Query Enrichment for Image Collections by Reuse of Classification Rules

Nicolas Spyratos¹, Peter Stanchev^{2,3}, Krassimira Ivanova², Iliya Mitov²

1: Université Paris-Sud

2: Institute of Mathematics and Informatics, BAS, Bulgaria 3: Kettering University, Flint, USA

Abstract

User queries over image collections, based on semantic similarity, can be processed in several ways.

Here we propose to reuse the rules produced by rule-based classifiers in their recognition models as query pattern definitions for searching in image collections.

Reuse = "not reinventing the wheel"

- 1960s: macros and subroutines libraries
- main principle of today's object-oriented programming
- source code, components, development artifacts, patterns, templates...
- from program code to data content and user interaction

Rule-based Classifiers

They form a human comprehensive recognition model

- decision trees: in spite of their specifics, based on splitand-conquer techniques, their recognition model can easily be transformed into a set of rules.
- decision rules: the learned model is represented as a set of IF-THEN rules, produced on the basis of a depth-first induction strategy.
- association rules: they distinct strong associations between frequent patterns (conjunctions of attribute-value pairs) and class labels.

Image Retrieval

Search:

- by textual metadata
- on the basis of their content (CBIR)
- Semantic gap:
 - user queries are based on semantic similarity
 - the computer processes low-level feature similarity
- -> higher level concepts comprehensive by humans, but based on the processing of low level features
- Way for bridging this gap:
 - categorization algorithms that allow the system "to learn" how to make these decisions.

More precisely

The classification on a test dataset in an image collection supplied with low-level attribute metadata (MPEG-7, SIFT, ORB,...) using rule-based classifiers can produce quite good recognition results for some high-level semantic concepts (indoors-outdoors, scene types, artists' practices, emotional evokes, ...).

The set of produced rules in the recognition model can be interpreted as semantic profiles of corresponding class-labels.

We can use these sets as patterns in the query module, using the set of rules as disjunctive-conjunctive sequence of conditions, and naming them with the name of class-label.

In this way the user operates with well-known high-level concepts and this saves him the trouble of understanding and analysing the low-level features, captured by the image analysis.

Example

- 600 images representing Renaissance, Baroque, Romanticism and Impressionism.
- MPEG-7 descriptors DC, SC, CL, CS, EH, HT.
 The low-level visual information consists of 339 values named with A1 to A339.
- Learning set of images (120) are labeled with high level semantic information - movement in which their techniques belong (other variants - "indoor/outdoor", scene type, artists' name...)
- We provide 10-fold cross-validation over this learning dataset using BFTree Classifier (86.67% classification accuracy)


```
A64 < 9.5

| A4 < -25.0: Romanticism

| A4 >= -25.0: Baroque

A64 >= 9.5

| A88 < 0.5

| | A23 < 2.5

| | | A114 < 3.0: Romanticism

| | | A114 >= 3.0: Impressionism

| | A23 >= 2.5

| | | A206 < 1.5: Romanticism

| | | A206 >= 1.5: Renaissance

| A88 >= 0.5

| | A11 < -7.5: Renaissance

| A11 >= -7.5: Impressionism
```

The recognition model, produced by BFTree

Transformed set of rules, used as query patterns

Query Name	Search Pattern
Renaissance like	(A64>=9.5) and (A88<0.5) and (A23>=2.5) and (A206>=1.5)
	or
	(A64>=9.5) and $(A88>=0.5)$ and $(A11<-7.5)$
Baroque like	(A64 < 9.5) and $(A4 > = -25.0)$
Romanticism like	(A64<9.5) and (A4<-25.0)
	or
	(A64>=9.5) and (A88<0.5) and (A23<2.5) and (A114<3.0)
	or
	(A64>=9.5) and (A88<0.5) and (A23>=2.5) and (A206<1.5)
Impressionism like	(A64>=9.5) and (A88<0.5) and (A23<2.5) and (A114>=3.0)
	or
,	(A64>=9.5) and $(A88>=0.5)$ and $(A11>=-7.5)$

DiPP, 18-21.09.2013, V. Tarnovo,

Conclusion

The satisfaction of user queries, which are are based on semantic similarity can be achieved in at least three ways:

- 1) by supplying text annotations of the digital items by humans;
- 2) by trying to annotate automatically with concepts that are comprehensive by humans, based on the processing of low level features using different categorization algorithms; or
- 3) by using some advantages of the previous step dynamically:
 - not making an annotation in advance and storing metadata,
 which are not sure that will be used
 - but storing the query patterns that are formed as a result of previous test annotation (when showed enough recognition accuracy) and apply them only when the user query affects the defined concept.

Thank you for your attention!

Query Enrichment for Image Collections by Reuse of Classification Rules

Nicolas Spyratos, Peter Stanchev, Krassimira Ivanova, Iliya Mitov

The work was supported in part by the project "VISUAL: Semantic Retrieval in Art Collections", No: 01/14 from 21.06.2013, funded by Bulgarian-French programme for scientific cooperation RILA.