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Abstract
Consider a parameter-dependent linear system A(p) -z = b(p), where the elements of the matrix
and the right-hand side vector depend affine-linearly on a m-tuple of parameters p = (p1,...,pm)
which vary within given intervals p € ([p1],. .., [Pm])-

It is a fundamental problem of considerable practical importance how to describe the para-
metric solution set ¥ (A(p), b(p),[p]) := {x € R"™ | 3p € [p], A(p)x = b(p)} by a logical combination
of inequalities depending of the coordinates. So far, in the general case of arbitrary affine-linear
parameter dependencies, the solution set description can be obtained by a lengthy (and not unique)
parameter elimination process. Recently, explicit descriptions of the symmetric and skew-symmetric
solution sets were given.

We introduce a new classification of the parameters with respect to the way they participate in
the equations of the system and give numerical characterization for each class of parameters. This
paper considers a class of parametric linear systems, where each uncertain parameter occurs in only
one equation of the system and does not matter how many times within that equation. For such
systems, a simple explicit characterization of the parametric solution set is derived. The obtained
explicit parametric solution set characterization generalizes the famous Oettly-Prager theorem for
non-parametric linear systems. The new characterization is illustrated by some numerical examples
and compared to other approaches as Fourier-Motzkin like parameter elimination and quantifier
elimination used also for characterizing the parametric solution set.

MSC: 65F05, 65G99
AMS Subject classification: 15A06, 65F05, 65G10
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1 Introduction

Consider the linear algebraic system

Ap) -z = b(p), (1)
where the elements of the n x n matrix A(p) and the vector b(p) are affine-linear functions
m m
aij(p) = aijo + Y GijuDus bi(p) :=bio+ Y _ biuby, (2)
n=1 v=1
aij,P«?biaﬂERJ p=0,....m, 5,j=1,...,n

*This work is presented at the International Conference “60 Years Institute of Mathematics and Informatics”, Bul-
garian Academy of Sciences, July 6-8, 2007, Sofia, Bulgaria.
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of m parameters. The parameters are considered to be uncertain and varying within given intervals

p € pl=(pl,....Iom]) " (3)

Such systems are common in many engineering analysis or design problems, models in operational research,
linear prediction problems, etc., where there are complicated dependencies between the coefficients of the system.
The uncertainties in the model parameters could originate from an inexact knowledge of these parameters,
measurement imprecision, or round-off errors. Linear systems with interval input data are applicable also to
uncertainty theories which rely on interval arithmetic for computations, such as fuzzy set theory, random set
theory, or probability bounds theory.

The set of solutions to (1)—(3), called parametric solution set, is

2P =% (Ap);bp),[p]) = {xeR"[3pep],Alp)r =bp)}. (4)

Denote by R™, R™"*™ the set of real vectors with n components and the set of real n xm matrices, respectively.
A real compact intervalis [a] = [a~,aT] :={a € R|a~ < a < a'}. By IR",IR"™™ we denote the sets of interval
n-vectors and interval n x m matrices, respectively. For [a] = [a™,a™], define mid-point @ := (¢~ + a*)/2 and
radius a® := (a™ — a~)/2. The end-point functionals (-)~, (-)*, as well as the mid-point and radius functionals
are applied to interval vectors and matrices componentwise.

The well-known non-parametric interval linear system [A]z = [b], which is the most studied in the interval
literature, can be considered as a special case of the parametric linear system with n?+n independent parameters
ai; € [ag;], by € [by], 4,5 =1,...,n. For a parametric system (1-3), the corresponding non-parametric one with
[4] = A([p]) = ([a;;]) € IR™™™, [b] € IR™ can be obtained as

laig] = aij([P)) = asjo + D asjulp], [0 =bilp) = bio + DY biwlpul, isi=1,...,n.

p=1 p=1
The non-parametric solution set, called also united solution set, is defined as
L ([A]L[b]) = {zeR"|JAc[A],Fbe[b],A -z =0}. (5)

In general, X (A(p), b(p), [p]) C X ([4], [b]) since the elements of [A], [b] are perturbed independently in contrast
to A(p), b(p) with p € [p]. The non-parametric solution set is well studied with a lot of results concerning its
characterization and properties, for a summary see e.g. [1]. In particular, the famous Oettly-Prager theorem
[5] characterizes the non-parametric solution set by the inequalities

[A@)z —b@)| < AR([p))lz| + 02 ([p)).- (6)

It is a fundamental problem of considerable practical importance how to describe the parametric solution
set (4) by a logical combination of inequalities depending of the coordinates. Such a description can be used for
visualization of the parametric solution set, exploring some of its properties, and even for computing compo-
nentwise boundaries. So far, in the general case of arbitrary affine-linear parameter dependencies, the solution
set description can be obtained by a lengthy (and not unique) parameter elimination process [2] shortly recalled
in Section 2. Recently, explicit descriptions of the symmetric and skew-symmetric solution sets were given in
[3].

The goal of this paper is to give an explicit characterization of the parametric solution set for another class
of parametric systems. To this end we introduce a classification of the parameters with respect to the way they
participate in the equations of the system. In Section 3 a definition and numerical characterization is given
for each class of parameters. In Section 4 the parameter elimination process is studied in details for a class of
parametric linear systems, where each uncertain parameter occurs in only one equation of the system and does
not matter how many times within that equation. For such systems we give a simple explicit characterization
of the parametric solution set which generalizes the famous Oettly-Prager theorem. Some important properties
regarding the elimination of zero and 1st class parameters are explored. The explicit parametric solution set
characterization is illustrated in Section 5 on some numerical examples and its advantages are compared to
other approaches as Fourier-Motzkin like parameter elimination and quantifier elimination which can be also
used for characterizing the parametric solution set.
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2 Fourier-Motzkin like Elimination of Parameters
The parametric solution set (4) is characterized by the following trivial set of inequalities
YP={zeR"|3Ip, eR,p=1,...,m:(7)~(8) hold},

where

n m n
Z <a¢j0 + Z aijupu> zj < b+ 2;7:1 bippp < Z <a”0 + Z amﬂ’u) zj, i=1,...,n, (7

3=1 pn=1 j=1 p=1
Py <pu <P, =1,. (8)

Starting from such a description of the parametric solution set, Theorem 2.1 below shows how the parameters
in this set can be eliminated successively in order to obtain a description of the parametric solution set not
involving p,, p=1,...,m

Theorem 2.1 (Alefeld et al. [2]). Let fau, g, A=1,...,k (>2), u=1,...,m, be real-valued functions of
z=(z1,...,7,)" on some subset D C R"™. Assume that there is a positive integer ky < k such that: fy(x) #Z 0
forall X € {1,...,k}; far(xz) > 0 for all z € D and all X € {1,...,k}; for each x € D there is an index
B* =B*(x) € {1,..., k1 } with fg«1(xz) > 0 and an index v* = v*(x) € {kx +1,...,k} with fy-1(z) > 0. For m
parameters py, . .., Ppm varying in R and for x varying in D define the sets Sy,S: by

S == {zeD|Tp,eR,p=1,...,m:(9),(10) hold},
Sy = {zeD|3Ip,eR,p=2,...,m:(11) holds},

where inequalities (9), (10) and (11), respectively, are given by

‘T)_{—Zfﬁu(m)pu Sfﬁl(w)ph lea"'akla (9)
=2
F(@)pr < gy (@ +wa D)pp, Y=k +1,...k (10)

and

f’yl +Zf6u f’yl < fBl +vau fBl pu;
5: ,...,kl,’y:kl-f-].,...,k. (11)
(Trivial inequalities such as 0 < 0 can be omitted.) Then S; = Ss.

Theorem 2.1 defines the transition from inequalities (9), (10) to inequalities (11), where the parameter p;
does not occur. The assertion of Theorem 2.1 remains true if the inequalities in (9), (10) and the inequalities
in (11) are supplemented by inequalities which do not contain the parameter p;, as long as these inequalities
are the same in both cases. The parameter elimination process based on Theorem 2.1 resembles the so-called
Fourier-Motzkin elimination of variables, see e.g. [8]. As demonstrated below and in [7], it is a lengthy and not
unique process. Therefore, explicit parametric solution set characterizations are of particular interest.

3 Classification of the Parameters

In the initial description of the parametric solution set (7)—(8) we have 2n inequalities (7) and 2m so-called
parameter inequalities (8). In addition, a restricted domain for the parametric solution set could be specified by
a set D of so-called ”domain inequalities” which do not involve the parameters p. In this section we classify the
parameters involved in the system into three classes with respect to the way they participate in the parametric
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system. A definition and numerical characterization will be given for each class of parameters. Our goal is to
reveal the specific way by which the elimination of each class of parameters updates the set of characterizing
inequalities.

With the notations

At = (aijw) e R™*", b= (bi,u) € R, p=0,...,m

the system (1) can be rewritten equivalently as

<A0+§:puA”> T = b0+§:pub“.

pu=1 p=1
For a matrix A € R"*", A,,, denotes the m-th row of A.

Definition 3.1. A parameter p,, 1 < p < m, is of class zero if it is involved only in the right-hand side and
only in one equation of the system (1).

A parameter p,, is of class zero iff A* =0 € R**" and only one component of the numerical vector b is
nonzero (b # 0 for exactly one i, 1 < i < n). For example, the parameter ps involved in the system from
Example 5.1 is of class zero. It is obvious that the elimination of every one parameter of class zero, by applying
Theorem 2.1, removes one couple of parameter inequalities (8) and updates the inequalities (7) without changing
their number.

Definition 3.2. A parameter p,, 1 < p < m, is of 1st class if it is not of class zero and occurs in only one
equation of the system (1) does not matter how many times within that equation.

A parameter p,, is of 1st class iff A* # 0 and b* — A*z has only one nonzero component (that is b}’ — Al z # 0
for exactly one i, 1 < i < n). For example, the parameters p; and py involved in the system from Example 5.1
are parameters of 1st class. All parameters, except p,, involved in the system from Example 5.2 are parameters
of 1st class. The elimination of every one parameter of 1st class removes one couple of parameter inequalities
(8). We demonstrate in the next section that eliminating the parameters of 1st class by applying Theorem 2.1
to the end-point parameter inequalities (8) updates the inequalities (7) expanding exponentially their number.
A more efficient elimination procedure will be defined for parameters of zero and 1st class and an explicit
characterization of the solution set to a special class of parametric linear systems will be derived in Section 4.

Definition 3.3. A parameter p,, 1 < p < m, is of 2nd class if it is involved in more than one equation of the
system (1).

A parameter p,, is of 2nd class iff the vector b* — A¥z has more than one nonzero components. During the
elimination procedure by Theorem 2.1 the elimination of each parameter of 2nd class removes one couple of
parameter inequalities (8), updates those inequalities (7) corresponding to the nonzero components of b* — A*x
and expands the total number of characterizing inequalities.

In a subsequent article [7] we expand the analysis of the elimination process in the general case of a system
involving all three classes of parameters and give conditions under which the parameter elimination is unique
with respect to the resulting number of inequalities.
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4 A Special Class of Parametric Systems

In this section we analyze the elimination of the parameters of zero and 1st class, specify an elimination procedure
which is efficient with respect to the number of solution set characterizing inequalities, and by generalizing the
famous Oettly-Prager characterization of solution set for systems involving only parameters of zero and 1st
class, we characterize the considered special class of parametric solution sets by 2n explicit inequalities. We
start by introducing some notations.

For A € R, define sign(\) := {+ if A > 0, — if A < 0} and apply the sign functional to vectors and matrices
componentwise. Denote by U(s) := {sign(u) | u € R*,|u| = (1,...,1) "} the set of all s-dimensional sign vectors,
where the absolute value |u| is understood componentwise. The set U(s) consists of Card(U(s)) = 2° elements.
For 0 € {+,—} and <€ {<,>}, denote a <7 0 to be equivalent to a < 0 if 0 = + and to be equivalent to
—a < 0 if ¢ = —. These relations are applied to vectors componentwise.

Let all the uncertain parameters participating in the system (1-3) are of zero and 1st class and | < n
equations involve all m uncertain parameters. Denoting by 4;, 1 < j <, the indexes of the equations involving
uncertain parameters, let us suppose that

(mil +T’i1) + (mi2 +T’i2) + -+ (mil +T‘il) =m,

where n;; := m;; +r;;, 1 < j <1, is the number of the parameters participating in the i;-th equation and
0 <ri; < ny; of these parameters occur only in the right-hand side of this equation.

Denote by K(rg;) := {k1,...,ky, } the set of indexes of the parameters involved only in the r.h.s. of the
equation i; and K(m;;) := {ki,..., kmj} be the set of indexes of the other parameters involved in equation ¢;,
such that K(m;,) NK(r;;) =0, Ki; == K(ms,) UK(ri;), and Card(K;;) = ny; > 1.

Let fix a ij, for which m;, > 1, r;; > 1. For a fixed p € K;; denote c(u,z) := b* — A"z and its i;-th
component is ¢;; (p, ) = b:-‘j - AZ_. z. Then, for a fixed y, from p, < p, < p} we obtain

ci; (1, ©)py

Ti;

< Ci; (Nax)pu < Ci; (N:m)pu ) where Oi; = Sign(ci]‘ (M,.’E)). (12)

Ti;

Denote K := {1,...,m} \ K;,

A

00— A%+ > (B —A'z)  and
M%TClij
2 o= (Uij (N))NEK(miJ—) s where i (N’) = Sign(cij (/J,,;L‘)) € {+a _}'

Inequalities (7) can be rewritten equivalently as

n m n
0 szo — Z Q0T + Zp” bw — Z(Lijomj A
j=1 pn=1 j=1

n m
bio—Zaijoxj—}—Zp” bw—Zaijomj < 0, 1=1,...,n.
=1 =1

Then, the application of Theorem 2.1 to the i;-th couple of inequalities (13) and the inequalities (12) for p € K,
removes the parameters p,, u € K;;. Thus we obtain the following equivalent representation for the parametric
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solution set

¥ = {zeR"|IppeRpu=1,....mpé&Kk;:
\/ 0 S Ai].. + Z Cij (l/, Z bl’ ) N
E€U(m;;) veK(m;;) VelC(m )
—oi; (v (b" )
Aje + Z ci; (v, @)py @ + Z bl]p,, <0 A
VGIC(ml ) VGIC(Tz )

n
N cwa) 250 | Al A Aw=0 A p, <p.<p}
VGIC(mij) s=1,s71%; nEKi;

Expanding this result over all the parameters in the system we obtain the following explicit characterization
of the parametric solution set.

¥ = {zeR"|
! a'(b
\/ /\ 0< Aje+ Z cl] v, T)p —|— Z b” (14)
EeU(Xfy miy) \J=1 veK(mi; veK(r;;)
Ajje + Z ci; (v, x)py " + Z b;. p,,g < 0 A

vek(mi;) vEK(ri;)

n

N e zsol Al A =0k (1)

vek(m;,) s=1
7 s& U;‘:lKij

Thus, applying the elimination process, as described in [2], we obtain an explicit characterization of the solution
1 ,
set to a parametric system involving only zero and 1st class parameters that consists of 220i=1; (2l + 22:1 mi].)

inequalities and n —1 equalities. The number of characterizing inequalities can be reduced if we replace the set of

92 j=1Mi; (22:1 mi].) inequalities in (15) by the set consisting of 23:1 m;; inequalities /\;:1 /\ueIC(mi].) le(p,i)] >

¥ = {zeR"|

1
\/ /\ 0< Aje+ Z C,JV;E + Z bz]p,, (16)

EeU(X), miy) \J=1 veK(r;;)
—oi. (v by
Aije + ci; (v, x)py ()+ Z szpv 7l )go
VE/C(miJ) VE]C(T‘ZJ)

n 1
A Aw=0 AN - Al 20 (1)

1 J=1 veK(m;,)
s& u_li:lKij g

l .
Thus, the last characterization of the considered parametric solution set involves 2%5=1"4;9] 4 22:1 m;; in-
equalities and n — [ equalities. As seen, the number of characterizing inequalities grows exponentially with the
number of 1st class parameters.



Popova, E.: Explicit Characterization of a Class of Parametric Solution Sets 7

In order to reduce further the number of inequalities characterizing the solution set of a linear system
involving only parameters of zero and 1st class, instead of parameter inequalities p, < p, < p,j, we shall use
the equivalent inequalities p,, — pﬁ <pu <P+ pﬁ for the parameters of 1st class. Thus, for A € R we have

M = A < A < M+ [Alpg (18)

Then the elimination process, based on the relations (18) instead of relations (12), leads to the following
inequalities

1 v
/\ Aije + Z b;’jp;g(bij) + Z ci; (v, )Py, — Z |cl~j(1/,;17)|p,,A <0
j=1

veK(ri;) vek(m.;) veK(mi;)
L, oy §
0< Aje+ > Bpy 7+ Y ewa)p, + Y. e, (v3)|ph (19)
veK(ri;) veK(mi;) veK(m;;)
N\ Aw=0

Relations (19) can be rewritten in the following more general but equivalent forms

14
A (00 = At = 3 10— At il <0

Jj=1 REK;

0 < bi,(p) — Ae(P)x + Y b — AL, lpf N =A%z =0,

NGK:Z'J- s¢ U;-ZlK:i].
or m m
b(p) — A(p)z — Y [P — A" zlpf < 0 < b(p) — Ap)z+ Y b — A z|pf. (20)
n=1 n=1

This way, we have proven the following theorem which generalizes the famous Oettly-Prager solution set
characterization (6) for parametric systems involving only parameters of zero and 1st class.

Theorem 4.1. The solution set of the system (1)—(3) involving only uncertain parameters of zero and 1st class
has the following explicit characterization

o= {z eR"| [A@)z —bp)| < D[P — A alpp}
p=1

The solution set characterization (20), respectively Theorem 4.1, can be obtained by a parameter elimination
process specified by the following proposition.

Proposition 4.1. Let f,, 91,92, p = 1,...,m, be real-valued functions of x = (x1,...,x,)" on some subset
D C R™. For m parameters pi,...,pn varying in R, where the v-th parameter is of zero or 1st class, and for
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x varying in D, it holds S1 = S> where the sets S1, So are defined by

Sy = {zeD|IppeRpu=1,....m : P, <p,<p; A
91(@) + D fu@pu < @y < ga(@)+ Y ful@)pu},
bris iy
Sy = {zeD|Ip,eRpu=1,....m, p#v :
m
9@+ > fu@p < fo@)ps + | fo (@) 5 A
p=1
pEv

m
fo@)py = £ (@) P2 < g2(2) + D ful@)p}-
=1
v
Proof. The proposition follows from Theorem 2.1 and the equivalence of the relations p; < p, < pJ and
Py — Py < pv <Py + Dy O

Being specialized for parameters of zero and 1st class, Proposition 4.1 removes the restriction of Theorem 2.1
for positiveness of the coefficient functions fy;, A =1,...,k in (9), (10). Furthermore, utilizing the midpoint-
radius representation of intervals, Proposition 4.1 allows updating the inequalities (7) without changing their
number. Thus, Proposition 4.1 defines a more efficient elimination process for parameters of zero and 1st class
than Theorem 2.1.

Based on Proposition 4.1, a simple explicit characterization of the parametric solution set of systems in-
volving only parameters of zero and 1st class is derived. Theorem 4.1 characterizes the considered special class
of parametric solution sets by 2n inequalities and this number does not depend on the number of the involved
uncertain parameters. As being evident from the characterizations (14)—-(15) or (19), the inequalities charac-
terizing this special class of parametric solution sets are linear. Furthermore, the order of elimination of the
parameters is not significant for the characterization of this special class parametric solution sets.

5 Numerical Examples

Section 4 demonstrates the advantage of an explicit characterization, provided by Theorem 4.1, of the solution
set to parametric systems involving parameters of zero and 1st class in comparison to the Fourier-Motzkin
like parameter elimination process defined in [2]. In this section we illustrate the explicit characterization of
the solution set on some numerical examples. For comparison, we present the characterizations obtained by
quantifier elimination in the environment of Mathematica [9].

Example 5.1. Consider a simple parametric system

o ltp) (P
1+p2 —2p2 1-3p2)’
where p1,ps € [0,1], p3 € [-1,1].

Applying Theorem 4.1, the parametric solution set is defined by the following four inequalities

Ty +x2 | — @ — 22 T1+ 2y | — 21— 2o
- - 1<0< —ay — 1
To 5 5 _0_ To B + B +
3z 42 3 + 2z 3z 42 3z 42
l— ot 3 1;21+ x2_| 3 a;1+ x2|§0§1_m1+ 3 ;L'21+ x2+| 3 :;1+ x2|.

The parametric solution set is presented in Fig. 1 together with the corresponding non-parametric solution set.
For comparison we have run the Mathematica function Resolve doing quantifier elimination and the re-
sulting characterization by 181 inequalities is presented in Fig. 2.

In the next example we consider an arbitrary large parametric system.
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Figure 1: The parametric solution set (in blue or light gray) together with the corresponding non-
parametric solution set (in red or dark gray) for the system from Example 5.1.

Example 5.2. Consider the parametric system A" (p)x = b(p), where A(p) € R"*" is the Milnes matriz [4]
Dj .7 < i?

Ap) = (a5(),  ay(p) = {1 720

According to Theorem /.1 the solution set of this problem is characterized by the following system of 2n
inequalities

7 n n
Aoy |G+ =D = Y a/i+1) = 1= > 2;]/(50i +50) <0 A
j=1 j=i+1 j=it+1
i n n
0< (+D)7" =D a;— > aj/i+1)+[1= > x;]/(50i + 50)
j=1 j=i+1 j=i+1

For n = 20, e.g., the solution set characterization, based on Theorem 2.1 and the end-point parameter
inequalities (8), would require 2940 + 19 ~ 21 * 10° inequalities.

The execution of the Mathematica function Resolve on the same problem for n = 5 took 7.859 seconds
which was about 490 times slower than an interpreted implementation of Theorem 4.1.

6 Conclusion

Introducing a new classification of the parameters with respect to the way they participate in the system, we have
proven explicit characterization of the solution set to a class of parametric linear systems, where each uncertain
parameter occurs in only one equation of the system. Thus, besides for parametric systems involving symmetric
or skew-symmetric matrix, the famous Oettly-Prager theorem for non-parametric linear systems is generalized
for parametric systems involving zero and 1st class parameters. The latter parametric systems are characterized
by 2n inequalities and the boundary of the corresponding parametric solution set consists of linear functions,
contrary to the solution set characterization for systems involving symmetric or skew-symmetric matrix.

Although there exist other special methods for visualization of parametric solution sets [6], visualizing the
regions determined by the explicit solution set characterizing inequalities is more straightforward.
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4 pssByReduce.nb * _|EI|
In[134= Resolve[Exists[{pl, p2, 3}, 0 <= pl <= 1 &L 0 <= p2 <= 1 && -1 <= p3 <= 1, 7]
Plexl + (pl+1)+X2 == p3 && (P2+ 1) »xl -2p2 +x2 == -3p2+ 1], Reals]

Out[i94]= (-l +%1l= 0663 +x1-2x2 = 0&s-1+H2= 066Xl +x2==0) || (-l +xl==04663 +X1-2x2==0ssl+x2==0gaxl+x2=-0) |] 1
[-l+xl== 0663 +xl-2x2==0ss-l+x2=0ss-1-x2z0&exl+x2==0) ]
[-l+xl== 0663 +xXl-2x2==0ssl+x2=z0&s-%x1-%2=x0&s-1-®1-2x2=0) ||
[=lexl==06e3+Xl-2x2=066-X1-%2<0ee-l+xl+2x2z066-1-x1-2x2=10) ||
[-l+xl== 0663 +xl-2x2==0ss-l+x2=0ss-X1-%x2=0&el-®1-2x2=0) ||
[-l+xl== 0663 +xl-2x2==0ss-l+x2=0ss-1-x2z0&s-x1-x2=0)]]
[-l+xl== 0663+l -2x2==06exl+x2=08s-1+¥l+2x2=20ss-1-x1-2x2=0) ||
(l+®l==D&s3+8l-222:-046-1+2220s6-1-%220saxl+x20) ]
[-l+xl==06ed+xl-2xE=0as-l-x2=z=0cexl+xE2«x0sal+xl+2x2=0) ||
[-l+xl== 0663 +xl-2x2==0ssl-%x2=z0&exl+%2 =0ss-l+xl+2x2=z0) ||
(l-xlz=06a3+xl-Z2XZ «0aal+xl -x2s0ga-1+XNE= 0aaxl+NZ==0) ||
(-l+xl=2066-3-%x1+2x2<066-1-%1+x2=2086-1+%2=-0saxl+x2=-0)|]
[1-%x1z20663+x]1-2%2 <0&el+xl-x2z0661l+x2 ==06exl+x2=20) ]|
(-l+xl=z066-3 -2l +2%2 2066 -1-%1+x2=20s8sl+%x2 ==0saxl+x2==0)|]
[l-®x1 20663 +x]1 -2x2 =0&66l+x]l-x2z208s-1+x2=208s-1-%x2=0ssxl+x2=-0)]]
(-l+xlz066-F3 -1 +2%2 <066 -1-%1+x2=z2086-1+x2=2046-1-%x2z0sexl+x2=-0)]]
(1-%1 20663 +x1-242 <2066l +x]l -%2 20661 +%2 2066-%1-22<20ss-1-%X1-2x2z20) ||
(l-%x1=06e3+x]l-2ZxZ2 <0aal+xl-x2=z066-xl-x2«0aa-l+xl+Zx2=0sa-1-x1-2xZ2z0) |]
(l-®xl 20663 +x]1-2x2 =0&66l+x]l-x2z20ss-1+%2=2066-x1 -2 =0ssl-x1-2x2=z0) ]
(l-®x1 20663 +x]1-2x2 =0&66l+x]l-x2=208s-1+x2=2086-1-%2=0ss-x1-x2=0)]]
(1-%1 20663 +x1-222<0cel+x]l-%x2206axl+x2x066-1+2l+2%2208e-1-x1-2x2=z0) ||
[1-%x1=20663+xl-2x2 <0&el+xl-x2=z066-1+x2z066-1-%2=0saxl+x2 <00 ||
[l-®x1 20663 +x]1-2x2 =0&66l+%]l -x2=20s8s-1-%2=2066xl+x2 <0&sl+x1+2x2=0) ||
[l-®x1 20663 +x]1-2x2 =0&66l+x]l-x2=208sl-%2 2066xl+X2 2088 -1+x1+2x2=0) ||
[-l+xlz066-F3 -1 +2X2 2066 -1-%1+x2=z2086l+%x2 20ss-H1-%x2x0&s-1-x1-2x2=z0) |]
(l+®l2066-3-X1+4242 <2086 -1-Hl+x22086-X1-H2«066-14214+2%22066-1-x1-2x2=z20)]]
(-l+xl=06e-3-x1+28x2 <06 -1-®1l+xZ=20ga-l+x2=0sa-xl-x2=x08el-xl-2x2=10) ||
[-l+xlz066-F-21+2x2 066 -1-%1+x2=z2086-1+x2=04s-1-x2z0&s-x1-x2=0) ]|
[-l+xlz066-F3 -1 +2%2 2066 -1-%1+x2=z0se6xl+x2 <0ss-l+xl+2x220s8s-1-=x1-2x2=0) ||
(-l+xl=2066-3-%X14+2x2<066-1-%l+x22086-1+x220s6-1-%x2=20s&axl+x2<0) ||
[-l+xl=06&-3-xX1+2xH2 «x066-1-%1l+x2=s0ga-1-H2=s0saxl+xE<0sal+xl+2x2:20) ]

[-l+xlz066-F3 -1 +2%2 2066 -1-%1+x2=20861-%2 2046x1+X2 208 -1+x1+2x2=z0)

T dmmns a i .
= = = = — G 5 5 —_—

Figure 2: Characterization of the parametric solution set from Example 5.1 produced by the Mathe-
matica function Resolve doing quantifier elimination.
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