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CLASSIFIER PGN: CLASSIFICATION WITH HIGH

CONFIDENCE RULES

Iliya Mitov, Benoit Depaire, Krassimira Ivanova, Koen Vanhoof

Abstract. Associative classifiers use a set of class association rules, gen-
erated from a given training set, to classify new instances. Typically, these
techniques set a minimal support to make a first selection of appropriate
rules and discriminate subsequently between high and low quality rules by
means of a quality measure such as confidence. As a result, the final set
of class association rules have a support equal or greater than a predefined
threshold, but many of them have confidence levels below 100%. PGN is a
novel associative classifier which turns the traditional approach around and
uses a confidence level of 100% as a first selection criterion, prior to maxi-
mizing the support. This article introduces PGN and evaluates the strength
and limitations of PGN empirically. The results are promising and show
that PGN is competitive with other well-known classifiers.

1. Introduction. Within the data mining community, research on clas-
sification techniques has a long and fruitful history. Classification techniques
based on association rules, called associative classifiers (AC), are relatively new.

ACM Computing Classification System (1998): H.2.8, H.3.3.
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Associative classifiers generate a set of association rules from a given training
set and use these rules to classify new instances. In 1998, Liu et al. [16] in-
troduced CBA, often considered to be the first associative classifier. During the
last decade, various other associative classifiers were introduced, such as CMAR
[15], ARC-AC [4], ARC-BC [4], CPAR [27], CorClass [29], ACRI [22], TFPC
[7], HARMONY [25], MCAR [24], 2SARC1 [5], 2SARC2 [5], CACA [23] and
ARUBAS [9].

Typically, the generation of association rules from a training set is guided
by the support and confidence metrics. Many associative classifiers set a minimum
support level and use the confidence metric to rank the remaining association
rules. This approach, with a primary focus on support and confidence as the
second criterion, will reject 100% confidence rules if the support is too low.

In this article, we question this common approach which prioritizes sup-
port over confidence. We study a new associative classifier algorithm, called PGN,
which turns the priorities around and focuses on confidence first by retaining only
100% confidence rules. The main goal of this research is to verify the quality of
the confidence-first concept. We therefore did not focus on the computational ef-
ficiency in this paper, which is left for future research in case the confidence-first
concept is supported empirically.

The next section will introduce the related research and positions our
approach into the academic literature of associative classification. Next, Section
3 explains the different steps of the PGN algorithm, while Section 4 discusses
the results from the empirical analysis of PGN. Finally, conclusions and ideas for
future research are stated in Section 5.

2. Associative Classifiers. Associative Classifiers are classification
methods which belong to the domain of Data Mining. Fayyad et al. [10] iden-
tify Data Mining as the essential step in Knowledge Discovery process where
intelligent methods are applied in order to extract data patterns. According to
the taxonomy given by Maimon and Rokach [17], data mining methods can be
divided into verification methods and discovery methods. Verification methods
deal with the evaluation of a hypothesis proposed by an external source, while
discovery methods try to identify patterns in data.

Associative Classifiers belong to the family of discovery methods, and
more in particular to the predictive discovery methods. Among the predictive
discovery methods, one can discern classification and estimation methods. Es-
timation methods map the input space onto a real-valued domain and are used
when the outcome or predicted variable is continuous. Classification methods, to
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which associative classifiers belong, map the input space onto predefined classes
and they are used when the outcome or predicted variable is categorical or nom-
inal. Other types of classification methods or classifiers are Support Vector Ma-
chines [6], Decision Trees [20, 21], k-Nearest-Neighbor classifiers [3] and Neural
Networks.

Compared to other classification methods, associative classifiers hold some
interesting advantages [28]. Firstly, high dimensional training sets can be han-
dled with ease and no assumptions are made about the dependencies between
attributes. Secondly, the classification is often very fast. Thirdly, the classifica-
tion model is a set of rules which can be edited and interpreted by human beings.
On the other hand, associative classifiers cannot handle continuous attributes
and assumes that all data are nominal or categorical. Therefore, when the data
set contains continuous variables, these variables need to be discretized during
data preprocessing. Discretization partitions continuous variables into a number
of sub-ranges and transforms each sub-range into a category.

As mentioned in the introduction, various authors have introduced their
own associative classifier algorithm over the last years. Although each implemen-
tation differs, a common structure of three consecutive steps can be identified, i.e.
the association rule mining step, the pruning step (optional) and the classification
step. Next, we will provide a short discussion of the various implementations of
these three steps in associative classifiers.

2.1. Association Rule Mining. All associative classifiers start by gen-
erating association rules from a given training set. Association rule mining was
first introduced in [1] and tries to extract interesting correlations, frequent pat-
terns and associations among sets of instances in a transactional or other dataset.
Originally, association rule mining focused on the analysis of transactional data-
base, where each record represents a transaction comprising a set of items. From
the transactional data perspective, the notation from [12] can be used to describe
association rules.

Let D be a set of items, then X = {i1, . . . , ik} ⊆ D denotes an itemset
or a k-itemset. A transaction over D is a couple T = {tid, I} where tid is the
transaction identifier and I is an itemset. A transaction T = {tid, I} is said to
support an itemset X ⊆ D if X ⊆ I.

A transactional database D over D is a set of transactions over D. The
cover of an itemset X in D consists of the set of transaction identifiers of trans-
actions in D that support X : cover(X,D) = {tid|(tid, I) ∈ D,X ⊆ I}. The
support of an itemset X in D is the number of transactions in the cover of X

in D, i.e. support(X,D) = |cover(X,D)|. Note that |D| = support({},D). An
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itemset is called frequent if its support is no less than a given absolute minimal
support threshold MinSup, with 0 ≤ MinSup ≤ |D|.

An association rule is an expression of the form X ⇒ Y , where X and
Y are itemsets, and X ∩ Y = {}. Such a rule expresses the association that
if a transaction contains all items in X, then that transaction also contains all
items in Y . X is called the body or antecedent, and Y is called the head or
consequent of the rule. The support of an association rule X ⇒ Y in D, is the
support of X ∪ Y in D and can be interpreted as a measure of evidence that
the rule X ⇒ Y is real and not a noise artifact. The confidence or accuracy
of an association rule X ⇒ Y in D is the conditional probability of having Y

contained in a transaction, given that X is contained in that transaction, i.e.

confidence(X ⇒ Y,D) = P (Y |X) =
support(X ∪ Y,D)

support(X,D)
. A class association

rule (CAR) is an association rule where the head or consequent of the rule refers
to the class attribute.

Different implementations of associative classifiers use different associa-
tion rule mining techniques. For example, the Apriori algorithm [2] is used by
CBA [16], ARC-AC [4], ARC-BC [4], ACRI [22] and ARUBAS [9], while CMAR
[15] uses the FP-tree algorithm [13], CPAR [27] uses the FOIL algorithm [21] and
CorClass [29] uses the Morishita & Sese Framework [19].

Class association rules can be generated from a single data set containing
all training transactions, which is e.g. the case for ARC-AC, CMAR or CBA, or
can be generated from a set of data sets, where training cases are grouped per class
label. The latter is the case for ARC-BC and makes it more probable for small
classes to have representative class association rules. Furthermore, all association
rule mining algorithms produce the same set of class association rules, but differ
in terms of computational complexity. One exception is the FOIL algorithm used
in the CMAR implementation, which is a heuristic rather than an exact solution
and only gives an approximation of the exhaustive set of class association rules
meeting specific support and confidence criteria.

2.2. Pruning. Once the CARs are generated from the training set, most
associative classifiers apply some pruning strategy to reduce the size of the rule
set. Even if there is no separate post-pruning step, all algorithms apply some
sort of pre-pruning during the rule generation step by setting a support and/or
confidence threshold. This pre-pruning technique is an isolated pruning technique
as the CARs are evaluated individually, in isolation from the other CARs. Other
isolated pruning techniques are Pessimistic Error Pruning (PEP) and Correlation
Pruning (CorP). Pessimistic Error Pruning (PEP), applied in CBA [16], uses the
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pessimistic error rate from C4.5 [21] to prune, while Correlation Pruning (CorP),
which is applied in CMAR [15], uses the correlation between the rule’s body and
the rule’s head.

Some associative classifiers use non-isolated pruning techniques which
take multiple rules into account when deciding whether or not to prune a specific
rule. A well known non-isolated pruning technique is the Data Coverage Pruning
technique (DCP), which is applied in CBA [16], ARC-AC [4], ARC-BC [4] and
CMAR [15]. DCP consists of two steps. First, the rule set is ordered according
to confidence, support and rule size. Rules with the highest confidence go first.
In case of a tie, rules with the highest support take precedence. In case of a tie in
terms of confidence and support, the smaller the rule, i.e. the more general a rule
is, the higher the ranking. Once the rule set is ordered, the rules are taken one
by one from the ordered rule set and are added to the final rule set until every
record in the training set is matched at least α times. For CBA, ARC-AC and
ARC-BC this parameter α is fixed to 1, while in CMAR α is a parameter which
needs to be set by the user. Confidence Pruning (ConfP) is another non-isolated
pruning technique which is used by CMAR, ARC-AC, ARC-BC. ConfP prunes
all rules which are generalized by another rule with a higher confidence level.

2.3. Classification. Once the CARs are generated and pruned, the asso-
ciative classifier uses all these pieces of local knowledge to classify new instances.
While some associative classifiers apply order-based classification, others use non-
order-based classification. With order-based classification, the association rules
are ordered according to a specific criterion, while non-order-based classifiers do
not rely on the order of the rules.

Among the order-based classification schemes, the Single Rule Classifi-
cation approach has to be distinguished from the Multiple Rule Classification
approach. The former approach orders the rules and uses the first rule which
covers the new instance to make a prediction. The predicted class is the selected
rule’s head. This classification scheme is used by CBA, CorClass and ACRI.
CBA and CorClass order the rules according to confidence, support and rule size
in the same way the data coverage pruning technique does. ACRI on the other
hand, allows the users to select from four different ordering criteria, i.e. a cosine
measure, the support, the confidence or the coverage.

Multiple Rule Classification, which is used by CPAR, selects those rules
which cover the new instance, groups them per class and orders them according
to a specific criterion. Finally, a combined measure is calculated for the best Z

rules, where Z is a user-defined parameter. With CPAR, the rank of each rule is
determined by the expected accuracy of the rule.
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Furthermore, some associative classifiers, such as CMAR, ARC-AC, ARC-
BC and CorClass, use a non-order-based classification scheme. These classifica-
tion schemes select the rules which cover the new instance, group them per class
and calculate a combined measure per class value. This approach is almost identi-
cal to the order-based multiple rule classification scheme, except for the ordering
step.

3. Classifier PGN. This section introduces the implementation details
of our new associative classifier PGN. The main idea behind this associative
classifier is to break with the existing habit of putting the primary focus on
support when generating association rules. Instead, PGN focuses primarily on
confidence, using only 100% confidence rules to classify with. The structure of
the PGN classifier follows the general three-step structure of most associative
classifiers, discussed in the previous section. Next, each of these three steps
will be discussed in detail, preceded by a subsection introducing the necessary
notation and definitions.

3.1. Notation. Association rule mining traditionally deals with trans-
actional data, which differs structurally from rectangular data, which is more
common in the domain of classification techniques. A record in a transactional
data set is represented as a set of items, e.g. X1 = {a, b, d, e}, while the same
record in a rectangular data set is represented as a set of attribute-value pairs,
e.g. X1 = {〈a, 1〉 , 〈b, 1〉 , 〈c, 0〉 , 〈d, 1〉 , 〈e, 1〉}. The most striking difference be-
tween both types of data sets is that the size of an instance in a transactional
database is not fixed, while it is in a rectangular data set. Furthermore, the con-
cept of a class attribute, i.e. the attribute whose value the classification algorithm
tries to predict, is not easily represented in a transactional context. Therefore,
this section introduces some new notation which allows us to define association
rule mining concepts in the context of rectangular data.

In a rectangular data set D, each instance Xi = {ai
1, . . . , a

i
j , . . . , a

i
J , }

consists of a set of J attribute-value pairs ai
j =

〈

aj , x
i
j

〉

where xi
j represents

the value of attribute aj for instance Xi. The attributes are assumed to be
nominal or categorical, and thus xi

j ∈ {−, 1, 2, . . . Kj} with “–” representing
“arbitrary” value. Furthermore, one of the attributes represents the class to which
the instance belongs. To distinguish the class attribute from the other attributes,
the corresponding attribute-value pair will be denoted as ai

C =
〈

aC , ci
〉

. Often,
a simplified notation is used by representing a record as a set of attribute values,
which results in the following notation: Xi = {xi

1, . . . , x
i
J−1, c

i}.
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Note that each record represents a class association rule and every class
association rule can be expressed using the same notation as for records. For
example, the association rule Rl : {xl

1, . . . , x
l
J−1} ⇒ {cl} corresponds with nota-

tion Rl = {xl
1, . . . , x

l
J−1, c

l} and vice versa. Attributes which are not part of an
association rule are denoted with a ‘missing value’, e.g the rule Rl : a1 = 1∧a3 =
2 ⇒ aC = 1 is represented as Rl = {〈a1, 1〉 , 〈a2,−〉 , 〈a3, 2〉 , 〈aC , 1〉}.

Before support and confidence can be defined, two new relationships be-
tween a rule Rl and a record Xi need to be defined.

Definition 1: Covering relation “⊂’’. A rule Rl = {xl
1, . . . , x

l
J−1, c

l}
covers a record Xi = {xi

1, . . . , x
i
J−1, c

i} if the rule’s antecedent corresponds with

the record, that is:

Rl ⊂ Xi ⇔ ∀xl
j|1 ≤ j ≤ J − 1, xl

j 6= −} : xl
j = xi

j

Definition 2: Matching relation “⊆”. A rule Rl = {xl
1, . . . , x

l
J−1, c

l}
matches a record Xi = {xi

1, . . . , x
i
J−1, c

i} if both the rule’s antecedent and con-

sequent corresponds with the record, that is:

Rl ⊆ Xi ⇔ Rl ⊂ Xi and cl = ci

Now the support and confidence of a rule can be defined with the new
notation:

Definition 3: Support.

support(Rl,D) = |{Xi ∈ D|Rl ⊆ Xi}|

Definition 4: Confidence.

confidence(Rl,D) =
|{Xi ∈ D|Rl ⊆ Xi}|

|{Xi ∈ D|Rl ⊂ Xi}|

3.2. Association Rule Mining. To illustrate the algorithm, a simple
data set shown in Table 1 is used as example.

Since the primary focus of the classifier PGN is on the rule’s confidence,
we cannot use the downward closure property of the support metric to limit
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the search space of confident association rules. The downward closure property
specifies that by making an association rule more specific, i.e. adding additional
antecedents, the support can not increase. The Apriori algorithm exploits this
property by starting from very general rules and making them incrementally more
specific until supports drops below a specified threshold. However, specifying such
threshold will possible prevent us from learning all 100% confidence rules, which
violates the goal of PGN.

Table 1. Example data set. The final attribute is the class attribute

Records
X1 = {1, 2, 4, 1, 1}
X2 = {1, 2, 3, 1, 1}
X3 = {3, 1, 3, 2, 1}
X4 = {3, 1, 4, 2, 1}
X5 = {1, 2, 4, 1, 1} Equal to X1

X6 = {3, 1, 4, 2, 1} Equal to X4

X7 = {3, 1, 1, 2, 2}
X8 = {2, 1, 1, 2, 2}
X9 = {3, 1, 2, 2, 2}

PGN starts by adding all records to the set of association rules. For each
class, a separate set of association rule is generated. In our example, the first
four records are added as rules for class 1. Records X5 and X6 correspond to X1

and X4 respectively and are therefore not added since this would only result in
duplicate rules. The final three records are added to the rule set for class 2. This
is illustrated in Figure 1.

Fig. 1. Adding records to the appropriate rule set

Next for each class, the intersection of every pair of rules is taken (cf.
Definition 5). If the intersection results in a new rule which is not present in
the rule set, it is added. This process continues until no more intersections are
possible. The result of this step for the example data set is shown in Figure 2.

Definition 5: Intersection “∩”. R1 ∩ R2 = R3 such that ∀x3

j ∈ R3 it

holds that x3

j =

{

x1

j if x1

j = x2

j

− if x1

j 6= x2

j
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Fig. 2. Creating new association rules through intersection

3.3. Pruning. In the pruning stage of PGN, association rules are re-
moved from the rule set in two steps.

Firstly, all rules with a confidence less than 100% are removed, and sec-
ondly rules for which a more general version is present in the rule set are also
pruned. Pruning for confidence is performed in accordance with Definition 6.
Application of this pruning step is illustrated in Figure 3. After all comparisons
between rules from different classes are made, all rules marked for removal are
pruned.

Definition 6: Pruning for confidence.

R1 ⊂ R2 ∧ c1 6= c2 ⇒ mark R1 for removal

Fig. 3. Pruning for confidence

It can easily be proven that pruning for confidence results in association
rules with confidence equal to 100%.

P r o o f. Pruning for confidence removes rules with confidence

less than 100% .
Assume that R1 ⊂ R2 and c1 6= c2. Since every rule is either a record

from data set D or an intersection between two rules, we know that the support



152 I. Mitov, B. Depaire, K. Ivanova, K. Vanhoof

of every rule is at least 1. From this follows that a record Xi exists such that
R2 ⊆ Xi. Given that R1 ⊂ R2, it follows that R1 ⊂ Xi. However, since R2 ⊆ Xi

and c1 6= c2, we know that R1 ⊆ Xi cannot hold and confidence(R1,D) < 1.

After all rules with a confidence level less than 100% are removed, a second
pruning step is performed which retains only the most general rules. Pruning for
general rules is performed as detailed in Definition 7. Application of this pruning
step is illustrated in Figure 4. After all pairs of rules within each class are
compared, all rules marked for removal are pruned.

Definition 7: Pruning for general rules.

R1 ⊂ R2 ∧ c1 = c2 ⇒ mark R2 for removal

Fig. 4. Pruning for general rules

As a result of these two pruning steps, only general and highly confident
rules are retained. For the example data set, the rules in Table 2 were retrieved
after pruning.

Table 2. Association rules after pruning

Rule Support Support set
R1 = {1, 2, –, 1, 1} 3 {X1, X2, X5}
R2 = {–, –, 4, –, 1} 4 {X1, X4, X5, X6}
R3 = {–, –, 3, –, 1} 2 {X2, X3}
X9 = {3, 1, 2, 2, 2} 1 {X9}
R5 = {–, 1, 1, 2, 2} 2 {X7, X8}

3.4. Classification. To classify new instances with the pruned rule set,
the definition for the size of an association rule must be introduced first. The
association rule size corresponds to the number of non-class attributes which have
a non-missing value.
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Definition 8: Association Rule Size.

|Rl| =
∣

∣

∣

{

xl
j |1 ≤ j ≤ J − 1, xl

j 6= −
}∣

∣

∣

This allows us to define an intersection percentage between a record Xi

and an association rule Rl:

Definition 9: Intersection Percentage.

IP (Xi, Rl) = 100 ∗
|Xi ∩ Rl|

Rl

To classify a new instance, the intersection percentage between the test
case and every rule is calculated. This allows for three different scenarios:

– When the maximum intersection percentage occurs only once for one single
rule, the class of this rule becomes the predicted class for the new instance.

– When the maximum intersection percentage occurs multiple times, but only
for rules from the same class, the class of these rules becomes the predicted
class for the new instance.

– When the maximum intersection percentage occurs multiple times for rules
from different classes, the supports of these rules are summed per class.
The class with the highest aggregated support becomes the predicted class
for the new instance.

Note that this classification scheme also uses association rules which do
not cover the test case perfectly for classification purposes.

Let’s illustrate this classification method with the pruned rule sets in Ta-
ble 2. Assume a new instance Xi = {1, 2, 1, 2, ?} which needs to be classified (“?”
marks the unknown value of the class label). Firstly, the intersection percentage
between Xi and every rule is calculated and shown in Table 3. The maximum
intersection percentage is 0.667 and occurs for rules R1 and R5 which belong to
different classes. Considering only the rules with an intersection percentage of
0.667, the summed support for class 1 is 3 and the summed support for class 2 is
2. Consequently, the new instance is predicted to belong to class 1.
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Table 3. Classification of Xi = {1, 2, 1, 2, ?}

Rl Xi ∩ Rl IP (Xi, Rl) Support
R1 = {1, 2, –, 1, 1} {1, 2, –, –, ?} 0.667 3
R2 = {–, –, 4, –, 1} {–, –, –, –, ?} 0 4
R3 = {–, –, 3, –, 1} {–, –, –, –, ?} 0 2
R4 = {3, 1, 2, 2, 2} {–, –, –, 2, ?} 0.250 1
R5 = {–, 1, 1, 2, 2} {–, –, 1, 2, ?} 0.667 2

4. Empirical Analysis. The goal of this section is to empirically
analyze the performance of PGN.

The experiments were performed on various data sets from the UCI Ma-
chine Learning Repository [11]. The used data sets are described in Table 4.
Data sets containing continuous attributes were discretized first by means of the
Chi-merge method [14]. This discretization method is based on the χ2 statis-
tic and uses a Chi-square threshold as stopping rule. In our experiments, the
Chi-square threshold was set to 95%.

Table 4. Data sets

Data set # attributes # classes # instances Attribute type

annealing 38 5 798 Categorical, Integer, Real

audiology 69 24 200 Categorical

balance scale 4 3 624 Categorical

breast cancer wo 9 2 699 Categorical

car 6 4 1728 Categorical

cmc 9 3 1473 Categorical, Integer

credit 15 2 690 Categorical, Integer, Real

ecoli 7 8 336 Real

forestfires 12 2 517 Real

glass 9 6 214 Real

hayes-roth 4 3 132 Categorical

hepatitis 19 2 155 Categorical, Integer, Real

iris 4 3 150 Real

lenses 4 3 24 Categorical
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mammographic 5 2 961 Integer

monks1 6 2 432 Categorical

monks2 6 2 601 Categorical

monks3 6 2 554 Categorical

soybean 35 19 307 Categorical

tae 5 3 151 Categorical, Integer

tic tac toe 9 2 958 Categorical

votes 15 2 435 Categorical

wine 13 3 178 Integer, Real

winequality-red 11 6 1599 Real

zoo 16 7 101 Categorical, Integer

The goal of the experiments is to compare PGN against other classifiers
and to find significant differences between the classifiers in terms of accuracy.
For these purposes the methodology suggested by Demšar [8] is followed. First,
unbiased estimates of the classifiers’ accuracies will be estimated by means of a
five-fold cross validation for the observed datasets. Next, the Friedman test is
used to detect statistically significant differences between the classifiers in terms
of average accuracy. The Friedman test is a non-parametric equivalent of the
repeated-measures ANOVA test, but is based on the ranking of the algorithms
for each data set instead of the true accuracy estimates. In his paper, Demšar
discusses several reasons why the ANOVA test is inappropriate for comparing
multiple classifiers and why analyses should be performed on the ranking infor-
mation instead of the overall accuracies. The interested reader is referred to [8].
If according to the Friedman test, differences between the classifiers exist, we
use the Nemenyi test to compare each classifier with all other classifiers. The
Nemenyi test controls for family-wise error in multiple hypothesis testing and is
similar to the Tukey test for ANOVA. The results of the Nemenyi test are shown
by means of critical difference diagrams.

The classifiers to compare with are representatives of different classifica-
tion schemes, as follows:

– Associative classifiers: PGN and CMAR (using support threshold 1% and
confidence threshold 50%);
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– Decision Rules: One R, JRip (pruned and unpruned), Decision Table;
NNge;

– Decision Trees: REP Tree, J48 (pruned and unpruned), LAD Tree;

– Nearest Neighbor learners: IBk, KStar;

– Bayes: Näıve Bayes, Bayes Net, HNB, WAODE, LBR;

– Ensemble methods (Bagging): Random Forest;

– Support Vector Machines: SMO;

– Neural Networks: Multilayer Perceptron.

Experiments were made using the following programs:

– program realization of PGN in data mining environment PaGaNe [18];

– the program realization of CMAR in the LUCS-KDD Repository
(http://www.csc.liv.ac.uk/∼frans/KDD/);

– for all other classifiers their Weka implementation are used [26].

All classifiers received the discretized data set to begin with.

Table 5 shows the average accuracies of five-fold cross validation for ex-
amined classifiers over chosen datasets.

Table 5a. Average accuracies of five-fold cross validation (first 11 classifiers)

classifier PGN CMAR One R JRip- Dec. JRip- NNge REP J48- J48- LAD

dataset unpr. Table pruned Tree pruned unpr. Tree

annealing 96.24 95.99 83.71 99.00 98.37 98.12 97.24 97.62 98.12 98.75 98.12

audiology 75.50 59.18 47.00 68.50 61.00 69.50 67.00 62.50 72.00 72.00 71.50

balance scale 77.89 86.70 60.10 72.76 66.83 71.95 70.68 67.15 66.18 69.87 82.69

breast cancer wo 96.43 93.85 91.85 92.85 92.42 93.28 94.99 93.99 94.28 94.71 94.85

car 92.59 81.77 70.03 87.44 91.43 86.75 94.33 88.2 90.8 93.17 90.45

cmc 49.90 53.16 47.25 45.55 49.42 50.38 44.81 50.17 51.60 48.07 54.86

credit 87.54 87.10 85.51 81.45 85.8 85.07 80.14 85.07 85.36 83.91 86.67

ecoli 79.76 81.26 60.42 75.91 76.50 80.07 77.70 79.17 77.09 78.28 81.27
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forestfires 57.63 58.80 53.38 55.31 52.03 54.76 54.36 53.95 53.96 52.41 57.26

glass 78.51 78.04 54.67 71.98 61.23 66.40 71.53 67.29 73.38 74.76 71.95

hayes-roth 81.94 83.42 50.77 78.86 51.51 78.12 75.10 73.53 68.23 69.00 87.24

hepatitis 80.65 84.52 81.94 76.78 82.58 77.42 81.29 79.36 79.36 77.42 77.42

iris 92.67 92.67 94.67 93.33 92.67 92.67 94.67 93.33 94.67 93.33 93.33

lenses 74.00 88.00 62.00 87.00 92.00 83.00 70.00 80.00 83.00 75.00 83.00

mammographic 80.75 82.11 82.00 78.98 82.73 81.69 76.28 81.69 81.69 83.46 80.96

monks1 100.00 100.00 74.98 99.31 100.00 87.53 96.05 88.91 94.68 93.28 80.08

monks2 73.06 59.74 65.73 58.74 64.40 58.73 73.87 63.90 59.90 60.91 68.39

monks3 98.56 98.92 79.97 98.56 98.92 98.92 98.20 98.92 98.92 98.92 98.92

soybean 93.15 78.48 37.44 87.28 75.24 85.35 89.24 78.18 87.64 87.95 77.85

tae 52.94 35.74 45.76 33.72 47.70 34.43 50.88 40.43 46.97 47.61 45.64

tic tac toe 88.93 98.75 69.93 97.29 73.70 98.02 86.53 80.37 84.23 84.23 73.70

votes 95.86 94.02 95.63 94.25 93.79 94.71 94.71 95.40 95.17 94.25 95.63

wine 96.09 91.70 78.63 89.33 80.90 90.45 92.18 88.16 87.03 88.19 90.98

winequality-red 64.98 56.29 55.54 48.65 55.97 53.72 60.79 57.03 58.22 59.16 56.41

zoo 98.10 94.19 73.29 90.14 88.19 88.19 95.14 82.19 94.14 95.14 98.10

Table 5b. Average accuracies of five-fold cross validation (next 10 classifiers)

classifier IBk KStar Näıve Bayes HNB WAO LBR Rand. SMO Mult.

dataset Bayes Net DE Forest perc.

annealing 98.25 98.75 91.61 91.11 97.62 96.99 96.87 97.62 99.12 99.12

audiology 76.50 76.00 64.50 71.00 68.00 71.50 65.00 73.50 76.50 78.50

balance scale 85.26 86.70 90.54 90.54 87.02 88.14 90.54 75.48 89.42 98.72

breast cancer wo 95.85 95.28 97.14 97.14 95.13 95.85 97.14 95.42 95.99 96.28

car 92.94 86.81 85.19 85.30 92.24 90.11 91.95 93.52 92.59 99.83

cmc 47.12 50.31 50.45 50.31 52.96 52.68 52.55 48.68 53.50 47.73

credit 82.90 84.78 86.38 86.38 84.93 85.94 86.23 85.51 85.94 86.09

ecoli 79.76 80.36 84.84 84.54 79.77 82.75 84.84 80.36 84.24 80.67

forestfires 56.69 56.68 58.02 58.21 56.29 60.73 58.02 58.42 61.11 58.01
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glass 78.98 78.99 74.33 74.34 75.70 77.13 74.33 76.19 77.12 74.32

hayes-roth 63.67 61.40 85.67 85.67 72.82 76.61 85.67 76.61 83.39 83.45

hepatitis 81.29 80.65 86.45 85.16 85.81 83.87 87.10 83.23 77.42 81.29

iris 93.33 93.33 92.67 92.67 92.00 93.33 92.67 94.67 93.33 94.67

lenses 78.00 78.00 70.00 70.00 54.00 70.00 70.00 74.00 70.00 74.00

mammographic 80.44 81.17 82.62 82.42 82.42 82.94 82.42 81.90 81.48 80.44

monks1 97.92 97.92 74.98 74.98 100.00 74.29 100.00 96.30 74.98 100.00

monks2 71.55 76.88 61.41 61.24 67.90 63.73 66.57 65.39 65.73 100.00

monks3 97.66 97.84 96.39 96.39 98.38 98.56 98.74 98.02 96.75 98.92

soybean 90.87 91.85 82.76 86.33 91.85 90.87 86.99 89.91 90.87 92.18

tae 57.53 55.57 46.99 46.34 52.93 53.59 50.30 48.92 51.61 54.92

tic tac toe 97.39 95.30 71.29 71.40 77.03 73.27 84.97 91.13 98.33 97.81

votes 93.79 93.56 89.89 89.89 94.48 95.40 94.02 95.63 95.86 95.40

wine 96.11 96.11 98.89 99.44 98.33 97.20 98.89 94.40 98.33 97.76

winequality-red 64.29 64.67 58.60 58.47 62.29 61.91 59.28 64.35 59.04 64.04

zoo 96.14 96.14 94.10 96.10 97.10 98.05 94.10 96.10 98.05 96.14

Table 6 shows the ranks of these classifiers over the data sets. Let’s men-
tion that if two or more classifiers have equal accuracies, they share corresponded
average ranks.

Table 7 shows the average rank for each classifier over the 25 UCI data
sets. The Friedman test has a χ2 value of 95.579 with 20 degrees of freedom. For
this degree of freedom the null hypothesis critical value is α0.10 = 28.412. This
indicates that there are statistically significant differences in accuracy among
these 21 classifiers.

The rejecting of null-hypothesis of Friedman test gives the assurance to
make post-hoc Nemenyi test. Figure 5 shows the results of the Nemenyi test.
CD0.10 shows the groups of classifiers that are not significantly different at p=0.1.
From these results we see that PGN is competitive with techniques such as Neural
Networks (Multilayer Perceptron), Support Vector Machines (SMO), Ensemble
methods (Random Forest) and Bayes techniques and statistically outperforms
more of the representatives of Decision Trees and Decision Rules.
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Table 7. Average ranks on 25 UCI data sets for PGN and 20 other classifiers

PGN CMAR One R JRip- Dec. JRip- NNge REP J48- J48- LAD

unpr. Table pruned Tree pruned unpr. Tree

Avg.Rank 7.96 10.52 17.18 14.40 13.94 13.78 12.50 14.20 12.48 12.08 10.20

IB k K Star Näıve Bayes HNB WAO LBR Rand. SMO Mult.

Bayes Net DE Forest perc.

Avg.Rank 9.66 9.36 11.48 11.18 9.86 8.82 8.68 8.92 7.60 6.20

Fig. 5. Comparison PGN and 20 other classifiers (Nemenyi test)

Finally, note that in contrast with the some other classifiers (especially
associative classifiers), PGN is a parameter free classifier.

5. Conclusions. The goal of this article is to question the support-
first principle used by many associative classifiers when mining for association
rules. Instead, a new associative classifier, called PGN, was developed which
turns the common approach around and focuses primarily on the confidence of
the association rules and only in a later stage on the support of the rules. The
main purpose of this research was to provide a proof of concept for this new
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approach and collect evidence about its potential.

The experimental results are very positive and show that PGN is com-
petitive with some of the more advanced classification methods such as Neural
Networks, Support Vector Machines, Ensemble methods and Bayes techniques,
while statistically outperforming more of the representatives of Decision Trees
and Decision Rules. At the same time, PGN has the advantage over the other
Associative Classifiers that it is parameter free.

In general, the results provide evidence that the confidence-first approach
yields interesting opportunities.

Now that the proof of concept is given, future research must focus on the
computational efficiency of the algorithm, since this was not the focus during
this research. Particularly, the association rule mining step is computationally
expensive in the current implementations. Another interesting direction for future
research concerns an adjustment of the current algorithm which to mine for highly
confident association rules which are not necessarily 100% confidence results.
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