{\alpha}: \alpha\in Y\}$ be an open cover of X. Introduce on Y the discrete topology with the metric d, where d(y,z)=1 for every $y,z\in Y,\ y\neq z$. The mapping $\theta:X\to Y$, where $\theta(x)=\{y\in Y:\ x\in U_y\}$ is lower semi-continuous. Let $\varphi:X\to Y$ be a set-valued mapping, Z be a zero-dimensional space, $g:X\to Z$ be a single-valued mapping and there exist a sequence $\{\xi_n=\{P_\beta:\beta\in B_n\}:n\in\mathbb{N}\}$ of discrete families of subsets of Z and a sequence $\{p_n:B_n\to Y:n\in\mathbb{N}\}$ of single-valued mappings such that $Y=\bigcup\{p_n(B_n):n\in\mathbb{N}\}$ and $\bigcup\{P_\beta:\beta\in p_n^{-1}(y),n\in\mathbb{N}\}=g(\psi^{-1}(y))$ for every $y\in Y$, a σ -discrete decomposition of $\{g(\psi^{-1}(y)):y\in Y\}$ in X.

Fix $n \in \mathbb{N}$. There exists a discrete cover $\{H_{\beta} : \beta \in B_n\}$ of Z such that $P_{\beta} \subseteq H_{\beta}$ for every $\beta \in B_n$. Fix an open subset V_{β} of X such that $g^{-1}(P_{\beta}) \cap \theta^{-1}(p_n(\beta)) \subseteq V_{\beta} \subseteq U_{p_n(\beta)} \cap g^{-1}(H_{\beta})$ for every $\beta \in B_n$. Then $\gamma_n = \{g^{-1}(H_{\beta}) : \beta \in B_n\} \cup \{V_{\beta} : \beta \in B_n\}$ is a star-finite open cover of X. By construction $\gamma = \{V_{\beta} : \beta \in \bigcup \{B_n : n \in \mathbb{N}\}\}$ is a refinement of ω . Thus X is fully paracompact.

Question 4.5. Suppose that for a T_1 -space X and for every lower semi-continuous mapping $\theta: X \to Y$ into a discrete space Y there exist an upper semi-continuous compact-valued mapping $\psi: X \to Y$, a metric space Z and a single-valued continuous mapping $g: X \to Z$ such that $\psi(x) \subseteq \theta(x)$ for every $x \in X$, $\dim Z = 0$ and the set $\psi(g^{-1}(z))$ is countable for every $z \in Z$. Is it true that X is fully paracompact?

References

- [1] A. V. Arhangel'skii. Open and near open mappings. Connections between spaces. // Trudy Moskov. Matem. Ob-va, 15, 1966, 181–223.
- [2] M. M. Choban. Many-valued mappings and Borel sets. I. // Trudy Moskov. Matem. Ob-va, 22, 1970, 229–250.

- [3] M. M. Choban. Many-valued mappins and Borel sets. II. // Trudy Moskov. Matem. Ob-va, 23, 1970, 272–301.
- [4] M. M. Choban. General theorems on selections. // Serdica. Bulg. Math. Publ., 4, 1978, 74–90.
- [5] M. M. Choban, E. P. Mihaylova, S. Y. Nedev. On selections and classes of spaces. // Topology and its Appl., 155, 2008, 797–804.
- [6] M. M. Choban, E. P. Mihaylova, S. Y. Nedev. Selections and spaces. // To appear.
- [7] R. Engelking. General Topology. Warszawa, PWN, 1977.
- [8] R. Engelking. Dimension Theory. Warszawa, PWN, 1978.
- [9] E. Michael. A theorem on semi-continuous set-valued functions. // Duke Math. J., 26, No. 4, 1959, 647–656.
- [10] S. Mardešić. On covering dimension and inverse limits of compact spaces. // Illinois Journal of Math., 4, 1960, 278–291.
- [11] K. Morita. A condition for the metrizability of topological spaces and for *n*-dimensionality. // Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A, 5, 1955, 33–36.
- [12] J. Nagata. On imbedding theorem for non-separable metric spaces. // Journal Inst. Polyt. Osaka City Univ., 8, 1957, 9–14.
- [13] S. I. Nedev. Selection and factorization theorems for set-valued mappings. // Serdica. Bulg. Math. Publ., 6, 1980, 291–317.
- [14] D. Repovš, P. V. Semenov, Continuous Selections of Multivalued Mappings. Kluwer Acad. Publ. 1998.

¹ Tiraspol State University

Received 04.02.2010

Deptartment of Mathematics

MD 2069 Kishinev

Republic of MOLDOVA

² University of Sofia

Faculty of Mathematics and Informatics

5, J. Bourchier blv.

Sofia 1164

BULGARIA

E-MAIL: katiamih@math.bas.bg

³ Institute of Marhematics and Imformatics

Bulgarian Academy of Sciences

Acad. G. Bonchev str., Bl. 8

Sofia 1113

BULGARIA

 $E ext{-}MAIL: nedev@math.bas.bg$