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Abstract. A wide range of scienti�c and engineering problems can be described by systemsof linear algebraic equations involving uncertain model parameters. We report on new soft-ware tools for solving linear systems where the coe�cients of the matrix and the right handside are multivariate polynomials or rational functions of parameters varying within given in-tervals. A general-purpose parametric �xed-point iteration is combined with e�cient tools forrange enclosure based on the Bernstein expansion of multivariate polynomials. A C++ softwarepackage for constructing the Bernstein enclosure of polynomial ranges, based on the intervallibrary filib++, is integrated into a Mathematica package for solving parametric systems viathe MathLink communication protocol. We discuss an advanced application of the general-purpose parametric method to linear systems obtained by standard FEM analysis of mechanicalstructures and illustrate the e�ciency of the new parametric solver.
Keywords: parametric linear system, interval parameter, polynomial range, Bernstein expan-sion, mechanical structure.AMS subject classi�cation: 65G20, 15A06, 74S05
1 Introduction
Scienti�c and engineering problems described by systems of linear algebraic equations involvinguncertain model parameters include problems in engineering analysis or design [5, 6, 20, 29], con-�corresponding author
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Solving Linear Systems with Polynomial Parameter Dependency 2
trol engineering [2, 3, 35], etc. Causes of uncertainty in the model parameters are measurementimprecision, round-o� errors, and various other kinds of inexact knowledge.Signi�cant research in this �eld is directed towards the use of intervals to represent theuncertain quantities in such systems. When uncertain parameters are modelled by boundedintervals, the problem can be formulated as an interval linear system. Dependencies between suchinterval parameters may be linear or nonlinear in nature, with the former, simpler, case havingbeen more extensively studied. In the latter case there may be highly nontrivial dependenciesbetween the parameters.One of the earliest papers on the solution of linear systems with nonlinear parameter depen-dencies is [8], cf. [9]. Later works focus on the solution of systems of linear equations whosecoe�cient matrices enjoy a special structure, e.g. circulant [10], Toeplitz [12], symmetric, andskew-symmetric matrices [13].A standard method for solving problems in structural mechanics, such as linear static prob-lems, is the �nite element method (FEM). The method leads to a system of algebraic equations,which in case of uncertain (interval) physical parameters becomes a linear system involving in-terval parameters. An overview of developments in techniques for the handling of uncertaintyusing the �nite element method and applications in structural engineering mechanics can befound in [20]. Here, the authors combine an element-by-element (EBE) formulation, where theelements are kept disassembled, with a penalty method for imposing the necessary constrainsfor compatibility and equilibrium, in order to reduce the overestimation in the solution intervals.This approach should be applied simultaneously with FEM and a�ects the construction of theglobal sti�ness matrix and the right-hand side vector, making them larger. A non-parametric�xed-point iteration is then used to solve the parametric interval linear system. While specialconstruction methods are applied in [20], the parametric system obtained by standard FEM ap-plied to a structural steel frame with partially constrained connections is solved by a sequenceof interval-based (but not parametric) methods [5]. In [29], a parametric residual iteration[34], generalised in [23], is applied to bounding the response of structural engineering systemsinvolving rational dependencies between the model parameters. Corresponding software toolswith result veri�cation, implemented in theMathematica environment [39], have been developed.This general-purpose interval approach imposes no restrictions on how the parametric systemis generated and can be applied to linear parametric problems for which special methods havenot yet been designed.The last method requires an enclosure of the range of nonlinear functions over the domainof the parameters. When the parameter dependencies are polynomial, tight bounds for thepolynomial ranges can be obtained by the expansion of a multivariate polynomial into Bernsteinpolynomials [11, 38]. The goal of our work is to combine the generalised parametric residualiteration with range enclosure, based on the Bernstein expansion of polynomials, into a moree�cient parametric linear system solver. For the sake of rapid development, run-time e�ciency,and for exploiting the advantages of modern general-purpose software environments, such asMathematica, our implementation is based on an advanced connectivity between Mathematicaand an external C++ software via the MathLink communication protocol. The present para-metric solver is illustrated by numerical solutions to three problems from structural mechanicswhich have been modelled by standard FEM and involve interval uncertainty in all material andload parameters. A discussion on the comparison between the present parametric solver, basedon Bernstein polynomial ranges, and the former one is provided.The paper is organised as follows. In Section 2, the parametric residual iteration method forlinear interval systems is introduced, followed by an introduction to the Bernstein expansion and
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the implicit Bernstein form. Section 3 discusses the software implementation of these methodsand the interface between Mathematica, C++, and the interval software library filib++. InSection 4, the new parametric solvers and software tools are illustrated by three examples ofone- and two-bay steel frames. Finally, some conclusions are given.
2 Methodology
2.1 The Iteration MethodConsider a linear system A(x) � s = b(x); (1a)where the coe�cients of them�m matrix A(x) and the vector b(x) are functions of n parametersvarying within given intervals

aij(x) = aij(x1; : : : ; xn); i; j = 1; : : : ;m; (1b)x 2 [x] = ([x1]; : : : ; [xn])>; (1c)
and similarly for b.The set of solutions to (1a{1c), called the parametric solution set, is

� = � (A(x); b(x); [x]) := fs 2 Rm j A(x) � s = b(x) for some x 2 [x]g : (2)
The set � is compact if A(x) is nonsingular for every x 2 [x]. For a nonempty bounded setS � Rm, de�ne its interval hull by �S := [inf S; supS] = \f[s] 2 IRm j S � [s]g. Since itis quite expensive to obtain � or ��, we seek an interval vector [w] for which it is guaranteedthat [w] � �� � �.We use the following notation: Rm;Rm�n denote the set of real vectors with m componentsand the set of real m � n matrices, respectively. A real compact interval is de�ned as [a] =[a; a] := fa 2 R j a � a � ag. By IRm; IRm�n we denote interval m-vectors and intervalm � n matrices. Operations on interval values yield the smallest interval value containing thecorresponding result when power set operations are used. We assume that the reader is familiarwith the conventional interval arithmetic [1, 19].In this section we consider a self-veri�ed method for bounding the solution set of a para-metric linear system. This is a general-purpose method since it does not assume any particularstructure among the parameter dependencies. The method originates in the inclusion theoryfor nonparametric problems, which is discussed in many works (cf. [34] and the literature citedtherein). Historically, the basic idea of combining the Krawczyk-operator [14] and the existencetest by Moore [18] is further elaborated by S. Rump [33] who proposes several improvementsleading to inclusion theorems for the solution set of a nonparametric system of linear intervalequations [A] � s = [b]. In [34, Theorem 4.8] S. Rump gives a straightforward generalization toa�ne-linear dependencies in the matrix and the right hand side. With obvious modi�cations,the corresponding theorems can also be applied directly to linear systems involving nonlineardependencies between the parameters in A(x) and b(x). This is demonstrated in [25, 29]. Thefollowing theorem is a general formulation of the enclosure method for linear systems involvingarbitrary parametric dependencies.
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Theorem 2.1. Consider a parametric linear system de�ned by (1a{1c). Let R 2 Rm�m, [y] 2IRm, ~s 2 Rm be given and de�ne [z] 2 IRm, [C] 2 IRm�m by[z] := �fz(x) = R (b(x)�A(x)~s) j x 2 [x]g;[C] := �fC(x) = I �R �A(x) j x 2 [x]g;where I denotes the identity matrix. De�ne [v] 2 IRm by means of the following Gauss-Seideliteration 1 � i � m : [vi] := f[z] + [C] � ([v1]; :::; [vi�1]; [yi]; : : : ; [ym])>gi:If [v] $ [y], then R and every matrix A(x) with x 2 [x] are regular, and for every x 2 [x] theunique solution bs = A�1(x)b(x) of (1a{1c) satis�es bs 2 ~s+ [v].The above theorem generalises [34, Theorem 4.8] by stipulating a sharp enclosure of C(x) :=I�R �A(x) for x 2 [x], instead of using the interval extension C([x]), cf. [23]. A sharp enclosureof the iteration matrix C(x) is also required by other authors (who do not refer to [34]) [6, 20],without addressing the issue of rounding errors. However, the generalization of [34, Theorem4.8] is �rst proven in [22, 23]. Examples demonstrating the expanded scope of application of thegeneralized inclusion theorem can be found in [22, 23, 31].When aiming to compute a self-veri�ed enclosure of the solution to a parametric linear systemby the above inclusion method, a �xed-point iteration scheme is proven to be very useful. Adetailed presentation of the computational algorithm can be found in [25, 33].In case of arbitrary nonlinear dependencies between the uncertain parameters, computing[z] and [C] in Theorem 2.1 requires a sharp range enclosure of nonlinear functions. This is a keyproblem in interval analysis and there exists a huge number of methods and techniques devotedto this problem, with no one method being universal. In this work we restrict ourselves to linearsystems where the elements of A(x) and b(x) are rational functions of the uncertain parameters.In this case the elements of z(x) and C(x) are also rational functions of x. The quality of therange enclosure of z(x) will determine the sharpness of the parametric solution set enclosure.In [25] the above inclusion theorem is combined with a simple interval arithmetic techniqueproviding inner and outer bounds for the range of monotone rational functions. The arithmeticof generalised (proper and improper) intervals is considered as an intermediate computationaltool for eliminating the dependency problem in range computation and for obtaining innerestimations by outwardly rounded interval arithmetic. Since this methodology is not e�cientin the general case of non-monotone rational functions, in this work we combine the parametric�xed-point iteration with range enclosing tools based on the Bernstein expansion of multivariatepolynomials. Other approaches are presented in [21].
2.2 Bernstein Enclosure of Polynomial RangesIn this section we recall some properties of the Bernstein expansion which are fundamental toour approach, cf. [4, 11, 38].Firstly, some notation is introduced. We de�ne multiindices i = (i1; : : : ; in)T as vectors,where the n components are nonnegative integers. The vector 0 denotes the multiindex withall components equal to 0, which should not cause ambiguity. Comparisons are used entrywise.Also the arithmetic operators on multiindices are de�ned componentwise such that i � l :=(i1 � l1; : : : ; in � ln)T , for � = +;�;�; and = (with l > 0). For instance, i=l, 0 � i � l, de�nesthe Greville abscissae. For x 2 Rn its multipowers are

xi := nY
�=1xi�� : (3)
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For the n-fold sum we use the notationlX

i=0 := l1X
i1=0 : : :

lnX
in=0 : (4)

The generalised binomial coe�cient is de�ned by�li
� := nY

�=1
�l�i�

�: (5)
For reasons of familiarity, the Bernstein coe�cients are denoted by bi; this should not be confusedwith components of the right hand side vector b of (1a). Hereafter, a reference to the latter willbe made explicit.An n-variate polynomial p,

p(x) = lX
i=0 aixi; x = (x1; : : : ; xn); (6)

can be represented over U = [0; 1]n as
p(x) = lX

i=0 biBi(x); (7)
where Bi is the i-th Bernstein polynomial of degree l

Bi(x) = �li
�xi(1� x)l�i (8)

and the so-called Bernstein coe�cients bi are given by
bi = iX

j=0
�ij��lj�aj ; 0 � i � l: (9)

Although the case of the unit box U may be considered without loss of generality, since anynonempty box in Rn can be mapped a�nely thereupon, we need here the general case. TheBernstein coe�cients bi of degree l = (l1; : : : ; ln) over a box
[x] := [x1; x1]� : : :� [xn; xn]; (10)x = (x1; : : : ; xn); x = (x1; : : : ; xn);

are given by
bi = iX

j=0
�ij��lj�(x� x)j lX

�=j
��j
�x��ja�; 0 � i � l: (11)

The essential property of the Bernstein expansion is the range enclosing property, namelythat the range of p over [x] is contained within the interval spanned by the minimum andmaximum Bernstein coe�cients:
mini fbig � p(x) � maxi fbig; x 2 [x]: (12)
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It is also worth noting that the values attained by the polynomial at the vertices of [x]are identical to the corresponding vertex Bernstein coe�cients, for example b0 = p(x) andbl = p(x). The sharpness property states that the lower (resp. upper) bound provided by theminimum (resp. maximum) Bernstein coe�cient is sharp, i.e. there is no underestimation (resp.overestimation), if and only if this coe�cient occurs at a vertex of [x].The traditional approach (see, for example, [11, 38]) assumes that all of the Bernstein coef-�cients are computed, and their minimum and maximum is determined. By use of an algorithm(cf. [11, 38]) which is similar to de Casteljau's algorithm (see, for example, [32]), this compu-tation can be made e�cient, with time complexity O(nl̂n+1) and space complexity (equal tothe number of Bernstein coe�cients) O((l̂ + 1)n), where l̂ = maxni=1 li. This exponential com-plexity is a drawback of the traditional approach, rendering it infeasible for polynomials withmoderately many (typically, 10 or more) variables.In [37] a new method for the representation and computation of the Bernstein coe�cients ispresented, which is especially well suited to sparse polynomials. With this method the computa-tional complexity typically becomes nearly linear with respect to the number of the terms in thepolynomial, instead of exponential with respect to the number of variables. This improvementis obtained from the results surveyed in the following subsections. For details and examples thereader is referred to [37].

2.2.1 Bernstein Coe�cients of MonomialsLet q(x) = xr, x = (x1; : : : ; xn), for some 0 � r � l. Then the Bernstein coe�cients of q (ofdegree l) over [x] (10) are given by
bi = nY

m=1 b(m)im ; (13)
where b(m)im is the imth Bernstein coe�cient (of degree lm) of the univariate monomial xrm over[xm; xm]. If the box [x] is restricted to a single orthant of Rn then the Bernstein coe�cients ofq over [x] are monotone with respect to each variable xj , j = 1; : : : ; n.With this property, for a single-orthant box, the minimum and maximum Bernstein coef-�cients must occur at a vertex of the array of Bernstein coe�cients. This also implies thatthe bounds provided by these coe�cients are sharp; see the aforementioned sharpness prop-erty. Finding the minimum and maximum Bernstein coe�cients is therefore straightforward; itis not necessary to explicitly compute the whole set of Bernstein coe�cients. Computing thecomponent univariate Bernstein coe�cients for a multivariate monomial has time complexityO(n(l̂ + 1)2). Given the exponent r and the orthant in question, one can determine whetherthe monomial (and its Bernstein coe�cients) is increasing or decreasing with respect to eachcoordinate direction, and one then merely needs to evaluate the monomial at these two vertices.Without the single orthant assumption, monotonicity does not necessarily hold, and theproblem of determining the minimum and maximum Bernstein coe�cients is more complicated.For boxes which intersect two or more orthants of Rn, the box can be bisected, and the Bernsteincoe�cients of each single-orthant sub-box can be computed separately.
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2.2.2 The Implicit Bernstein FormFirstly, we can observe that since the Bernstein form is linear, if a polynomial p consists of tterms, as follows,

p(x) = tX
j=1 aijxij ; 0 � ij � l; x = (x1; : : : ; xn); (14)

then each Bernstein coe�cient is equal to the sum of the corresponding Bernstein coe�cients ofeach term, as follows:
bi = tX

j=1 b(j)i ; 0 � i � l; (15)
where b(j)i are the Bernstein coe�cients of the jth term of p. (Hereafter, a superscript in bracketsspeci�es a particular term of the polynomial. The use of this notation to indicate a particularcoordinate direction, as in the previous subsection, is no longer required.)Therefore one may implicitly store the Bernstein coe�cients of each term, and compute theBernstein coe�cients as a sum of t products, only as needed. The implicit Bernstein form thusconsists of computing and storing the n sets of univariate Bernstein coe�cients (one set for eachcomponent univariate monomial) for each of t terms. Computing this form has time complexityO(nt(l̂+1)2) and space complexity O(nt(l̂+1)), as opposed to O((l̂+1)n) for the explicit form.Computing a single Bernstein coe�cient from the implicit form requires (n+1)t� 1 arithmeticoperations.
2.2.3 Determination of the Bernstein Enclosure for PolynomialsWe consider the determination of the minimum Bernstein coe�cient; the determination of themaximum Bernstein coe�cient is analogous. For simplicity we assume that [x] is restricted to asingle orthant.We wish to determine the value of the multiindex of the minimum Bernstein coe�cient ineach direction. In order to reduce the search space (among the (l̂+1)n Bernstein coe�cients) wecan exploit the monotonicity of the Bernstein coe�cients of monomials and employ uniqueness,monotonicity, and dominance tests, cf. [37] for details. As the examples in [37] show, it is oftenpossible in practice to dramatically reduce the number of Bernstein coe�cients that have to becomputed.
3 Software Tools
Publically-available software for the solution of parametric interval linear systems, for the Math-ematica [24, 25] and C-XSC [31] environments has been developed. The Mathematica packageIntervalComputations `LinearSystems` contains a variety of functions for computing guaran-teed inclusions for the solution set of an interval linear system [24]. The particular solvers di�erwith respect to the type of the linear system to be solved and the implemented solution method.Recently, these parametric linear solvers were upgraded to handle linear systems involving ar-bitrary rational dependencies [25, 29]. The enclosures of z(p) and C(p) from Theorem 2.1 werecomputed by a technique based on generalised intervals, which provides sharp range enclosuresfor monotone rational functions. The goal of this work is to further upgrade the parametricsolvers for systems involving polynomial and/or arbitrary rational dependencies, by integrating
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more powerful and e�cient tools for range computation into the corresponding Mathematicafunctions.
3.1 �lib++ Software for Polynomial RangesGiven a polynomial p (6) and a box [x] (10), we wish to compute a guaranteed tight enclosure forp([x]). The existing C++ software routines of the last author, which implement the aforemen-tioned implicit Bernstein form, are utilised. Interval arithmetic is used extensively throughout,for which the C++ interval library filib++ [16, 17] is employed.Polynomials are passed to the program in a sparse representation, consisting of a one-dimensional array of non-zero terms. The ordering of the terms in the polynomial is unim-portant. Each term thus consists of a coe�cient with an array of associated variable exponents.Coe�cients are stored as intervals; they are passed as point values and converted to intervalsof machine-precision width. Implicit in this data structure are n, the number of variables, andl, the vector comprising the degrees in each variable. The principal data construct created bythe program, designed as a \workspace" for applications, is an aggregate structure comprising apolynomial, a box, and the associated Bernstein coe�cients. Firstly, given a polynomial and abox as input, the workspace is initialised and the corresponding Bernstein coe�cients in implicitform are computed and stored. The range computation routine then takes such a workspace asinput and returns a tight outer estimation for the range of the polynomial over the box. Thisrange is equal to the Bernstein enclosure, i.e. the range spanned by the minimum and maximumBernstein coe�cients. In many cases (often for small boxes and/or where the polynomial ismonotonic over the box), the range is provided without overestimation (except for the outwardrounding which is inherent in the interval arithmetic). Due to the use of interval arithmetic,this range is a guaranteed outer estimation. A routine for box subdivision for further tighteningof the bounds exists, but is not required for the present application.
3.2 New Parametric SolversParametric linear systems involving linear dependencies and systems with particular �xed datadependencies allow for an entirely numerical data representation and for an e�cient algorithmimplementation. Linear systems involving nonlinear parameter dependencies can be declared andprocessed more easily and the solution-enclosing methods can be more readily investigated in asymbolic programming environment. For example, by means of suitable algebraic manipulationsthe expression of a general rational function can be transformed into the form of a quotient oftwo polynomials. On the other hand, the implementation of the polynomial range enclosingtools, presented in Sections 2.2 and 3.1, is based on the C++ interval library filib++, fore�ciency reasons. Since it is a high-quality specialized software exhibiting good performance,there is no reason for its re-implementation inMathematica. In order to shorten the developmenttime and to preserve the bene�cial properties of both implementation environments, the authorshave connected the generalized parametric �xed-point iteration and the Bernstein enclosure ofpolynomial ranges into a new parametric solver via the MathLink communication protocol.MathLink [39] allows the external filib++ function for polynomial range computation to becalled from within Mathematica as required. Following the MathLink technology [28, 39], thefollowing steps constitute the development process:

1. Create a template �le whose main purpose is to establish a correspondence between thefunction for range computation that will be called fromMathematica and the external C++function that will call the filib++ range computation function. In the developed template
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�le we have included as pre-evaluated expressions the source of the whole Mathematicapackage involving the desired parametric solvers. Thus, when installing the MathLinkconnection in Step 4 below, all the parametric solvers involved in the package are readyfor use.

2. A corresponding communication module should be written in C++ to combine the tem-plate �le with the external filib++ software. A C++ function, speci�ed in the template�le, reads the Mathematica generated data that numerically de�ne a multivariate poly-nomial and a box, initializes new variables whose data types are speci�c for the filib++range computation function and after the actual computations (calling the filib++ rangecomputation function) transforms the computed result into variables of fundamental C++data types that are passed back toMathematica. The communication module also containsa function for communicating error messages, and a standard main function.
3. Process the MathLink template information and compile all the source code.
4. Install the binary in the current Mathematica session.

More details aboutMathLink technology and the connectivity betweenMathematica and externalfilib++ based interval programs can be found in [28].Below we brie
y outline the functionality of the newly developed Mathematica packageParametricPolySolvers based on MathLink connection to the external filib++ software forthe enclosure of a polynomial range. The usage of the package is illustrated in Section 4.The solver polyParametricSolve[Ax, bx, parLst] computes guaranteed outer bounds forthe solution set of a parametric linear system, where the matrix Ax and/or the right hand side vec-tor bx involve polynomial dependencies between uncertain parameters. The latter and their in-terval values are speci�ed by a list of transformation rules1 parLst. The general parametric resid-ual iteration, cf. Theorem 2.1, implemented in this function, uses some algebraic manipulationsandMathLink communication with the filib++ software for bounding the ranges of multivariatepolynomials involved in the computation of z(x) and C(x). The solver polyParametricSolvecan take a fourth optional argument Refinement -> True which determines whether an iter-ative re�nement procedure is applied to the computed outer solution enclosure. The defaultsetting is False.A speci�c feature of the polyParametricSolve function is that the function input argumentsAx, bx can be represented as
Ax = A(x) + [A]; bx = b(x) + [b]; (16)

where the elements of A(x); b(x) are multivariate polynomials of the parameters x1; : : : ; xn, while[A] 2 IRn�n, [b] 2 IRn. This way, polyParametricSolve could be used for solving parametriclinear systems involving rational dependencies as well as intervals which represent bounds onthe remainder terms of the Taylor expansion applied to non-rational dependencies.The filib++ software described in Section 3.1 for bounding the range of a multivariatepolynomial over a box can also be used for bounding the range of a function involving arbitraryrational dependencies between its variables, if we represent the rational function as a quotient oftwo multivariate polynomials which are to be bounded separately. This motivates the develop-ment of another function polyRationalSolve[Ax, bx, parLst] applicable to linear systemsinvolving arbitrary rational parameter dependencies. The solver polyRationalSolve has the
1 Mathematica transformation rules have the form name -> value.
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same optional argument as polyParametricSolve. It can also be applied to systems withpolynomial dependency but without function input arguments of the form (16).For the sake of comparison, the package contains the function ParametricSolve[Ax, bx,parLst] with the same usage as the previous solvers but applying the former range computationmethod based on generalised interval arithmetic.
3.3 AccessibilityThe new software tools described above can be obtained from the authors. The library filib++is free software [17]. This library andMathematica should be installed on the user machine. Thenthe developed template �le and the communication module ParametricPolySolvers.tm/cppshould be compiled together with the range computation filib++ software following the Math-Link technology. The end-users, who do not have Mathematica or do not want to establish acommunication with external programs, can run Mathematica and the parametric solvers re-motely via the webComputing service framework [27].
4 Numerical Examples
In this section we illustrate the usage of the new parametric solvers based on bounding polyno-mial ranges by Bernstein expansion. The improved e�ciency of the new polynomial solvers isdemonstrated by comparing both the computing time and the quality of the solution enclosurefor the new solvers and the former one. The examples were run on a PC with AMD Athlon-643GHz processor. Below we present the Mathematica commands and the corresponding outputresults in a session. Once the external filib++ program and the developedMathLink compatible�les have been processed and compiled to an executable �le, called ParametricPolySolvers,the latter can be installed in a Mathematica session.
In[1]:= lnk = Install["ParametricPolySolvers"]Out[1]= LinkObject[./ParametricPolySolvers, 3, 2]
The Install function opens a link through which the external range computing functions canbe called. The program also makes all de�nitions and the Mathematica code of the parametricsolves described in Section 3.2 above visible for the current Mathematica session.
In[2]:= Names["ParametricPolySolvers`*"]Out[2]= {ParametricSolve, polyParametricSolve, polyRationalSolve, Refinement}
4.1 One-Bay Steel FrameConsider a simple one-bay structural steel frame, as shown in Figure 1, which was initially pro-posed and analyzed in [5]. Following standard practice, the authors have assembled a parametriclinear system of order eight and involving eight uncertain parameters. The typical nominal pa-rameter values and the corresponding worst case uncertainties, as proposed in [5], are shownin Table 1. The explicit analytic form of the given system involving polynomial parameterdependencies can be found in [5, 29].As in [5, 29], we solved the system with parameter uncertainties which are 1% of the valuespresented in the last column of Table 1. Let us assume that all input data for the givenparametric system are stored in the Mathematica variables Ax, bx, tr. We call the parametricsolver polyParametricSolve and measure the absolute time for execution of the main steps.
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Figure 1: One-bay structural steel frame [5].
Table 1: Parameters involved in the steel frame example, their nominal values, and worst caseuncertainties.

parameter nominal value uncertaintyEb 29 � 106 lbs/in2 �348 � 104Young modulus Ec 29 � 106 lbs/in2 �348 � 104Ib 510 in4 �51Second moment Ic 272 in4 �27:2Ab 10:3 in2 �1:03Area Ac 14:4 in2 �1:44External force H 5305:5 lbs �2203:5Joint sti�ness � 2:77461 � 109 lb-in/rad �1:26504 � 109Length Lc 144 in, Lb 288 in
In[7]:=AbsoluteTiming[polyRes=polyParametricSolve[Ax,bx,tr,Refinement->True];]absolute time for C = 0.024074 Secondabsolute time for z = 0.007313 Second{0.045983 Second, Null}
Now, running the previous parametric solver we get the following time measurements
In[9]:= AbsoluteTiming[paramRes=ParametricSolve[Ax,bx,tr,Refinement->True];]absolute time for C = 0.162854 Secondabsolute time for z = 0.161104 SecondOut[9] = {0.342757 Second, Null}
showing that the compiled external code for range computation was considerably faster than theinterpretative Mathematica code. For this example, the quality of the solution set enclosures,provided by both solvers, was comparable. As shown in [25, 29], the solution enclosure obtainedby the parametric solver is by more than one order of magnitude better than the solutionenclosure obtained in [5].Based on the runtime e�ciency of the new parametric solver, we next attempt to solve thesame parametric linear system for the worst case parameter uncertainties in Table 1 rangingbetween about 10% and 45.6%. Firstly, we notice that the parametric solution depends linearlyon the parameter H, so that we can obtain a better solution enclosure if we solve two parametricsystems with the corresponding end-points for H. Secondly, enclosures of the hull of the solutionset are obtained by subdivision of the worst case parameter intervals (Eb; Ec; Ib; Ic; Ab; Ac; �)>
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into (2; 2; 2; 2; 1; 1; 6)> subintervals of equal width, respectively. We use more subdivision withrespect to � since � is subject to the greatest uncertainty. The solution enclosure, obtainedwithin 11 sec., is given in Table 2.
Table 2: One-bay steel frame example with worst-case parameter uncertainties (Table 1).Solution enclosure found by dividing the parameter intervals (Eb; Ec; Ib; Ic; Ab; Ac; �)> into(2; 2; 2; 2; 1; 1; 6)> subintervals of equal width, respectively. All numerical quantities are multi-plied by 105.

d2x: [5454.706610, 24708.395582] r6z: [-105.9680866, -17.64526946]d2y: [11.5445278769, 84.761351898] d3x: [5325.027833, 24285.634925]r2z: [-129.02427835, -22.381136355] d3y: [-148.1290977, -16.38968649]r5z: [-113.21398401, -17.95789860] r3z: [-122.3361772, -21.69878778]
The quality of the solution set enclosure is presented in Table 3, where O! is de�ned by

Ow([a]; [b]) := 100(1� !([a])=!([b])); for [a] � [b]
and ! is the width of the interval. The Mathematica function Overestimation[a, b], usedbelow, implements Ow([a]; [b]). The combinatorial solution, obtained as the convex hull of thesolutions to point linear systems where the parameters take all possible combinations of theinterval end-points, is used as an inner estimation of the solution set hull.
Table 3: One-bay steel frame example with worst-case parameter uncertainties (Table 1).Solution enclosure found by dividing the parameter intervals (Eb; Ec; Ib; Ic; Ab; Ac; �)> into(2; 2; 2; 2; 1; 1; 6)> subintervals of equal width, respectively. The obtained enclosure [u] of thesolution set hull is compared to the combinatorial solution [~h].

d2x d2y r2z r5z r6z d3x d3y r3zO!([~h]; [u]) 12.5 8.0 23.7 25.6 25.0 12.7 13.2 23.5
These results show that by means of a minimal number of subdivisions the new parametricsolver provides a good solution enclosure very quickly for the di�cult problem of worst-caseparameter uncertainties. Note that sharper bounds, close to the exact hull, can be obtained byproving the monotonicity properties of the parametric solution [26].

4.2 Two-Bay Two-Story Frame Model with 13 ParametersConsider a two-bay two-story steel frame with IPE 400 beams and HE 280 B columns, as shownin Figure 2, after [29]. The frame is subjected to lateral static forces and vertical uniform loads.Beam-to-column connections are considered to be semi-rigid and they are modelled by singlerotational spring elements. Applying conventional methods for the analysis of frame structures,a system of 18 linear equations is obtained, where the elements of the sti�ness matrix and ofthe right hand side vector are rational functions of the model parameters. We consider theparametric system resulting from a �nite element model involving the following 13 uncertainparameters: Ac; Ic; Ec, Ab; Ib; Eb, c, w1; : : : ; w4, f1; f2. Their nominal values, taken according to
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Figure 2: Two-bay two-story steel frame [29].
the European Standard Eurocode3 [7], are given in Table 4. The explicit analytic form of thegiven parametric system can be found in [30].The parametric system is solved for the element material properties (Ac; : : : Eb), which aretaken to vary within a tolerance of 1% (that is [x�x=200; x+x=200], where x is the correspondingparameter nominal value from Table 4) while the spring sti�ness and all applied loadings aretaken to vary within 10% tolerance intervals.

parameter Columns (HE 280 B) Beams (IPE 400)
Cross-sectional area Ac = 0:01314 m2 Ab = 0:008446m2Moment of inertia Ic = 19270 � 10�8 m4 Ib = 23130 � 10�8 m4Modulus of elasticity Ec = 2:1 � 108kN/m2 Eb = 2:1 � 108 kN/m2Length Lc = 3 m Lb = 2Lc mRotational spring sti�ness c = 108 kNUniform vertical load w1 = : : : = w4 = 30 kN/mConcentrated lateral forces f1 = f2 = 100 kN

Table 4: Parameters involved in the two-bay two-story frame example with their nominal values.
It is assumed that all input data for the given parametric system are contained in theMathematica variables Ax, bx, tr. The parametric solver polyRationalSolve is called andthe absolute time for execution of the main steps is measured. Then the interval enclosure ofthe solution set is obtained.

In[7]:= AbsoluteTiming[polyRes= polyRationalSolve[Ax,bx,tr,Refinement->True];]absolute time for C = 0.585924 Secondabsolute time for z = 0.693990 SecondOut[7] = {1.318729 Second, Null}
Now, the former parametric solver is run.
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In[9]:= AbsoluteTiming[paramRes= ParametricSolve[Ax,bx,tr,Refinement->True];]absolute time for C = 3.144183 Secondabsolute time for z = 4.142891 SecondOut[9] = {7.355345 Second, Null}The new parametric solver is about six times faster than the previous one. Comparing thequality of the solution enclosures we obtain the following result.In[10]:= MapThread[Overestimation, {polyRes, paramRes}]Out[10] = {64.38, 91.79, 66.15, 64.89, 87.45, 61.94, 64.8, 92.61,59.34, 53.46, 92.1, 57.43, 54.66, 88.1, 61.02, 55.08, 92.92, 56.61}An algebraic simpli�cation, applied to functional expressions in computer algebra environ-ments, may reduce the occurrence of interval variables which could result in a sharper rangeenclosure. Such an algebraic simpli�cation is expensive and when applied to complicated ratio-nal expressions usually does not result in a sharper range enclosure. For the sake of comparison,we have run the former parametric solver in two ways: applying intermediate simpli�cationduring the range computation, and without any algebraic simpli�cation. The above resultswere obtained when the range computation in ParametricSolve does not use any algebraicsimpli�cation. When the range computation of the previous solver uses intermediate algebraicsimpli�cation, we obtain the following results.In[11]:= AbsoluteTiming[paramRes13=ParametricSolve[Ax,bx,tr,Refinement->True];]absolute time for C = 5.785307 Secondabsolute time for z = 8.588179 SecondOut[11] = {14.402811 Second, Null}
In[12]:= MapThread[Overestimation, {paramRes13, polyRes}]Out[12]= {18.95, 27.09, 37.06, 18.91, 27.09, 36.97, 18.97, 27.08, 37.07,18.66, 27.10, 37.02, 18.62, 27.099, 36.97, 18.68, 27.09, 37.05}In this case ParametricSolve was much slower but provided a tighter enclosure of thesolution set than the rational solver, based on polynomial ranges, which did not account for allthe parameter dependencies.
4.3 Two-Bay Two-Story Frame Model with 37 ParametersAs a larger problem of a parametric system involving rational parameter dependencies, weconsider the �nite element model of the two-bay two-story steel frame from Section 4.2, whereeach structural element has properties varying independently within 1% tolerance intervals. Thisdoes not change the order of the system but it now depends on 37 interval parameters. Theexplicit analytic form of the given parametric system can be found in [30]. Here the right handside vector is given to illustrate the dependencies. f2; �12w1Lb1; � w1Lb2112(1 + 2Eb1Ib1cLb1 ) ; 0; �w1Lb12 � w2Lb22 ; w1Lb2112(1 + 2Eb1Ib1cLb1 ) � w2Lb2212(1 + 2Eb2Ib2cLb2 ) ;

0; �w2Lb22 ; w2Lb2212(1 + 2Eb2Ib2cLb2 ) ; f1; � 12w3Lb3 ; � w3Lb2312(1 + 2Eb3Ib3cLb3 ) ;
0; �w3Lb32 � w4Lb42 ; w3Lb2312(1 + 2Eb3Ib3cLb3 ) � w4Lb2412(1 + 2Eb4Ib4cLb4 ) ; 0; �w4Lb42 ; w4Lb2412(1 + 2Eb4Ib4cLb4 )

!> :
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First, the polynomial solver is run, and one observes a considerable increase in the computingtime compared to the time needed for the 13 parameters example, caused by the larger numberof parameters.

In[15]:=AbsoluteTiming[polyRes = polyRationalSolve[Ax,bx,tr,Refinement->True];]absolute time for C = 1.446245 Secondabsolute time for z = 243.311070 SecondOut[15] = {244.789783 Second, Null}
The former parametric solver, based on range computation without algebraic simpli�cation,exhibits approximately three times slower performance than the new one.
In[17]:= AbsoluteTiming[paramRes=ParametricSolve[Ax,bx,tr,Refinement->True];]absolute time for C = 11.506395 Secondabsolute time for z = 743.446813 SecondOut[17] = {754.986023 Second, Null}
The quality of the solution enclosure, provided by the new polynomial solver, is also much betterthan the solution enclosure provided by the former solver.
In[18]:= MapThread[Overestimation, {polyRes, paramRes}]Out[18] = {35.54, 64.19, 48.02, 35.96, 77.74, 39.02, 36.01, 66.67,35.51, 28.4, 64.85, 39.6, 29.32, 78.45, 40.03, 30.14, 66.96, 95.46}

Note that when the previous range computation uses algebraic simpli�cation, ParametricSolveis much slower. However, the quality of the solution enclosure does not improve by more than5:44�10�13, probably due to the more complicated parameter dependencies. This demonstratesthe merit of the general-purpose parametric iteration, combined with Bernstein enclosure ofpolynomial ranges, for solving parametric systems involving complicated dependencies betweenmany parameters.
5 Conclusions
In this paper, we demonstrated the advanced application of a general-purpose parametric method,combined with the Bernstein enclosure of polynomial ranges, to linear systems obtained by stan-dard FEM analysis of mechanical structures, and illustrated the e�ciency of the new parametricsolver.New software tools for the enclosure of the solution set of a system of linear equationswith polynomial or rational parameter dependencies are described. It is demonstrated thatpowerful techniques for range enclosure are necessary to provide tight bounds on the solutionset, in particular when the parameters of the system are subject to large uncertainties and thedependencies are complicated.The new self-veri�ed parametric solvers can be incorporated into a general framework for thecomputer-assisted proof of global and local monotonicity properties of the parametric solution.Based on these properties, a guaranteed and highly accurate enclosure of the interval hull ofthe solution set can be computed [26]. The parametric solvers for square systems facilitatethe guaranteed enclosures of the solution sets to over- and underdetermined parametric linearsystems.Being the only general-purpose parametric linear solver, the presented methodology andsoftware tools are applicable in the context of any problem (stemming, e.g., from fuzzy set theory



Solving Linear Systems with Polynomial Parameter Dependency 16
[36], control engineering [35], robust Monte Carlo simulation [15], or others) that requires thesolution of linear systems whose input data depend on uncertain (interval) parameters.
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