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AbstractConsider a parameter-dependent linear system A(p) �x = b(p), where the elements of the matrixand the right-hand side vector depend a�ne-linearly on a m-tuple of parameters p = (p1; : : : ; pm)which vary within given intervals p 2 ([p1]; : : : ; [pm]).It is a fundamental problem of considerable practical importance how to describe the para-metric solution set � (A(p); b(p); [p]) := fx 2 Rn j 9p 2 [p]; A(p)x = b(p)g by a logical combinationof inequalities depending of the coordinates. So far, in the general case of arbitrary a�ne-linearparameter dependencies, the solution set description can be obtained by a lengthy (and not unique)parameter elimination process. Recently, explicit descriptions of the symmetric and skew-symmetricsolution sets were given.We introduce a new classi�cation of the parameters with respect to the way they participate inthe equations of the system and give numerical characterization for each class of parameters. Thispaper considers a class of parametric linear systems, where each uncertain parameter occurs in onlyone equation of the system and does not matter how many times within that equation. For suchsystems, a simple explicit characterization of the parametric solution set is derived. The obtainedexplicit parametric solution set characterization generalizes the famous Oettly-Prager theorem fornon-parametric linear systems. The new characterization is illustrated by some numerical examplesand compared to other approaches as Fourier-Motzkin like parameter elimination and quanti�erelimination used also for characterizing the parametric solution set.
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1 Introduction
Consider the linear algebraic system A(p) � x = b(p); (1)where the elements of the n� n matrix A(p) and the vector b(p) are a�ne-linear functions

aij(p) := aij;0 + mX
�=1 aij;�p�; bi(p) := bi;0 + mX

�=1 bi;�p�; (2)
aij;�; bi;� 2 R; � = 0; : : : ;m; i; j = 1; : : : ; n

�This work is presented at the International Conference \60 Years Institute of Mathematics and Informatics", Bul-
garian Academy of Sciences, July 6{8, 2007, So�a, Bulgaria.
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of m parameters. The parameters are considered to be uncertain and varying within given intervals
p 2 [p] = ([p1]; : : : ; [pm])>: (3)

Such systems are common in many engineering analysis or design problems, models in operational research,linear prediction problems, etc., where there are complicated dependencies between the coe�cients of the system.The uncertainties in the model parameters could originate from an inexact knowledge of these parameters,measurement imprecision, or round-o� errors. Linear systems with interval input data are applicable also touncertainty theories which rely on interval arithmetic for computations, such as fuzzy set theory, random settheory, or probability bounds theory.The set of solutions to (1){(3), called parametric solution set, is
�p = �(A(p); b(p); [p]) := fx 2 Rn j 9p 2 [p]; A(p)x = b(p)g : (4)

Denote by Rn;Rn�m the set of real vectors with n components and the set of real n�mmatrices, respectively.A real compact interval is [a] = [a�; a+] := fa 2 R j a� � a � a+g. By IRn; IRn�m we denote the sets of intervaln-vectors and interval n�m matrices, respectively. For [a] = [a�; a+], de�ne mid-point �a := (a� + a+)=2 andradius a� := (a+ � a�)=2. The end-point functionals (�)�; (�)+, as well as the mid-point and radius functionalsare applied to interval vectors and matrices componentwise.The well-known non-parametric interval linear system [A]x = [b], which is the most studied in the intervalliterature, can be considered as a special case of the parametric linear system with n2+n independent parametersaij 2 [aij ], bi 2 [bi], i; j = 1; : : : ; n. For a parametric system (1{3), the corresponding non-parametric one with[A] = A([p]) = ([aij ]) 2 IRn�n, [b] 2 IRn can be obtained as
[aij ] = aij([p]) = aij;0 + mX

�=1 aij;�[p�]; [bi] = bi([p]) = bi;0 + mX
�=1 bi;�[p�]; i; j = 1; : : : ; n:

The non-parametric solution set, called also united solution set, is de�ned as
� ([A]; [b]) := fx 2 Rn j 9A 2 [A]; 9b 2 [b]; A � x = bg : (5)

In general, � (A(p); b(p); [p]) � � ([A]; [b]) since the elements of [A], [b] are perturbed independently in contrastto A(p), b(p) with p 2 [p]. The non-parametric solution set is well studied with a lot of results concerning itscharacterization and properties, for a summary see e.g. [1]. In particular, the famous Oettly-Prager theorem[5] characterizes the non-parametric solution set by the inequalities
jA(�p)x� b(�p)j � A�([p])jxj+ b�([p]): (6)

It is a fundamental problem of considerable practical importance how to describe the parametric solutionset (4) by a logical combination of inequalities depending of the coordinates. Such a description can be used forvisualization of the parametric solution set, exploring some of its properties, and even for computing compo-nentwise boundaries. So far, in the general case of arbitrary a�ne-linear parameter dependencies, the solutionset description can be obtained by a lengthy (and not unique) parameter elimination process [2] shortly recalledin Section 2. Recently, explicit descriptions of the symmetric and skew-symmetric solution sets were given in[3]. The goal of this paper is to give an explicit characterization of the parametric solution set for another classof parametric systems. To this end we introduce a classi�cation of the parameters with respect to the way theyparticipate in the equations of the system. In Section 3 a de�nition and numerical characterization is givenfor each class of parameters. In Section 4 the parameter elimination process is studied in details for a class ofparametric linear systems, where each uncertain parameter occurs in only one equation of the system and doesnot matter how many times within that equation. For such systems we give a simple explicit characterizationof the parametric solution set which generalizes the famous Oettly-Prager theorem. Some important propertiesregarding the elimination of zero and 1st class parameters are explored. The explicit parametric solution setcharacterization is illustrated in Section 5 on some numerical examples and its advantages are compared toother approaches as Fourier-Motzkin like parameter elimination and quanti�er elimination which can be alsoused for characterizing the parametric solution set.
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2 Fourier-Motzkin like Elimination of Parameters
The parametric solution set (4) is characterized by the following trivial set of inequalities

�p = fx 2 Rn j 9p� 2 R; � = 1; : : : ;m : (7){(8) holdg;
where nX

j=1
 aij0 + mX

�=1 aij�p�
!xj � bi0 +Pm�=1 bi�p� � nX

j=1
 aij0 + mX

�=1 aij�p�
!xj ; i = 1; : : : ; n; (7)

p�� � p� � p+� ; � = 1; : : : ;m: (8)
Starting from such a description of the parametric solution set, Theorem 2.1 below shows how the parametersin this set can be eliminated successively in order to obtain a description of the parametric solution set notinvolving p�, � = 1; : : : ;m.

Theorem 2.1 (Alefeld et al. [2]). Let f��, g�, � = 1; : : : ; k (� 2), � = 1; : : : ;m, be real-valued functions ofx = (x1; : : : ; xn)> on some subset D � Rn. Assume that there is a positive integer k1 < k such that: f�1(x) 6� 0
for all � 2 f1; : : : ; kg; f�1(x) � 0 for all x 2 D and all � 2 f1; : : : ; kg; for each x 2 D there is an index�� = ��(x) 2 f1; : : : ; k1g with f��1(x) > 0 and an index � = �(x) 2 fk1 + 1; : : : ; kg with f�1(x) > 0. For m
parameters p1; : : : ; pm varying in R and for x varying in D de�ne the sets S1; S2 by

S1 := fx 2 D j 9p� 2 R; � = 1; : : : ;m : (9); (10) holdg;S2 := fx 2 D j 9p� 2 R; � = 2; : : : ;m : (11) holdsg;
where inequalities (9), (10) and (11), respectively, are given by

g�(x) + mX
�=2 f��(x)p� � f�1(x)p1; � = 1; : : : ; k1; (9)

f1(x)p1 � g(x) + mX
�=2 f�(x)p�;  = k1 + 1; : : : ; k (10)

and

g�(x)f1(x) + mX
�=2 f��(x)f1(x)p� � g(x)f�1(x) + mX

�=2 f�(x)f�1(x)p�;� = 1; : : : ; k1;  = k1 + 1; : : : ; k: (11)
(Trivial inequalities such as 0 � 0 can be omitted.) Then S1 = S2.Theorem 2.1 de�nes the transition from inequalities (9), (10) to inequalities (11), where the parameter p1does not occur. The assertion of Theorem 2.1 remains true if the inequalities in (9), (10) and the inequalitiesin (11) are supplemented by inequalities which do not contain the parameter p1, as long as these inequalitiesare the same in both cases. The parameter elimination process based on Theorem 2.1 resembles the so-calledFourier-Motzkin elimination of variables, see e.g. [8]. As demonstrated below and in [7], it is a lengthy and notunique process. Therefore, explicit parametric solution set characterizations are of particular interest.
3 Classi�cation of the Parameters
In the initial description of the parametric solution set (7){(8) we have 2n inequalities (7) and 2m so-calledparameter inequalities (8). In addition, a restricted domain for the parametric solution set could be speci�ed bya set D of so-called "domain inequalities" which do not involve the parameters p. In this section we classify theparameters involved in the system into three classes with respect to the way they participate in the parametric
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system. A de�nition and numerical characterization will be given for each class of parameters. Our goal is toreveal the speci�c way by which the elimination of each class of parameters updates the set of characterizinginequalities.With the notations
A� := (aij;�) 2 Rn�n; b� := (bi;�) 2 Rn; � = 0; : : : ;m

the system (1) can be rewritten equivalently as A0 + mX
�=1 p�A�!x = b0 + mX

�=1 p�b�:
For a matrix A 2 Rn�n, Am� denotes the m-th row of A.
De�nition 3.1. A parameter p�, 1 � � � m, is of class zero if it is involved only in the right-hand side and
only in one equation of the system (1).

A parameter p� is of class zero i� A� = 0 2 Rn�n and only one component of the numerical vector b� isnonzero (b�i 6= 0 for exactly one i, 1 � i � n). For example, the parameter p3 involved in the system fromExample 5.1 is of class zero. It is obvious that the elimination of every one parameter of class zero, by applyingTheorem 2.1, removes one couple of parameter inequalities (8) and updates the inequalities (7) without changingtheir number.
De�nition 3.2. A parameter p�, 1 � � � m, is of 1st class if it is not of class zero and occurs in only one
equation of the system (1) does not matter how many times within that equation.

A parameter p� is of 1st class i� A� 6= 0 and b��A�x has only one nonzero component (that is b�i �A�i�x 6= 0for exactly one i, 1 � i � n). For example, the parameters p1 and p2 involved in the system from Example 5.1are parameters of 1st class. All parameters, except pn, involved in the system from Example 5.2 are parametersof 1st class. The elimination of every one parameter of 1st class removes one couple of parameter inequalities(8). We demonstrate in the next section that eliminating the parameters of 1st class by applying Theorem 2.1to the end-point parameter inequalities (8) updates the inequalities (7) expanding exponentially their number.A more e�cient elimination procedure will be de�ned for parameters of zero and 1st class and an explicitcharacterization of the solution set to a special class of parametric linear systems will be derived in Section 4.
De�nition 3.3. A parameter p�, 1 � � � m, is of 2nd class if it is involved in more than one equation of the
system (1).

A parameter p� is of 2nd class i� the vector b� �A�x has more than one nonzero components. During theelimination procedure by Theorem 2.1 the elimination of each parameter of 2nd class removes one couple ofparameter inequalities (8), updates those inequalities (7) corresponding to the nonzero components of b��A�xand expands the total number of characterizing inequalities.In a subsequent article [7] we expand the analysis of the elimination process in the general case of a systeminvolving all three classes of parameters and give conditions under which the parameter elimination is uniquewith respect to the resulting number of inequalities.
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4 A Special Class of Parametric Systems
In this section we analyze the elimination of the parameters of zero and 1st class, specify an elimination procedurewhich is e�cient with respect to the number of solution set characterizing inequalities, and by generalizing thefamous Oettly-Prager characterization of solution set for systems involving only parameters of zero and 1stclass, we characterize the considered special class of parametric solution sets by 2n explicit inequalities. Westart by introducing some notations.For � 2 R, de�ne sign(�) := f+ if � � 0;� if � < 0g and apply the sign functional to vectors and matricescomponentwise. Denote by U(s) := �sign(u) j u 2 Rs; juj = (1; : : : ; 1)>	 the set of all s-dimensional sign vectors,where the absolute value juj is understood componentwise. The set U(s) consists of Card(U(s)) = 2s elements.For � 2 f+;�g and �2 f�;�g, denote a �� 0 to be equivalent to a � 0 if � = + and to be equivalent to�a � 0 if � = �. These relations are applied to vectors componentwise.Let all the uncertain parameters participating in the system (1{3) are of zero and 1st class and l � nequations involve all m uncertain parameters. Denoting by ij , 1 � j � l, the indexes of the equations involvinguncertain parameters, let us suppose that

(mi1 + ri1) + (mi2 + ri2) + � � �+ (mil + ril) = m;
where nij := mij + rij , 1 � j � l, is the number of the parameters participating in the ij-th equation and0 � rij � nij of these parameters occur only in the right-hand side of this equation.Denote by K(rij ) := fk1; : : : ; krij g the set of indexes of the parameters involved only in the r.h.s. of theequation ij and K(mij ) := fk1; : : : ; kmij g be the set of indexes of the other parameters involved in equation ij ,such that K(mij )TK(rij ) = ;, Kij := K(mij )SK(rij ), and Card�Kij� = nij � 1.Let �x a ij , for which mij � 1, rij � 1. For a �xed � 2 Kij denote c(�; x) := b� � A�x and its ij-thcomponent is cij (�; x) := b�ij �A�ij� x. Then, for a �xed �, from p�� � p� � p+� we obtain

cij (�; x)p��ij� � cij (�; x)p� � cij (�; x)p�ij� ; where �ij = sign(cij (�; x)): (12)
Denote K := f1; : : : ;mg n Kij ,

A := b0 �A0x+ mX
�=1� 62Kij

(b� �A�x) and
� := ��ij (�)��2K(mij ) ; where �ij (�) = sign(cij (�; x)) 2 f+;�g:

Inequalities (7) can be rewritten equivalently as
0 �bi0 � nX

j=1 aij0xj +
mX
�=1 p�

0@bi� � nX
j=1 aij0xj

1A ^
bi0 � nX

j=1 aij0xj +
mX
�=1 p�

0@bi� � nX
j=1 aij0xj

1A � 0; i = 1; : : : ; n:
(13)

Then, the application of Theorem 2.1 to the ij-th couple of inequalities (13) and the inequalities (12) for � 2 Kijremoves the parameters p�, � 2 Kij . Thus we obtain the following equivalent representation for the parametric
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solution set
�p = �x 2 Rn j 9p� 2 R; � = 1; : : : ;m; � 62 Kij :_

�2U(mij )
0@0 � Aij� + X

�2K(mij ) cij (�; x)p
�ij (�)� + X

�2K(rij ) b�ijp
�(b�ij )� ^

Aij� + X
�2K(mij ) cij (�; x)p

��ij (�)� + X
�2K(rij ) b�ijp

��(b�ij )� � 0 ^
0@ ^

�2K(mij ) cij (�; x) ��ij (�) 0
1A1A ^

0@ n̂
s=1;s 6=ij As� = 0 ^

�62Kij
p�� � p� � p+�

1A9=; :
Expanding this result over all the parameters in the system we obtain the following explicit characterizationof the parametric solution set.

�p = fx 2 Rn j_
�2U(Plj=1mij )

0@ l̂
j=1
0@0 � Aij� + X

�2K(mij ) cij (�; x)p
�ij (�)� + X

�2K(rij ) b�ijp
�(b�ij )� ^ (14)

Aij� + X
�2K(mij ) cij (�; x)p

��ij (�)� + X
�2K(rij ) b�ijp

��(b�ij )� � 0 ^
0@ ^

�2K(mij ) cij (�; x) ��ij (�) 0
1A1A1A ^

0BB@ n̂
s=1s62 [lj=1Kij

As� = 0
1CCAg: (15)

Thus, applying the elimination process, as described in [2], we obtain an explicit characterization of the solutionset to a parametric system involving only zero and 1st class parameters that consists of 2Plj=1mij
�2l +Plj=1mij�inequalities and n�l equalities. The number of characterizing inequalities can be reduced if we replace the set of2Plj=1mij

�Plj=1mij� inequalities in (15) by the set consisting ofPlj=1mij inequalitiesVlj=1V�2K(mij ) jc(�; ij)j �0.
�p = fx 2 Rn j_

�2U(Plj=1mij )
0@ l̂

j=1
0@0 � Aij� + X

�2K(mij ) cij (�; x)p
�ij (�)� + X

�2K(rij ) b�ijp
�(b�ij )� ^ (16)

Aij� + X
�2K(mij ) cij (�; x)p

��ij (�)� + X
�2K(rij ) b�ijp

��(b�ij )� � 0
1A1A

n̂
s=1s62 [lj=1Kij

As� = 0 l̂
j=1

^
�2K(mij ) jb�ij �A�ij� xj � 0g: (17)

Thus, the last characterization of the considered parametric solution set involves 2Plj=1mij 2l +Plj=1mij in-equalities and n� l equalities. As seen, the number of characterizing inequalities grows exponentially with thenumber of 1st class parameters.
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In order to reduce further the number of inequalities characterizing the solution set of a linear systeminvolving only parameters of zero and 1st class, instead of parameter inequalities p�� � p� � p+� , we shall usethe equivalent inequalities �p� � p�� � p� � �p� + p�� for the parameters of 1st class. Thus, for � 2 R we have
��p� � j�jp�� � �p� � ��p� + j�jp�� : (18)

Then the elimination process, based on the relations (18) instead of relations (12), leads to the followinginequalities
l̂

j=1
0@Aij� + X

�2K(rij ) b�ijp
��(b�ij )� + X

�2K(mij ) cij (�; x)�p� � X
�2K(mij ) jcij (�; x)jp�� � 0

0 � Aij� + X
�2K(rij ) b�ijp

�(b�ij )� + X
�2K(mij ) cij (�; x)�p� + X

�2K(mij ) jcij (�; x)jp��
1A (19)

n̂
s=1s62 [lj=1Kij

As� = 0
Relations (19) can be rewritten in the following more general but equivalent forms

l̂
j=1
0@bij (�p)�Aij�(�p)x � X

�2Kij
jb�ij �A�ij� xjp4� � 0

0 � bij (�p)�Aij�(�p)x + X
�2Kij

jb�ij �A�ij� xjp4�
1A ^

s 62 [lj=1Kij
b0s �A0s�x = 0;

or b(�p)�A(�p)x� mX
�=1 jb� �A� xjp4� � 0 � b(�p)�A(�p)x+ mX

�=1 jb� �A� xjp4� : (20)
This way, we have proven the following theorem which generalizes the famous Oettly-Prager solution setcharacterization (6) for parametric systems involving only parameters of zero and 1st class.

Theorem 4.1. The solution set of the system (1){(3) involving only uncertain parameters of zero and 1st class
has the following explicit characterization

�p = fx 2 Rn j jA(�p)x� b(�p)j � mX
�=1 jb� �A� xjp4� g:

The solution set characterization (20), respectively Theorem 4.1, can be obtained by a parameter eliminationprocess speci�ed by the following proposition.
Proposition 4.1. Let f�, g1; g2, � = 1; : : : ;m, be real-valued functions of x = (x1; : : : ; xn)> on some subsetD � Rn. For m parameters p1; : : : ; pm varying in R, where the �-th parameter is of zero or 1st class, and for
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x varying in D, it holds S1 = S2 where the sets S1, S2 are de�ned by

S1 := fx 2 D j 9p� 2 R; � = 1; : : : ;m : p�� � p� � p+� ^
g1(x) + mX

�=1�6=� f�(x)p� � f�(x)p� � g2(x) + mX
�=1�6=� f�(x)p�g;S2 := fx 2 D j 9p� 2 R; � = 1; : : : ;m; � 6= � :

g1(x) + mX
�=1�6=� f�(x)p� � f�(x) �p� + jf�(x)j p4� ^

f�(x) �p� � jf�(x)j p4� � g2(x) + mX
�=1�6=� f�(x)p�g:

Proof. The proposition follows from Theorem 2.1 and the equivalence of the relations p�� � p� � p+� and�p� � p4� � p� � �p� + p4� .Being specialized for parameters of zero and 1st class, Proposition 4.1 removes the restriction of Theorem 2.1for positiveness of the coe�cient functions f�1, � = 1; : : : ; k in (9), (10). Furthermore, utilizing the midpoint-radius representation of intervals, Proposition 4.1 allows updating the inequalities (7) without changing theirnumber. Thus, Proposition 4.1 de�nes a more e�cient elimination process for parameters of zero and 1st classthan Theorem 2.1.Based on Proposition 4.1, a simple explicit characterization of the parametric solution set of systems in-volving only parameters of zero and 1st class is derived. Theorem 4.1 characterizes the considered special classof parametric solution sets by 2n inequalities and this number does not depend on the number of the involveduncertain parameters. As being evident from the characterizations (14){(15) or (19), the inequalities charac-terizing this special class of parametric solution sets are linear. Furthermore, the order of elimination of theparameters is not signi�cant for the characterization of this special class parametric solution sets.
5 Numerical Examples
Section 4 demonstrates the advantage of an explicit characterization, provided by Theorem 4.1, of the solutionset to parametric systems involving parameters of zero and 1st class in comparison to the Fourier-Motzkinlike parameter elimination process de�ned in [2]. In this section we illustrate the explicit characterization ofthe solution set on some numerical examples. For comparison, we present the characterizations obtained byquanti�er elimination in the environment of Mathematica [9].
Example 5.1. Consider a simple parametric system� p1 1 + p11 + p2 �2p2

� � x = � p31� 3p2
� ;

where p1; p2 2 [0; 1], p3 2 [�1; 1].
Applying Theorem 4.1, the parametric solution set is de�ned by the following four inequalities

�x2 � x1 + x22 � j � x1 � x2j2 � 1 � 0 � �x2 � x1 + x22 + j � x1 � x2j2 + 1
1� x1 + �3� x1 + 2x22 � j � 3� x1 + 2x2j2 � 0 � 1� x1 + �3� x1 + 2x22 + j � 3� x1 + 2x2j2 :

The parametric solution set is presented in Fig. 1 together with the corresponding non-parametric solution set.
For comparison we have run the Mathematica function Resolve doing quanti�er elimination and the re-

sulting characterization by 181 inequalities is presented in Fig. 2.

In the next example we consider an arbitrary large parametric system.
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Figure 1: The parametric solution set (in blue or light gray) together with the corresponding non-
parametric solution set (in red or dark gray) for the system from Example 5.1.

Example 5.2. Consider the parametric system A>(p)x = b(p), where A(p) 2 Rn�n is the Milnes matrix [4]

A(p) = (aij(p)); aij(p) = (1 j � i;pj j < i;
b(p) = (p1; : : : ; pn)>, �pi = 1=(i+ 1), p4i = 2% �pi = 1=(50i+ 50).

According to Theorem 4.1 the solution set of this problem is characterized by the following system of 2n
inequalities

Vni=1
0@(i+ 1)�1 � iX

j=1 xj �
nX

j=i+1xj=(i+ 1)� j1� nX
j=i+1xj j=(50i+ 50) � 0 ^

0 � (i+ 1)�1 � iX
j=1 xj �

nX
j=i+1xj=(i+ 1) + j1� nX

j=i+1xj j=(50i+ 50)
1A :

For n = 20, e.g., the solution set characterization, based on Theorem 2.1 and the end-point parameterinequalities (8), would require 21940 + 19 � 21 � 106 inequalities.The execution of the Mathematica function Resolve on the same problem for n = 5 took 7:859 secondswhich was about 490 times slower than an interpreted implementation of Theorem 4.1.
6 Conclusion
Introducing a new classi�cation of the parameters with respect to the way they participate in the system, we haveproven explicit characterization of the solution set to a class of parametric linear systems, where each uncertainparameter occurs in only one equation of the system. Thus, besides for parametric systems involving symmetricor skew-symmetric matrix, the famous Oettly-Prager theorem for non-parametric linear systems is generalizedfor parametric systems involving zero and 1st class parameters. The latter parametric systems are characterizedby 2n inequalities and the boundary of the corresponding parametric solution set consists of linear functions,contrary to the solution set characterization for systems involving symmetric or skew-symmetric matrix.Although there exist other special methods for visualization of parametric solution sets [6], visualizing theregions determined by the explicit solution set characterizing inequalities is more straightforward.
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Figure 2: Characterization of the parametric solution set from Example 5.1 produced by the Mathe-

matica function Resolve doing quanti�er elimination.
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