BbJI'APCKA
AKAJEMUA
HA HAYKUTE

P

Hierrrsa AR
Wlsavas (o apply’ i

BULGARIAN
ACADEMY
OF SCIENCES

HHCTHUTYT IO MATEMATHUKA
N UHO®OOPMATHUKA

INSTITUTE OF MATHEMATICS
AND INFORMATICS

Cexunsi buomaremartuka
Department Biomathematics

PemaBane Ha JIUHEHHHU CHCTEMH C
MOJTMHOMMAJIHA 3ABUCHUMOCTH MEXKIY
napamMeTpure

10. T'apno, E. ITonosa, A. Cmut

Solving Linear Systems with
Polynomial Parameter Dependency

J. Garloff, E. Popova, A. Smith

PREPRINT Ne 1/2009

Sofia
January 2009

Solving Linear Systems
with Polynomial Parameter Dependency

J. Garloff* E. Popova A. P. Smith

University of Applied Sciences / HTWG Konstanz
Department of Computer Science

Postfach 100543, D-78405 Konstanz, Germany
e-mail: garloff@htwg-konstanz.de

Institute of Mathematics & Informatics

Bulgarian Academy of Sciences

Acad. G. Bonchev str., bldg. 8, 1113 Sofia, Bulgaria
e-mail: epopova@bio.bas.bg

University of Applied Sciences /| HTWG Konstanz
Institute of Applied Research

Postfach 100543, D-78405 Konstanz, Germany
e-mail: smith@htwg-konstanz.de

Abstract. A wide range of scientific and engineering problems can be described by systems
of linear algebraic equations involving uncertain model parameters. We report on new soft-
ware tools for solving linear systems where the coefficients of the matrix and the right hand
side are multivariate polynomials or rational functions of parameters varying within given in-
tervals. A general-purpose parametric fixed-point iteration is combined with efficient tools for
range enclosure based on the Bernstein expansion of multivariate polynomials. A C++ software
package for constructing the Bernstein enclosure of polynomial ranges, based on the interval
library £ilib++, is integrated into a Mathematica package for solving parametric systems via
the MathLink communication protocol. We discuss an advanced application of the general-
purpose parametric method to linear systems obtained by standard FEM analysis of mechanical
structures and illustrate the efficiency of the new parametric solver.

Keywords: parametric linear system, interval parameter, polynomial range, Bernstein expan-
sion, mechanical structure.

AMS subject classification: 65G20, 15A06, 74505

1 Introduction

Scientific and engineering problems described by systems of linear algebraic equations involving
uncertain model parameters include problems in engineering analysis or design [5} 6, 20} 29], con-

*corresponding author

Solving Linear Systems with Polynomial Parameter Dependency 2

trol engineering [2] 3, B5], etc. Causes of uncertainty in the model parameters are measurement
imprecision, round-off errors, and various other kinds of inexact knowledge.

Significant research in this field is directed towards the use of intervals to represent the
uncertain quantities in such systems. When uncertain parameters are modelled by bounded
intervals, the problem can be formulated as an interval linear system. Dependencies between such
interval parameters may be linear or nonlinear in nature, with the former, simpler, case having
been more extensively studied. In the latter case there may be highly nontrivial dependencies
between the parameters.

One of the earliest papers on the solution of linear systems with nonlinear parameter depen-
dencies is [§], cf. [9]. Later works focus on the solution of systems of linear equations whose
coefficient matrices enjoy a special structure, e.g. circulant [10], Toeplitz [12], symmetric, and
skew-symmetric matrices [13].

A standard method for solving problems in structural mechanics, such as linear static prob-
lems, is the finite element method (FEM). The method leads to a system of algebraic equations,
which in case of uncertain (interval) physical parameters becomes a linear system involving in-
terval parameters. An overview of developments in techniques for the handling of uncertainty
using the finite element method and applications in structural engineering mechanics can be
found in [20]. Here, the authors combine an element-by-element (EBE) formulation, where the
elements are kept disassembled, with a penalty method for imposing the necessary constrains
for compatibility and equilibrium, in order to reduce the overestimation in the solution intervals.
This approach should be applied simultaneously with FEM and affects the construction of the
global stiffness matrix and the right-hand side vector, making them larger. A non-parametric
fixed-point iteration is then used to solve the parametric interval linear system. While special
construction methods are applied in [20], the parametric system obtained by standard FEM ap-
plied to a structural steel frame with partially constrained connections is solved by a sequence
of interval-based (but not parametric) methods [5]. In [29], a parametric residual iteration
[34], generalised in [23], is applied to bounding the response of structural engineering systems
involving rational dependencies between the model parameters. Corresponding software tools
with result verification, implemented in the Mathematica environment [39], have been developed.
This general-purpose interval approach imposes no restrictions on how the parametric system
is generated and can be applied to linear parametric problems for which special methods have
not yet been designed.

The last method requires an enclosure of the range of nonlinear functions over the domain
of the parameters. When the parameter dependencies are polynomial, tight bounds for the
polynomial ranges can be obtained by the expansion of a multivariate polynomial into Bernstein
polynomials [I1, 38]. The goal of our work is to combine the generalised parametric residual
iteration with range enclosure, based on the Bernstein expansion of polynomials, into a more
efficient parametric linear system solver. For the sake of rapid development, run-time efficiency,
and for exploiting the advantages of modern general-purpose software environments, such as
Mathematica, our implementation is based on an advanced connectivity between Mathematica
and an external C++ software via the MathLink communication protocol. The present para-
metric solver is illustrated by numerical solutions to three problems from structural mechanics
which have been modelled by standard FEM and involve interval uncertainty in all material and
load parameters. A discussion on the comparison between the present parametric solver, based
on Bernstein polynomial ranges, and the former one is provided.

The paper is organised as follows. In Section [2] the parametric residual iteration method for
linear interval systems is introduced, followed by an introduction to the Bernstein expansion and

Solving Linear Systems with Polynomial Parameter Dependency 3

the implicit Bernstein form. Section [3| discusses the software implementation of these methods
and the interface between Mathematica, C++, and the interval software library filib++. In
Section [4] the new parametric solvers and software tools are illustrated by three examples of
one- and two-bay steel frames. Finally, some conclusions are given.

2 Methodology

2.1 The Iteration Method

Consider a linear system

A(z)-s = b(x), (1a)

where the coefficients of the m x m matrix A(x) and the vector b(x) are functions of n parameters
varying within given intervals

az-j(ac) = az-j(wl,...,a:n), i,jzl,...,m, (lb)
z € [g] = ([za],... [wa)) T, (1c)

and similarly for b.
The set of solutions to (laHlc]), called the parametric solution set, is

Y =% (A(z),b(z),[z]) = {s€R™|A(z)-s=b(x) for some z € [z]}. (2)

The set ¥ is compact if A(z) is nonsingular for every = € [z]. For a nonempty bounded set
S C R™, define its interval hull by 0S := [infS, supS] = N{[s] € IR™ | S C [s]}. Since it
is quite expensive to obtain X or (13, we seek an interval vector [w] for which it is guaranteed
that [w] D OX D X.

We use the following notation: R™, R™*™ denote the set of real vectors with m components
and the set of real m x n matrices, respectively. A real compact interval is defined as [a] =
[a,a] := {a € R | a < a < a}. By IR IR™ " we denote interval m-vectors and interval
m X n matrices. Operations on interval values yield the smallest interval value containing the
corresponding result when power set operations are used. We assume that the reader is familiar
with the conventional interval arithmetic [T}, [19].

In this section we consider a self-verified method for bounding the solution set of a para-
metric linear system. This is a general-purpose method since it does not assume any particular
structure among the parameter dependencies. The method originates in the inclusion theory
for nonparametric problems, which is discussed in many works (cf. [34] and the literature cited
therein). Historically, the basic idea of combining the Krawczyk-operator [14] and the existence
test by Moore [I§] is further elaborated by S. Rump [33] who proposes several improvements
leading to inclusion theorems for the solution set of a nonparametric system of linear interval
equations [A] - s = [b]. In [34] Theorem 4.8] S. Rump gives a straightforward generalization to
affine-linear dependencies in the matrix and the right hand side. With obvious modifications,
the corresponding theorems can also be applied directly to linear systems involving nonlinear
dependencies between the parameters in A(z) and b(x). This is demonstrated in [25, 29]. The
following theorem is a general formulation of the enclosure method for linear systems involving
arbitrary parametric dependencies.

Solving Linear Systems with Polynomial Parameter Dependency 4

Theorem 2.1. Consider a parametric linear system defined by . Let R € R™™ [y] €
IR™, § € R™ be given and define [z] € IR™, [C] € IR™*"™ by

2] = Dfz(2) = R(b(z) - A@)3) | « € [o]},
€] = D{C(a)=1-R-Al) |z € [a]},

where I denotes the identity matriz. Define [v] € IR™ by means of the following Gauss-Seidel
iteration

L<i<m = [v] = {[2] +[C]- ([va], oo, [oia); L), - [m]) " i
If [v] G [yl, then R and every matriz A(z) with « € [z] are regular, and for every x € [x] the
unique solution § = A~ (z)b(z) of satisfies S € § + [v].

The above theorem generalises [34, Theorem 4.8] by stipulating a sharp enclosure of C'(z) :=
I—R-A(z) for = € [z], instead of using the interval extension C([z]), cf. [23]. A sharp enclosure
of the iteration matrix C(z) is also required by other authors (who do not refer to [34]) [6] [20],
without addressing the issue of rounding errors. However, the generalization of [34, Theorem
4.8] is first proven in [22] 23]. Examples demonstrating the expanded scope of application of the
generalized inclusion theorem can be found in [22] 23] B31].

When aiming to compute a self-verified enclosure of the solution to a parametric linear system
by the above inclusion method, a fixed-point iteration scheme is proven to be very useful. A
detailed presentation of the computational algorithm can be found in [25] 33].

In case of arbitrary nonlinear dependencies between the uncertain parameters, computing
[z] and [C] in Theorem [2.1|requires a sharp range enclosure of nonlinear functions. This is a key
problem in interval analysis and there exists a huge number of methods and techniques devoted
to this problem, with no one method being universal. In this work we restrict ourselves to linear
systems where the elements of A(z) and b(z) are rational functions of the uncertain parameters.
In this case the elements of z(z) and C(x) are also rational functions of z. The quality of the
range enclosure of z(z) will determine the sharpness of the parametric solution set enclosure.
In [25] the above inclusion theorem is combined with a simple interval arithmetic technique
providing inner and outer bounds for the range of monotone rational functions. The arithmetic
of generalised (proper and improper) intervals is considered as an intermediate computational
tool for eliminating the dependency problem in range computation and for obtaining inner
estimations by outwardly rounded interval arithmetic. Since this methodology is not efficient
in the general case of non-monotone rational functions, in this work we combine the parametric
fixed-point iteration with range enclosing tools based on the Bernstein expansion of multivariate
polynomials. Other approaches are presented in [21].

2.2 Bernstein Enclosure of Polynomial Ranges

In this section we recall some properties of the Bernstein expansion which are fundamental to
our approach, cf. [4, [11] [38].

Firstly, some notation is introduced. We define multiindices i = (i1,...,%,)? as vectors,
where the n components are nonnegative integers. The vector 0 denotes the multiindex with
all components equal to 0, which should not cause ambiguity. Comparisons are used entrywise.
Also the arithmetic operators on multiindices are defined componentwise such that i ® [:=
(i1 ©l1,. .. yin O ly)T, for ® = +,—, x, and / (with [> 0). For instance, i/l, 0 < i < [, defines
the Greville abscissae. For x € R" its multipowers are

n
ek (3)
p=1

Solving Linear Systems with Polynomial Parameter Dependency)

For the n-fold sum we use the notation
{
Y= (4)
i=0 i1=0 in=0
The generalised binomial coefficient is defined by
l o (1
(-1
p=1 NH

For reasons of familiarity, the Bernstein coefficients are denoted by b;; this should not be confused
with components of the right hand side vector b of . Hereafter, a reference to the latter will
be made explicit.

An n-variate polynomial p,

can be represented over U = [0, 1]" as

p(z) =Y biBi(x), (7)
where B; is the i-th Bernstein polynomial of degree |

i) = () o't — o'~ ®)

7

and the so-called Bernstein coefficients b; are given by
L ()
b= 2a;, 0<i<lL (9)
§=0 (])

Although the case of the unit box U may be considered without loss of generality, since any
nonempty box in R™ can be mapped affinely thereupon, we need here the general case. The

Bernstein coefficients b; of degree [= (I,...,1,) over a box
[‘T] = [&1751] XX [anfn]u (10)
Z = (Qla"'aﬁn)’ T = (Ela"'afn)a

are given by ' (Z) l
J— E .7 T €T j E K IK_ 'a,{ Z .

The essential property of the Bernstein expansion is the range enclosing property, namely
that the range of p over [z] is contained within the interval spanned by the minimum and
maximum Bernstein coefficients:

miin{bi} <p(x) < mlax{bi}, x € [z]. (12)

Solving Linear Systems with Polynomial Parameter Dependency 6

It is also worth noting that the values attained by the polynomial at the vertices of [z]
are identical to the corresponding vertex Bernstein coefficients, for example by = p(z) and
by = p(T). The sharpness property states that the lower (resp. upper) bound provided by the
minimum (resp. maximum) Bernstein coefficient is sharp, i.e. there is no underestimation (resp.
overestimation), if and only if this coefficient occurs at a vertex of [z].

The traditional approach (see, for example, [I1], [38]) assumes that all of the Bernstein coef-
ficients are computed, and their minimum and maximum is determined. By use of an algorithm
(cf. [11L B38]) which is similar to de Casteljau’s algorithm (see, for example, [32]), this compu-
tation can be made efficient, with time complexity O(ni"“) and space complexity (equal to
the number of Bernstein coefficients) O((/ + 1)™), where | = max}_; ;. This exponential com-
plexity is a drawback of the traditional approach, rendering it infeasible for polynomials with
moderately many (typically, 10 or more) variables.

In [37] a new method for the representation and computation of the Bernstein coefficients is
presented, which is especially well suited to sparse polynomials. With this method the computa-
tional complexity typically becomes nearly linear with respect to the number of the terms in the
polynomial, instead of exponential with respect to the number of variables. This improvement
is obtained from the results surveyed in the following subsections. For details and examples the
reader is referred to [37].

2.2.1 Bernstein Coefficients of Monomials

Let q(z) = 2", © = (x1,...,2y), for some 0 < r < [. Then the Bernstein coefficients of ¢ (of
degree) over [z] ([10) are given by

bi= [o™, (13)
m=1

(m)

where b; " is the i,,,th Bernstein coefficient (of degree) of the univariate monomial "™ over
[Z,,, Tm]- If the box [z] is restricted to a single orthant of R” then the Bernstein coefficients of
q over [z] are monotone with respect to each variable z;, j =1,...,n.

With this property, for a single-orthant box, the minimum and maximum Bernstein coef-
ficients must occur at a vertex of the array of Bernstein coefficients. This also implies that
the bounds provided by these coefficients are sharp; see the aforementioned sharpness prop-
erty. Finding the minimum and maximum Bernstein coefficients is therefore straightforward; it
is not necessary to explicitly compute the whole set of Bernstein coefficients. Computing the
component univariate Bernstein coefficients for a multivariate monomial has time complexity
O(n(l +1)?). Given the exponent 7 and the orthant in question, one can determine whether
the monomial (and its Bernstein coefficients) is increasing or decreasing with respect to each
coordinate direction, and one then merely needs to evaluate the monomial at these two vertices.

Without the single orthant assumption, monotonicity does not necessarily hold, and the
problem of determining the minimum and maximum Bernstein coefficients is more complicated.
For boxes which intersect two or more orthants of R”, the box can be bisected, and the Bernstein
coeflicients of each single-orthant sub-box can be computed separately.

Solving Linear Systems with Polynomial Parameter Dependency 7

2.2.2 The Implicit Bernstein Form

Firstly, we can observe that since the Bernstein form is linear, if a polynomial p consists of ¢
terms, as follows,

¢
p(:z:):Zaijxij, 0<i; <l, z=(z1,...,2pn), (14)
j=1

then each Bernstein coefficient is equal to the sum of the corresponding Bernstein coefficients of
each term, as follows:

=Y b, 0<i<l, (15)
7j=1
where bgj) are the Bernstein coefficients of the jth term of p. (Hereafter, a superscript in brackets
specifies a particular term of the polynomial. The use of this notation to indicate a particular
coordinate direction, as in the previous subsection, is no longer required.)

Therefore one may implicitly store the Bernstein coefficients of each term, and compute the
Bernstein coefficients as a sum of ¢ products, only as needed. The implicit Bernstein form thus
consists of computing and storing the n sets of univariate Bernstein coefficients (one set for each
component univariate monomial) for each of ¢ terms. Computing this form has time complexity
O(nt(l+1)2) and space complexity O(nt(I + 1)), as opposed to O(({ + 1)) for the explicit form.
Computing a single Bernstein coefficient from the implicit form requires (n + 1)t — 1 arithmetic
operations.

2.2.3 Determination of the Bernstein Enclosure for Polynomials

We consider the determination of the minimum Bernstein coefficient; the determination of the
maximum Bernstein coefficient is analogous. For simplicity we assume that [z] is restricted to a
single orthant.

We wish to determine the value of the multiindex of the minimum Bernstein coefficient in
each direction. In order to reduce the search space (among the (I+1)" Bernstein coefficients) we
can exploit the monotonicity of the Bernstein coefficients of monomials and employ uniqueness,
monotonicity, and dominance tests, cf. [37] for details. As the examples in [37] show, it is often
possible in practice to dramatically reduce the number of Bernstein coefficients that have to be
computed.

3 Software Tools

Publically-available software for the solution of parametric interval linear systems, for the Math-
ematica [24], 25] and C-XSC [31I] environments has been developed. The Mathematica package
IntervalComputations ‘LinearSystems‘ contains a variety of functions for computing guaran-
teed inclusions for the solution set of an interval linear system [24]. The particular solvers differ
with respect to the type of the linear system to be solved and the implemented solution method.
Recently, these parametric linear solvers were upgraded to handle linear systems involving ar-
bitrary rational dependencies |25, 29]. The enclosures of z(p) and C(p) from Theorem [2.1| were
computed by a technique based on generalised intervals, which provides sharp range enclosures
for monotone rational functions. The goal of this work is to further upgrade the parametric
solvers for systems involving polynomial and/or arbitrary rational dependencies, by integrating

Solving Linear Systems with Polynomial Parameter Dependency 8

more powerful and efficient tools for range computation into the corresponding Mathematica
functions.

3.1 filib4++4 Software for Polynomial Ranges

Given a polynomial p @ and a box [z] , we wish to compute a guaranteed tight enclosure for
p([z]). The existing C++ software routines of the last author, which implement the aforemen-
tioned implicit Bernstein form, are utilised. Interval arithmetic is used extensively throughout,
for which the C++ interval library filib++ [16] [I7] is employed.

Polynomials are passed to the program in a sparse representation, consisting of a one-
dimensional array of non-zero terms. The ordering of the terms in the polynomial is unim-
portant. Each term thus consists of a coefficient with an array of associated variable exponents.
Coefficients are stored as intervals; they are passed as point values and converted to intervals
of machine-precision width. Implicit in this data structure are n, the number of variables, and
[, the vector comprising the degrees in each variable. The principal data construct created by
the program, designed as a “workspace” for applications, is an aggregate structure comprising a
polynomial, a box, and the associated Bernstein coefficients. Firstly, given a polynomial and a
box as input, the workspace is initialised and the corresponding Bernstein coefficients in implicit
form are computed and stored. The range computation routine then takes such a workspace as
input and returns a tight outer estimation for the range of the polynomial over the box. This
range is equal to the Bernstein enclosure, i.e. the range spanned by the minimum and maximum
Bernstein coefficients. In many cases (often for small boxes and/or where the polynomial is
monotonic over the box), the range is provided without overestimation (except for the outward
rounding which is inherent in the interval arithmetic). Due to the use of interval arithmetic,
this range is a guaranteed outer estimation. A routine for box subdivision for further tightening
of the bounds exists, but is not required for the present application.

3.2 New Parametric Solvers

Parametric linear systems involving linear dependencies and systems with particular fixed data
dependencies allow for an entirely numerical data representation and for an efficient algorithm
implementation. Linear systems involving nonlinear parameter dependencies can be declared and
processed more easily and the solution-enclosing methods can be more readily investigated in a
symbolic programming environment. For example, by means of suitable algebraic manipulations
the expression of a general rational function can be transformed into the form of a quotient of
two polynomials. On the other hand, the implementation of the polynomial range enclosing
tools, presented in Sections and is based on the C++ interval library filib++, for
efficiency reasons. Since it is a high-quality specialized software exhibiting good performance,
there is no reason for its re-implementation in Mathematica. In order to shorten the development
time and to preserve the beneficial properties of both implementation environments, the authors
have connected the generalized parametric fixed-point iteration and the Bernstein enclosure of
polynomial ranges into a new parametric solver via the MathLink communication protocol.

MathLink [39] allows the external £ilib++ function for polynomial range computation to be
called from within Mathematica as required. Following the MathLink technology [28, 9], the
following steps constitute the development process:

1. Create a template file whose main purpose is to establish a correspondence between the
function for range computation that will be called from Mathematica and the external C++
function that will call the £i1ib++ range computation function. In the developed template

Solving Linear Systems with Polynomial Parameter Dependency 9

file we have included as pre-evaluated expressions the source of the whole Mathematica
package involving the desired parametric solvers. Thus, when installing the MathLink
connection in Step 4 below, all the parametric solvers involved in the package are ready
for use.

2. A corresponding communication module should be written in C++ to combine the tem-
plate file with the external £ilib++ software. A C++ function, specified in the template
file, reads the Mathematica generated data that numerically define a multivariate poly-
nomial and a box, initializes new variables whose data types are specific for the filib++
range computation function and after the actual computations (calling the £ilib++ range
computation function) transforms the computed result into variables of fundamental C++
data types that are passed back to Mathematica. The communication module also contains
a function for communicating error messages, and a standard main function.

3. Process the MathLink template information and compile all the source code.
4. Install the binary in the current Mathematica session.

More details about MathLink technology and the connectivity between Mathematica and external
filib++ based interval programs can be found in [2§].

Below we briefly outline the functionality of the newly developed Mathematica package
ParametricPolySolvers based on MathLink connection to the external filib++ software for
the enclosure of a polynomial range. The usage of the package is illustrated in Section [4

The solver polyParametricSolve[Ax, bx, parLst] computes guaranteed outer bounds for
the solution set of a parametric linear system, where the matrix Ax and/or the right hand side vec-
tor bx involve polynomial dependencies between uncertain parameters. The latter and their in-
terval values are specified by a list of transformation rulesﬂ parLst. The general parametric resid-
ual iteration, cf. Theorem implemented in this function, uses some algebraic manipulations
and MathLink communication with the £i1ib++ software for bounding the ranges of multivariate
polynomials involved in the computation of z(x) and C(x). The solver polyParametricSolve
can take a fourth optional argument Refinement -> True which determines whether an iter-
ative refinement procedure is applied to the computed outer solution enclosure. The default
setting is False.

A specific feature of the polyParametricSolve function is that the function input arguments
Ax, bx can be represented as

Az = A(z) + [A], bx = b(x) + [b], (16)

where the elements of A(z), b(z) are multivariate polynomials of the parameters z1,. .., z,, while
[A] € IR™™", [b] € IR™. This way, polyParametricSolve could be used for solving parametric
linear systems involving rational dependencies as well as intervals which represent bounds on
the remainder terms of the Taylor expansion applied to non-rational dependencies.

The filib++ software described in Section for bounding the range of a multivariate
polynomial over a box can also be used for bounding the range of a function involving arbitrary
rational dependencies between its variables, if we represent the rational function as a quotient of
two multivariate polynomials which are to be bounded separately. This motivates the develop-
ment of another function polyRationalSolve[Ax, bx, parLst] applicable to linear systems
involving arbitrary rational parameter dependencies. The solver polyRationalSolve has the

! Mathematica transformation rules have the form name -> value.

Solving Linear Systems with Polynomial Parameter Dependency 10

same optional argument as polyParametricSolve. It can also be applied to systems with
polynomial dependency but without function input arguments of the form .

For the sake of comparison, the package contains the function ParametricSolve[Ax, bx,
parLst] with the same usage as the previous solvers but applying the former range computation
method based on generalised interval arithmetic.

3.3 Accessibility

The new software tools described above can be obtained from the authors. The library filib++
is free software [I7]. This library and Mathematica should be installed on the user machine. Then
the developed template file and the communication module ParametricPolySolvers.tm/cpp
should be compiled together with the range computation filib++ software following the Math-
Link technology. The end-users, who do not have Mathematica or do not want to establish a
communication with external programs, can run Mathematica and the parametric solvers re-
motely via the webComputing service framework [27].

4 Numerical Examples

In this section we illustrate the usage of the new parametric solvers based on bounding polyno-
mial ranges by Bernstein expansion. The improved efficiency of the new polynomial solvers is
demonstrated by comparing both the computing time and the quality of the solution enclosure
for the new solvers and the former one. The examples were run on a PC with AMD Athlon-64
3GHz processor. Below we present the Mathematica commands and the corresponding output
results in a session. Once the external £ilib++ program and the developed MathLink compatible
files have been processed and compiled to an executable file, called ParametricPolySolvers,
the latter can be installed in a Mathematica session.

In[1]:= 1nk = Install["ParametricPolySolvers"]
Out[1]= LinkObject[./ParametricPolySolvers, 3, 2]

The Install function opens a link through which the external range computing functions can
be called. The program also makes all definitions and the Mathematica code of the parametric
solves described in Section [3.2] above visible for the current Mathematica session.

In[2] := Names["ParametricPolySolvers‘*"]
Out [2]= {ParametricSolve, polyParametricSolve, polyRationalSolve, Refinement}

4.1 One-Bay Steel Frame

Consider a simple one-bay structural steel frame, as shown in Figure [I] which was initially pro-
posed and analyzed in [5]. Following standard practice, the authors have assembled a parametric
linear system of order eight and involving eight uncertain parameters. The typical nominal pa-
rameter values and the corresponding worst case uncertainties, as proposed in [5], are shown
in Table [[] The explicit analytic form of the given system involving polynomial parameter
dependencies can be found in [5] 29].

As in [B] 29], we solved the system with parameter uncertainties which are 1% of the values
presented in the last column of Table Let us assume that all input data for the given
parametric system are stored in the Mathematica variables Ax, bx, tr. We call the parametric
solver polyParametricSolve and measure the absolute time for execution of the main steps.

Solving Linear Systems with Polynomial Parameter Dependency 11
(4'2\

(12__(. lt’f}ﬂ

re

Connection 5 Connection 6
Connection 2 Connection 3

h gl 94,
2 md

ml) o 5 5 :
z Connection | Connection 4

g1

94

Figure 1: One-bay structural steel frame [5].

Table 1: Parameters involved in the steel frame example, their nominal values, and worst case
uncertainties.

parameter nominal value uncertainty
Young modulus E, 29 % 10° 1bs/in? +348 % 10*
E. 29 %10° Ibs/in? +348 x 10*
|

Second moment Z’ g;g ;E4 i;t;?;
Aren Ay 10.3 in? +1.03
A, 144 in? +1.44
External force H 5305.5 lbs +2203.5
Joint stiffness o 2.77461 % 10° Ib-in/rad £1.26504 * 10°

Length L. 144 in, L; 288 in

In[7] :=AbsoluteTiming[polyRes=polyParametricSolve[Ax,bx,tr,Refinement->True];]
absolute time for C = 0.024074 Second
absolute time for z = 0.007313 Second
{0.045983 Second, Null}

Now, running the previous parametric solver we get the following time measurements

In[9] := AbsoluteTiming[paramRes=ParametricSolve [Ax,bx,tr,Refinement->True];]
absolute time for C = 0.162854 Second
absolute time for z = 0.161104 Second

Out[9] = {0.342757 Second, Null}

showing that the compiled external code for range computation was considerably faster than the
interpretative Mathematica code. For this example, the quality of the solution set enclosures,
provided by both solvers, was comparable. As shown in [25] 29], the solution enclosure obtained
by the parametric solver is by more than one order of magnitude better than the solution
enclosure obtained in [5].

Based on the runtime efficiency of the new parametric solver, we next attempt to solve the
same parametric linear system for the worst case parameter uncertainties in Table [I| ranging
between about 10% and 45.6%. Firstly, we notice that the parametric solution depends linearly
on the parameter H, so that we can obtain a better solution enclosure if we solve two parametric
systems with the corresponding end-points for H. Secondly, enclosures of the hull of the solution
set are obtained by subdivision of the worst case parameter intervals (Ejy, E, Iy, I, Ay, Ae, @)

Solving Linear Systems with Polynomial Parameter Dependency 12

into (2,2,2,2,1,1,6) " subintervals of equal width, respectively. We use more subdivision with
respect to « since « is subject to the greatest uncertainty. The solution enclosure, obtained
within 11 sec., is given in Table

Table 2: One-bay steel frame example with worst-case parameter uncertainties (Table .
Solution enclosure found by dividing the parameter intervals (Ej, E., I, I, Ay, Ac,a) T into
(2,2,2,2,1,1,6) " subintervals of equal width, respectively. All numerical quantities are multi-
plied by 10°.

d2g: [5454.706610, 24708.395582] r6,: [-105.9680866, -17.64526946]
d2,: [11.5445278769, 84.761351898] d3,: [5325.027833, 24285.634925]
72, [-129.02427835, -22.381136355] d3,: [-148.1290977, -16.38968649

[]
rby: [-113.21398401, -17.95789860)] r3,: [-122.3361772, -21.69878778]

The quality of the solution set enclosure is presented in Table [3] where O, is defined by
Ouw(la], [b]) := 100(1 — w([a])/w([b])), for [a] < [b]

and w is the width of the interval. The Mathematica function Overestimation[a, b], used
below, implements O, ([a], [b]). The combinatorial solution, obtained as the convex hull of the
solutions to point linear systems where the parameters take all possible combinations of the
interval end-points, is used as an inner estimation of the solution set hull.

Table 3: One-bay steel frame example with worst-case parameter uncertainties (Table .
Solution enclosure found by dividing the parameter intervals (Ej, E., I, I, Ay, Ac,a) T into
(2,2,2,2,1,1,6) " subintervals of equal width, respectively. The obtained enclosure [u] of the
solution set hull is compared to the combinatorial solution [A)].

a2, d2, r2, r5, rb6, d3, d3, r3,
Ou([h],[u]) 125 8.0 23.7 256 250 127 13.2 23.5

These results show that by means of a minimal number of subdivisions the new parametric
solver provides a good solution enclosure very quickly for the difficult problem of worst-case
parameter uncertainties. Note that sharper bounds, close to the exact hull, can be obtained by
proving the monotonicity properties of the parametric solution [26].

4.2 Two-Bay Two-Story Frame Model with 13 Parameters

Cousider a two-bay two-story steel frame with IPE 400 beams and HE 280 B columus, as shown
in Figure 2| after [29]. The frame is subjected to lateral static forces and vertical uniform loads.
Beam-to-column connections are considered to be semi-rigid and they are modelled by single
rotational spring elements. Applying conventional methods for the analysis of frame structures,
a system of 18 linear equations is obtained, where the elements of the stiffness matrix and of
the right hand side vector are rational functions of the model parameters. We consider the
parametric system resulting from a finite element model involving the following 13 uncertain
parameters: A., I, E., Ay, Iy, Ey, ¢, wn, ..., wy, f1, fo. Their nominal values, taken according to

Solving Linear Systems with Polynomial Parameter Dependency 13

W 2

1 2
F2 Y V.V VvV ¥ 2 Yy vy VY
— | O e o oM —+
w3 Wy By
F_1’4 ev Yy Y V¥ V& %‘r A A A i ve 6 ﬁ‘:—

=
i

|

|

Ly L,

Figure 2: Two-bay two-story steel frame [29].

the European Standard Eurocode3 [7], are given in Table [4] The explicit analytic form of the
given parametric system can be found in [30].

The parametric system is solved for the element material properties (A, ... Ep), which are
taken to vary within a tolerance of 1% (that is [x—x/200, z+x/200], where z is the corresponding
parameter nominal value from Table [4) while the spring stiffness and all applied loadings are
taken to vary within 10% tolerance intervals.

parameter Columns (HE 280 B) Beams (IPE 400)
Cross-sectional area A, =0.01314 m? Ay = 0.008446m?
Moment of inertia I,=19270« 108 m* I, =23130% 1078 m*
Modulus of elasticity E.=21%10%kN/m? E, = 2.1 10® kN/m?
Length L.=3m Ly=2L. m
Rotational spring stiffness ¢ = 10® kN

Uniform vertical load w; =...=wy4 =30 kN/m

Concentrated lateral forces f; = fo = 100 kN

Table 4: Parameters involved in the two-bay two-story frame example with their nominal values.

It is assumed that all input data for the given parametric system are contained in the
Mathematica variables Ax, bx, tr. The parametric solver polyRationalSolve is called and
the absolute time for execution of the main steps is measured. Then the interval enclosure of
the solution set is obtained.

In[7] := AbsoluteTiming[polyRes= polyRationalSolve[Ax,bx,tr,Refinement->Truel;]
absolute time for C = 0.585924 Second
absolute time for z = 0.693990 Second

Out[7] = {1.318729 Second, Null}

Now, the former parametric solver is run.

Solving Linear Systems with Polynomial Parameter Dependency 14

In[9]:= AbsoluteTiming[paramRes= ParametricSolve [Ax,bx,tr,Refinement->Truel;]
absolute time for C = 3.144183 Second
absolute time for z = 4.142891 Second

Out[9] = {7.355345 Second, Null}

The new parametric solver is about six times faster than the previous one. Comparing the
quality of the solution enclosures we obtain the following result.

In[10] := MapThread[Overestimation, {polyRes, paramRes}]
Out[10] = {64.38, 91.79, 66.15, 64.89, 87.45, 61.94, 64.8, 92.61,
59.34, 53.46, 92.1, 57.43, 54.66, 88.1, 61.02, 55.08, 92.92, 56.61}

An algebraic simplification, applied to functional expressions in computer algebra environ-
ments, may reduce the occurrence of interval variables which could result in a sharper range
enclosure. Such an algebraic simplification is expensive and when applied to complicated ratio-
nal expressions usually does not result in a sharper range enclosure. For the sake of comparison,
we have run the former parametric solver in two ways: applying intermediate simplification
during the range computation, and without any algebraic simplification. The above results
were obtained when the range computation in ParametricSolve does not use any algebraic
simplification. When the range computation of the previous solver uses intermediate algebraic
simplification, we obtain the following results.

In[11]:= AbsoluteTiming[paramRes13=ParametricSolve[Ax,bx,tr,Refinement->True];]
absolute time for C = 5.785307 Second
absolute time for z = 8.588179 Second

Out[11] = {14.402811 Second, Null}

In[12] := MapThread[Overestimation, {paramResl13, polyRes}]
Out[12]= {18.95, 27.09, 37.06, 18.91, 27.09, 36.97, 18.97, 27.08, 37.07,
18.66, 27.10, 37.02, 18.62, 27.099, 36.97, 18.68, 27.09, 37.05}

In this case ParametricSolve was much slower but provided a tighter enclosure of the
solution set than the rational solver, based on polynomial ranges, which did not account for all
the parameter dependencies.

4.3 Two-Bay Two-Story Frame Model with 37 Parameters

As a larger problem of a parametric system involving rational parameter dependencies, we
consider the finite element model of the two-bay two-story steel frame from Section where
each structural element has properties varying independently within 1% tolerance intervals. This
does not change the order of the system but it now depends on 37 interval parameters. The
explicit analytic form of the given parametric system can be found in [30]. Here the right hand
side vector is given to illustrate the dependencies.

f 1 wlLbQ _w1L61 . U)QLbQ wlLbQ . ’U)QL62
(> VU2 4 2By 27 12(1+ B0y 1(1 4 2Bhlb);
ngbQ ’LU2Lb2 1 UJ3Lb2
T2 T 12(1+ ik T C12(1 + 2Bhlbay’
0 _’ngbg _ w4 Lby w3Lb§ _ w4LbZ 0 _w4Lb4 w4LbZ)T
’ 2 20T 12(1 4 2BEle) 1201+ 2R 271201+ 250

Solving Linear Systems with Polynomial Parameter Dependency 15

First, the polynomial solver is run, and one observes a considerable increase in the computing
time compared to the time needed for the 13 parameters example, caused by the larger number
of parameters.

In[15] :=AbsoluteTiming[polyRes = polyRationalSolve[Ax,bx,tr,Refinement->True];]
absolute time for C = 1.446245 Second
absolute time for z = 243.311070 Second

Out[15] = {244.789783 Second, Null}

The former parametric solver, based on range computation without algebraic simplification,
exhibits approximately three times slower performance than the new one.

In[17]:= AbsoluteTiming[paramRes=ParametricSolve[Ax,bx,tr,Refinement->Truel;]
absolute time for C = 11.506395 Second
absolute time for z = 743.446813 Second

Out[17] = {754.986023 Second, Null}

The quality of the solution enclosure, provided by the new polynomial solver, is also much better
than the solution enclosure provided by the former solver.

In[18] := MapThread[Overestimation, {polyRes, paramRes}]
Out[18] = {35.54, 64.19, 48.02, 35.96, 77.74, 39.02, 36.01, 66.67,
35.51, 28.4, 64.85, 39.6, 29.32, 78.45, 40.03, 30.14, 66.96, 95.46}

Note that when the previous range computation uses algebraic simplification, ParametricSolve
is much slower. However, the quality of the solution enclosure does not improve by more than
5.44% 10713, probably due to the more complicated parameter dependencies. This demonstrates
the merit of the general-purpose parametric iteration, combined with Bernstein enclosure of
polynomial ranges, for solving parametric systems involving complicated dependencies between
many parameters.

5 Conclusions

In this paper, we demonstrated the advanced application of a general-purpose parametric method,
combined with the Bernstein enclosure of polynomial ranges, to linear systems obtained by stan-
dard FEM analysis of mechanical structures, and illustrated the efficiency of the new parametric
solver.

New software tools for the enclosure of the solution set of a system of linear equations
with polynomial or rational parameter dependencies are described. It is demonstrated that
powerful techniques for range enclosure are necessary to provide tight bounds on the solution
set, in particular when the parameters of the system are subject to large uncertainties and the
dependencies are complicated.

The new self-verified parametric solvers can be incorporated into a general framework for the
computer-assisted proof of global and local monotonicity properties of the parametric solution.
Based on these properties, a guaranteed and highly accurate enclosure of the interval hull of
the solution set can be computed [26]. The parametric solvers for square systems facilitate
the guaranteed enclosures of the solution sets to over- and underdetermined parametric linear
systems.

Being the only general-purpose parametric linear solver, the presented methodology and
software tools are applicable in the context of any problem (stemming, e.g., from fuzzy set theory

Solving Linear Systems with Polynomial Parameter Dependency 16

[36],

control engineering [35], robust Monte Carlo simulation [I5], or others) that requires the

solution of linear systems whose input data depend on uncertain (interval) parameters.

References

1]

[10]

[11]

[12]

[13]

[14]

Alefeld, G.; Herzberger, J.: Introduction to Interval Computations, Academic Press, New
York, 1983.

Ackermann, L., A. Bartlett, D. Kesbauer, W. Sienel, and R. Steinhauser, Robust Control:
Systems with Uncertain Physical Parameters, Springer-Verlag, Berlin, 1994.

B. R. Barmish, New Tools for Robustness of Linear Systems, MacMillan, New York, 1994.

Cargo G. T. and Shisha O. (1966), “The Bernstein form of a polynomial,” J. Res. Nat.
Bur. Standards Vol. 70B, 79-81.

Corliss, G., Foley, C. and Kearfott. R. B., “Formulation for Reliable Analysis of Structural
Frames”, in R. L. Muhanna and R. L. Mullen, editors, Proceedings of NSF workshop on
Reliable Engineering Computing, Savannah, Georgia, September 2004, USA.

Dessombz O. et al., Analysis of Mechanical Systems Using Interval Computations Applied
to Finite Element Methods, Journal of Sound and Vibration 239(5):949-968, 2001.

European Standard. Eurocode 3: Design of Steel Structures. European Committee for
Standardization, Ref.No. prEN 1993-1-1:2003 E, Brussels, 2003.

Franzen, R., Die intervallanalytische Behandlung parameterabhéngiger Gleichungssysteme,
Berichte der GMD Vol. 47, Bonn, 1971.

Franzen, R., Die Konstruktion eines Approximationspolynoms fir die Losungen parame-
terabhangiger Gleichungssysteme, Z. Angew. Math. Mech. 52, T202-T204, 1972.

Garloff J., Zur intervallmafigen Durchfiihrung der schnellen Fourier-Transformation, Z.
Angew. Math. Mech. 60, T291-T292, 1980.

Garloff J. (1986), “Convergent bounds for the range of multivariate polynomials,” Interval
Mathematics 1985, K. Nickel, editor, Lecture Notes in Computer Science Vol. 212, Springer,
Berlin, 37-56.

Garloff J., Solution of linear equations having a Toeplitz interval matrix as coefficient
matrix, Opuscula Math. 2, 33-45, 1986.

Jansson, C., Interval linear systems with symmetric matrices, skew-symmetric matrices and
dependencies in the right hand side, Computing 46, 265-274, 1991.

Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken,
Computing 4 (1969), 187-201.

Solving Linear Systems with Polynomial Parameter Dependency 17

[15]

[16]

[17]

[19]
[20]

[21]

22]

[27]

[28]

[29]

C. M. Lagoa, B. R. Barmish, Distributionally Robust Monte Carlo Simulation: A Tutorial
Survey, in: Proceedings of the 15th IFAC World Congress, 2002, pp. 1327-1338. Available
under http://www.ece.lsu.edu/mcu/lawss/add_materials/BRossBarmishTutorial.pdf

Lerch M., Tischler G. and Wolff von Gudenberg J. (2001), “filib++ - Interval library spec-
ification and reference manual,” Technical Report 279, University of Wirzburg.

Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W; Kramer, W.: filib++, a
Fast Interval Library Supporting Containment Computations, ACM TOMS 32(2):299-324,
2006. Library download: |http://www.math.uni-wuppertal.de/org/WRST /software/filib.html

Moore, R. E.: A Test for Existence of Solutions to Nonlinear Systems, SIAM J. Nu-
mer. Anal. 14 (1977), 611-615.

Moore, R. E.: Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.

Muhanna, R. L., Mullen, R.L., Zhang, H.: Penalty-Based Solution for the Interval Finite-
Element Methods. J. Eng. Mech. 131(10):1102-1111, 2005.

Neumaier, A.: Improving Interval Enclosures, manuscript, 2008.
http://www.mat.univie.ac.at/ neum/papers.htmlfencl

Popova, E. D.: Strong Regularity of Parametric Interval Matrices. In Mathematics and Edu-
cation in Mathematics, Proc. of the 33rd Spring Conference of the Union of Bulgarian Math-
ematicians, Sofia, 2004, 446-451. (http://www.math.bas.bg/ epopova/papers/04smbEP.pdf)

Popova, E. D.: Generalizing the Parametric Fixed-Point Iteration, Proceedings in Applied
Mathematics & Mechanics (PAMM) 4(1):680-681, 2004.

Popova, E. D.: Parametric Interval Linear Solver, Numerical Algorithms 37(1-4):345-356,
2004.

Popova, E. D.: Solving Linear Systems whose Input Data are Rational Functions of Interval
Parameters. In T. Boyanov et al. (Eds): NMA 2006, Springer LNCS 4310, 2007, 345-352.
Expanded version in Preprint 3/2005, Institute of Mathematics and Informatics, BAS, Sofia,
2005. (http://www.math.bas.bg/ epopova/papers/05PreprintEP.pdf)

Popova, E., Computer-Assisted Proofs in Solving Linear Parametric Problems, in Confer-
ence Post-Proceedings of the 12th GAMM - IMACS International Symposium on Scientific
Computing, Arithmetic and Validated Numerics (SCAN 2006), IEEE Computer Society
Press, July 2007, Library of Congress Number 2007929345, p. 35.

Popova, E.: WebComputing Service Framework. Int. Journal Information Theories and
Applications 13(3):246-254, 2006. Accessible at http://cose.math.bas.bg/webComputing

E. Popova: Mathematica Connectivity to Interval Libraries filib++ and C-XSC. To appear
in: A. Cuyt, W. Kramer, W. Luther, P. Markstein (Eds.), Numerical validation in cur-
rent hardware architectures — From embedded system to high-end computational grids,
Springer LNCS.

Popova, E., R. lankov, Z. Bonev: Bounding the Response of Mechanical Structures with
Uncertainties in All the Parameters. In R.Muhannah, R.Mullen (Eds): Proceedings of the
NSF Workshop on Reliable Engineering Computing, Svannah, 2006, 245-265.

http://www.ece.lsu.edu/mcu/lawss/add_materials/BRossBarmishTutorial.pdf
http://www.math.uni-wuppertal.de/org/WRST/software/filib.html
http://www.mat.univie.ac.at/~neum/papers.html#encl
http://www.math.bas.bg/~epopova/papers/04smbEP.pdf
http://www.math.bas.bg/~epopova/papers/05PreprintEP.pdf
http://cose.math.bas.bg/webComputing

Solving Linear Systems with Polynomial Parameter Dependency 18

[30]

[31]

32]

[33]

[34]

[35]

[39]

Popova, E., R. lankov, Z. Bonev: FEM Model of a Two-Bay Two-Story Steel Frame — 2
Benchmark Examples. (http://www.math.bas.bg/ epopova/papers/2bay2storyProblems.pdf)

Popova, E., and W. Kramer: Inner and Outer Bounds for the Solution Set of Parametric
Linear Systems. J. of Computational and Applied Mathematics 199(2):310-316, 2007.

Prautzsch H., Boehm W. and Paluszny M. (2002), “Bezier and B-Spline Techniques,”
Springer, Berlin, Heidelberg.

Rump, S.: New Results on Verified Inclusions. In Miranker, W. L., R. Toupin (Eds): Ac-
curate Scientific Computations. Springer LNCS 235 (1986), 31-69.

Rump, S.: Verification Methods for Dense and Sparse Systems of Equations. In Herzberger,
J. (Ed): Topics in Validated Computations, N. Holland, 1994, 63-135.

Savov S., 1. Popchev, Generalized Lyapunov Function for Stability Analysis of Uncertain
Systems, in Proceedings of 16th IFAC World Congress, Prague, Czech Republic, July 4-8,
2005. http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac2005/Fullpapers/02330.pdf

I. Skalna, Parametric Fuzzy Linear Systems, in: O. Castillo et al. (Eds.): Theoretical Ad-
vances and Applications of Fuzzy Logic and Soft Computing, Advances in Soft Computing
vol. 42, Springer Berlin, Heidelberg, pp. 556-564, 2007.

Smith A. P., “Fast construction of constant bound functions for sparse polynomials”, to
appear in J. Global Optimization.

Zettler M. and Garloff J. (1998), “Robustness analysis of polynomials with polynomial
parameter dependency using Bernstein expansion,” IEEE Trans. Automat. Contr. Vol. 43,
425-431.

Wolfram Research Inc.: Mathematica, Version 5.2, Champaign, 1L, 2005.

http://www.math.bas.bg/~epopova/papers/2bay2storyProblems.pdf

	Introduction
	Methodology
	The Iteration Method
	Bernstein Enclosure of Polynomial Ranges
	Bernstein Coefficients of Monomials
	The Implicit Bernstein Form
	Determination of the Bernstein Enclosure for Polynomials

	Software Tools
	filib++ Software for Polynomial Ranges
	New Parametric Solvers
	Accessibility

	Numerical Examples
	One-Bay Steel Frame
	Two-Bay Two-Story Frame Model with 13 Parameters
	Two-Bay Two-Story Frame Model with 37 Parameters

	Conclusions

