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Abstract. The maximum principle for linear second-order elliptic equations in divergence form
is investigated. By means of new formulas for the first eigenvalue necessary and sufficient conditions
for the validity of the maximum principle are obtained. Some qualitative properties of the first
eigenvalue with respect to the coefficients of the equation are proved.
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1. Introduction. Let L be a linear second-order uniformly elliptic operator in
divergence form

(1.1) Ly =— (a?(r)uxk + a?(x)u)xj + bj(x)uxj + bo(x)u in Q,

(1.2) a?(x)&’jé’k > plé]? for every x €Q, £ € R", p= const > 0.
Here Q is a bounded domain in R”, §Q € CH1,

(1.3) a?(x), a?(l‘) e whe(Q), bk(x), b0 (x) € L™=(Q), {a?} = {ai}
and under the repeating indices the summation convention is understood.
Further on we will use also the following equivalent form of equation (1.1)

(1.4) Lu= —(a%ug, + (@ — )u)e, + (& + )ug, +bu

where d7 = %(bj —|—a?), ¢ = %(bj — a?).
Let us recall the classical maximum principle. We say that the maximum principle
holds for the operator L in Q if for every u € C*(Q) N C(Q) the inequalities Lu < 0
in Q, u<0on JQ2 imply u <0 in .
The natural extension of the classical maximum principle for operators in diver-
gence form is the following statement. The maximum principle in a weak sense holds
for the operator L if for every u € H'(Q) the inequalities Lu < 0 in 2, u < 0 on

082 imply sup u < 0. Here the function u satisfies u < 0 on 92 if its positive part
Q
ut = max(u,0) € H}(Q). The inequality Lu < 0 holds in a weak sense if the corre-

sponding bilinear form By [u, w] = (a?ukaxj + a?uwxj + bjwuxj + bouw) dx of L
Q
is a nonnegative one, for all nonnegative functions w € C(€).
This paper is concerned with the necessary and sufficient conditions for the va-
lidity of the maximum principle for (1.1) and (1.4) by means of new formulas for the
first eigenvalue Ay of L. The precise dependence of Ay on the coefficients a?, a?, b7,

Y is studied in connection with the applications to the maximum principle.
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The motivation for investigations of these problems is the comparison principle
for quasilinear second-order uniformly elliptic operator in divergence form

(1.5) Qu) = —%aj(x, w, Du) + b(x, u, Du) in €.
J

As it is wellknown (see [9]), the maximum principle in the linear case is crucial
for the validity of the comparison principle for weak C(2) smooth sub- and super-
solutions of (1.5). More precisely, if

L da; L da;
By j 0f.\ J
(1.6) aj(z) = e (z,St)dt, aj(z) = . Du (%, S) dt,
: L ob b ob
B bl dt. b° - dt
(%) S T (%, S)dt, b°(x) i 8u(x, St) dt,

where S; = (v(x) + t(u(zx) — v(z), Vv(z) + t(Vu(z) — Vv(z)), and u,v € C*(Q) are
weak sub-and supersolutions of (1.5), then the comparison principle for (1.5) holds
if the linear equation (1.1) with the above coefficients (1.6) satisfies the maximum
principle.

Another application of the maximum principle is the uniqueness and the con-
tinuous dependence on the data of the weak solutions for bvp for (1.1) and (1.5).
Moreover, by means of suitable barrier functions the amplitude of the weak solutions
of (1.1) and (1.5) can be estimated. These estimates are an important step in the
proof of the existence of a solution with the Leray-Schauder fixed point theorem or
in the applications for the numeric methods of solving of bvp for (1.1) and (1.5).

The maximum principle is important also in the investigations of the asymptotic
behaviour of the solutions of linear and quasilinear parabolic equations which appear
in the population dynamics modeling a population which will persist or will go extinct.

Let us recall that in the literature there are two type of conditions for the validity
of the maximum principle. The first of them are necessary and sufficient and are given
in [1] for linear equations in divergence form and in [4] for general nondivergence form
equations. One of the main results in [1] and [4] is that the maximum principle for
the operator L holds if and only if the first eigenvalue Ay of L with zero Dirichlet
data is positive. It is clear that the positiveness of the first eigenvalue Ay is not easy
checkable condition so that this result is more useful for theoretical investigations.
However, there are some qualitative properties of Az which one uses to find out lower
and upper bounds for the first eigenvalue (see, for example, [4]).

There are also second type results which are only sufficient but easy checkable
conditions for wide class of equations. They are given, for example, in [7], [9], [12]
(see also the references there) and guarantee the maximum principle for (1.1) if one
of the following assumptions is satisfied:

(@) b — diva®>0inQ, a® =(af,- -, ad);
(1.7) () 8% — divb>0in Q, b= (b', - b");

(#47) The matrix A + AT is a nonnegative one in €,
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ko pi
where (a% bo) and A7 is the conjugate matrix of A.
ay

Unfortunately, conditions (1.7);, (1.7);; are not useful for quasilinear equations
(1.5) because the derivatives of the coefficients a?, b/ given by (1.6) are not under
control. That is why (1.7);, (1.7);; are replaced in the nonlinear case with some
additional structure assumptions guaranteeing that a? or b7 are identically equal to
zero (see theorem 9.5 in [9]). By the way, (1.7);, (1.7);; are not sharp even in the
linear case.

As for (1.7);;, it seems to be the most promising general sufficient condition which
is applicable in the nonlinear case but also is not sharp. Following the idea in [11]
one can easily show that (1.7);;; is not invariant if equation (1.1) is rewritten in an
equivalent way, for example

(1.8) Lu=— (a?uxk + (a? + f])u)x + (b + fj)uxj + (0" + div flu

for arbitrary vector f(z), f/ € C%(Q). Now (1.7);;; for equation (1.8) (or equivalently
for equation (1.1 ) is

(1.9) The matrix A; + A? Is a nonnegative one in 2,
here A, = 4 bt
WA T a0 divy)

Condition (1.8) can be better than (1.7);;; for some special choice of f.

Starting from the idea of Protter in [11] we consider the whole class of equations
(1.8) instead of (1.1) and sufficient conditions (1.9) instead of (1.7);;;. In this way we
prove in section 2 that (1.9) is also a necessary condition for the validity of the max-
imum principle for symmetric operators if (1.9) is taken over the set of all admissible
vectors f(z). Unfortunately, the same result is not true for nonsymmetric operators.

. 1 .
The reason is that the matrix 3 (Af + A?) corresponds only to the symmetric part

1
Ly = §(L + L*) of the operator L and (1.9) guarantees that the first eigenvalue of Lg

is positive. However, the first eigenvalue of L can be far from the first eigenvalue of
Lo (see theorem 4.1 and example 2 in section 4). Nevertheless, considering the set of
all nondegenerate transformations of the special type L,u = e~* L(ue?), z € C%1(Q),
which preserve the first eigenvalue of L, we get as in the previous case a necessary
and sufficient condition for the maximum principle for nonsymmetric operators. In
this way we prove in section 3 several equivalent formulas for the first eigenvalue Ag
for nonsymmetric operators, which are different from the well known results and in
many cases are more convenient for lower and upper estimates for Ay. Moreover Ap, 1s
obtained as an extremum of the first eigenvalues of some explicitely given symmetric
operators.

At the end of section 3 in proposition 3.7 we show that the symmetric condition
on {a?} in (1.3) is not essential because the nonsymmetric case is transformed to the
symmetric one.

Using the new expressions for Ay we get in section 4 some qualitative properties

of the first eigenvalue Ay with respect to the coefficients a?, b/, b° and the matrix

{a?}, as monotonicity and concavity of Ar.
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2. Linear symmetric operators. In this section we will consider only the case
of symmetric operators

(2.1) Lou = — (a?(r)uxj + dj(x)u)xv + dj(x)uxj + bo(x)u in Q,
with coefficients a?, d’, b° satisfying (1.2), (1.3).

Let us recall the variational formula of the first eigenvalue for symmetric operators
Ly

(2.2) A, =inf By, [v,v], v € HE(RQ), ||v||r= = 1.

o
As it is wellknown (see for example [8]) the above infinum is attained for a positive
function u € H}(Q), which solves the equation

Lou = Ar,uin Q, u =0 on 92

in a weak sense. Finally, every weak solution w € H{(Q) of the above equation is a
multiple of u.
Moreover, the ”max-min” representation formula for the first eigenvalue Ap,

(2.3) AL, = supessinf(Lov/v), v € W2™(Q), v > 0 in Q
holds (see [4], [5] and [10] for more details).
Following the idea of Protter in [11] for every vector function f(z) with compo-
nents f7(z) € C%H(Q) we rewrite (2.1) in the equivalent form
(2.4) Lou=— (afug, + (7 + fyu)  + (& + fF)uy; + (b° + div f)u.

Now from (1.7);;; the maximum principle for Lg holds if for some f/ € C%1(Q)

(2.5) The matrix A; + A? = 2A; is a nonnegative one in €2, where

. . .
Ap = 4 @+ J .
d* + fF b0 4+ divf
Fortunately, condition (2.5) taken over the set of all admissible vectors f(x) is also
a necessary one. To explain roughly the idea let us formulate (2.5) in the following

equivalent way: condition (2.5) holds iff det Af > 0 or equivalently iff o1, (f) > 0,
where

(2.6) or,(f) =0+ divf —af (f7 +d;)(f* + d").

Here and further on we use notation {oz";} = {a?}_l.
Finally, if sup ess xnelsfl or,(f) > 0 then (2.5) holds for some f € F where F will
€F
be a suitably cflosen class of functions containing the Lipschitz functions.
In order to formulate the precise result in theorem 2.1 we will need a little bit
wider class of functions f/(z) than the class of Lipschitz ones. For this purpose let
us introduce the following notation

(2.7) F={f(z) = (1), (&) : 7, div f € L™(Q)},
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where divf should be understand in the distributional sense and

(2.8) or, =supess inf oz, (f), fe€F.
7 TEQN

More precisely we have the following result.

THEOREM 2.1. Let the operator Ly satisfy (1.2) and (1.3). Then o, = A, and
the mazimum principle for Ly holds if and only if or, > 0.

REMARK 1. For the special choice of f, f = —d, we get immediately from (2.6),
(2.8) condition (1.7); (which coincides with (1.7);; in the symmetric case) and for
f =0, respectively, condition (1.7);s; .

In fact o, gives a different expression for the first eigenvalue Ap, for symmetric
operators Ly. The advantage of formula (2.8) in comparison with (2.3) is the possibil-
ity by means of an appropriate choice of a vector f(x) in (2.8) (instead of the choice
of a scalar function v(z) in (2.3) one to find out a lower bound for the first eigenvalue
AL, -

Proof of theorem 1. For arbitrary vector f(z) € I we get from (2.8) the inequal-
ities

AL, = inf/ (a?vxjyxk + 2djy1/xj + (ij2)xj 4 b0y2) dx
9)

= inf/ {a? [ij + oz}”(dm + fm)y] Ve, + ai(d* + )]
voJa

+ [0+ div f— o (f +d)(fF + d¥)] v} de > inf/ o, (f)v?de
voJa

1.e.

(2.9)Ar, > supin / o, (f)v? de > sup ess ilelgULD(f) =01, fEF,veE HHQ).
f v o) f xr

In order to prove the opposite inequality we will use a special choice of f.

Let us assume that a?, &€ Wheo(Qy), b° € L>(Q,) are extended in a wider
smooth domain €, O  preserving (1.2). For every positive constant 6 > 0, there
exists a smooth domain Q5, Q1 D Qs D Q such that A, (Qs) > A, — 4. Let u? be the
first eigenfunction of Ly in Qs. From the Sobolev’s imbedding theorems ( theorem 5,
sec. 5.6.2 in [8]) it follows that a? € C’(Ql) so that us € I/Vli’cp(Ql) for every p > 1
and hence v € CH(Q). Since w > 01in @ and Lou® = /\LD(Qg)ué easy calculations
give us that f = —a?ugk/ué — d/ € F so that we get from (2.7), (2.9) the estimates

. 7 . . s 6 6
71y > ess inf o, (F) = ess inf [0° — divd = ((ajul, ), /")

+ (aful, i f(0)?) = (o ul )(a5ud, )/ (u)?)]

= ess inf [ (—(afud, +du)o, + Pl 4+ D) ful | = AL, (@) > A, — 4.
= 7 -
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After the limit § — 0 the inequality oz, > Ar, holds which together with (2.8)
proves theorem 2.1 . QED

By the way, from (2.9) we got a different formula for Ay, which in some sense is
an intermediate one between (2.2) and (2.8).

COROLLARY 2.2. Suppose the operator Lg satisfies (1.2) and (1.3). Then the
following identity is true

(2.10) Az, :supinf/ or(fivide, fEF, veH Q) |v|=1
v Ja

We will finish this section with some comments about the regularity assumptions
of the coefficients of Ly in (2.1). As it is well-known the variational formula (2.2) is
valid for L®°(§2) coefficients of Lg. For more regular coefficients, for example satisfying
(1.3), both of the notations A, and op, are equivalent according to theorem 2.1
However, it is not clear whether they give one and the same result for L°° coefficients
of Lg. The answer of this question is deeply related with the continuous dependence
of Ar, and op, with respect to the coefficients. For completeness, in the following
proposition we formulate the qualitative properties of Ap, which will be used for
nonsyminetric operators in section 4.

PROPOSITION 2.3. Let Ly satisfy (1.2) and a?, d?, b° € L>°(Q). Then

i) AL, is a continuous function of the coefficients a?, d7, b° and Q in the L™

norm;
ii) A, s a monotone increasing function with respect to {a?}, b°, monotone

decreasing on the domain inclusions and a concave one with respect to the coefficients
E g5 30
aj, d’, b

Proof. 1) Let a?, E";, @, Ej, bY, 5 € L(RQ) satisfy the estimates

_ = 0
(2.11) laf —afllee <€, ¢ = d |~ <6 " =Dl <,

_ : —j -0 .
afl[Loe, [[@ ||z, ||z, |1 |loo, |16%][Loc, |1 |2 < K

where € is an arbitrary positive constant. For convenience we will denote with A, ¢ and
A, ¢ the first eigenvalue and the first eigenfunction of the operator Lg, respectively,
Lo , where

2.12 Ty=— E’?ux —|—Eju x,—i—g‘jux,—l—gou.
J k 7 7

If v € H}(Q) is some fixed function then from (2.2), theorem 2.1 and (2.6) with
f = 0 we get the inequalities

ess inf (b — afd/d*) <A < By, ], ess inf (5 —afdd) <X < B, [v,v],

1. e.
(2.13) Al AT < Ky

where the constant K5 depends on Ki, €, ¢, n and the ellipticity constant g but is
independent of e.
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Easy calculations give us from (1.2), (2.11) , (2.13) and the unit L? norm of ¢, ¢
the estimate

(2.14) N6l 9Nl < Ks

with K3 depending on K1, 2, n and p.
Finally, from (2.2) and (2.14) we have

+/ﬂ ((af = )3, 8, + 20 = T)33,, + (1" —1')3"| dx < X+ ey

where K4 depends only on K;, Q n and g. In the same way an estimate from below
can be obtained which proves the first part of proposition 2.3.

The continuous dependence and the monotonicity of Ap, with respect to the
domain €2 is well-known even under weaker assumptions and we omit the proof.

ii) The concavity of the first eigenvalue with respect to the coefficient b° was
proved in proposition 2.1 in [4] for general nonsymmetric operators. For completeness
we give here the proof.

If 0 < t < 1 then for the operator T'=tLq + (1 —t)Lg, Lo is given in (2.12), we
get from (2.2) the estimates

Ar = inf Brlv,v] = inf(tBr,[v,v] + (1 — 1) Bf [v, v])

> tinf Br,[v,v]+ (1 — ) inf Bf [v,v] = AL, + (1 = )z, .

v € Hy(Q), |||, = 1.
As for the monotonicity of Ap, with respect to {a?}, b7 let us suppose that
{a?} > {d?}, b° > b°. Then from (2.2) we have as above for the operators Lo, Lo,

Lou = —(d?uxk 4+ diu)y; + diug, + b%u, the inequalities

AL

= inf By, v > inf By vl = Ag,. ve HY@). vl =1
which proves proposition 2.3. O

As a consequence of proposition 2.3 we get the following.

COROLLARY 2.4. Let Ly satisfy (1.2) and a?, d?, b° € L*°(Q). Then Ar, = op,
and the mazimum principle for Ly holds iff o1, > 0.

Proof. Since (2.9) is valid without changes for coefficients a?, 47, 6% € L>(Q)
then the inequality Ar, > o, holds. In order to prove the opposite inequality we will
use the following matrix lemma.

LEMMA 2.5. Let P(x) = {pf(x)}, Qr) = {qf(x)} be strictly positive and
symmetric matrices and P > Q. Then for all vectors p(z) = (p'(z), -, p"(x)),

q(z) = (¢ (x), -+, q"(2)) the inequality
<Ppp><< Q>+ <(P-Q)  p—a)p—g>

holds in Q.
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Proof. From the trivial inequality
<P7'pp>-2<p,q>+< Pgq>=< P '(p—Pg),p—Pg>>0
valid for all vectors p, ¢ we get the estimates

<P 'pp>=sup (2<Ep>— < PEES)
EER™

<sup (2<6,9>—<QEE>)+sup 2<p—q, &> — < (P—-Q)E,E>)
EER™ EERR

=< Q' q>+<(P-Q) 'p—q).p—aq>.

O
Now to finish the proof of corollary 2.4 we choose a smooth approximation a?’ﬁ,

d?e € Whee(Q) of the coefficients of Ly, a?’ﬁ — a?, d»¢ — d’ when ¢ — 0 in the L
norm . Moreover, we suppose that the following inequalities are satisfied

at = {a} <a={a"}, |ja— af||= > Kse, ||d - d||p~ < Kse

for every ¢ > 0 with a constant K5 independent of e. From i) and Lemma 2.5 with
P=a,Q=a, p=f+d, qg= f+d where f € F we obtain the estimates

AL = 0 = supess ingz (bo + div f— < (a)"HF 4+ d), f+d° >)
;o we

< sup ess HElg B+ div f-<a(f+d), f+d>+ < (a—a) " (d—d),d—d >)
f xr

<sup < (a—a®)"Hd - d),d — d* > +supess ingz (bo +divf— <a(f+d),f+d >)
TEQN 7 TE

=sup < (a —a*)"(d —d),d—d° > 401, < Kse + 01,
TEQN
where the constant Kg is independent of e.
After the limit ¢ — 0 from i) we get the inequality A, < o, which proves

corollary 2.4 0
Another consequence of proposition 2.3 is the following monotonicity result of the

first eigenvalue. _
COROLLARY 2.6. Let Lo, Lo satisfy (1.2), (1.3). If a > @, a = {a%}, @ = {a@}}

and > 5 — < (a—a)~Yd—d),d—d > in Q, then A, > Ap,.
1 1— 1 -
Proof. From the equality §L0 = §L0 + §(L0 — Lyg), the concavity of the first
eigenvalue and the assumptions of 2.6 we get the chain of inequalities

1 1 1 .
5/\110 = /\%LD Z 5/\30 + 5/\110—30’ 1.e.
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ALy = AL, 2 AL _T,

— sup ess inf (b0—30+ div f— < (a—a)—l(f+d—3),f+d—8>)
fEF TEN

> ess inf (b0—50—<(a—5>_1 (d—a),d—3>) > 0.
- TEQN

3. Nonsymmetric operators. For general nonsymmetric operators (1.1) an
equivalent definition of the first eigenvalue of L by means of (2.8) as in theorem 2.1
is not more possible. The corresponding expression for oy, is a little bit more compli-
cated. The idea is one to consider all operators L, derived by L with a nondegenerate
transformation L,u = e~*/2L(ue?/?) for every z € C®'(Q) which preserve the first
eigenvalue of L, i.e. Ap = Ap,. There exists a transformation with the extreme prop-
erty that the new transformed nonsymmetric operator L, has the same first eigenvalue

1
as its symmetric part L, o = §(LZ + L%) (see theorems 3.1 and 4.1). Thus theorem

2.1 is applicable for L. o as well as for L, . _
Now for every Lipschitz function z € C%1(Q) we have
1

(3.1) Lep=35 (e7*/2L(ue*!?) + &/ L* (ue™?/?)

: : : 1
- —(a?uxk + di )y, + dug, + (B0 + Iz, — Za?zszxk)u

: 1
= Lou+ (2, — Za?zszxk)u
and the natural definition of oz for nonsymmetric operators L is by means of o, ,

for the symmetric operator L, 5. For this purpose for every z € COHQ), f € F we
introduce the notations

. S , 1
(3.2) or(f,2) =60+ divf —af (ff + &) (f* +d*) + 2, — Za?zszxk
and

(3.3) o[ = supess ingaL(f, z), z€ COYQ), fEF.
z,f z€

The following theorem gives the relation between the first eigenvalue Ay of the
nonsymmetric operator L and the first eigenvalues of the family of symmetric opera-
tors L o defined in (3.1).

THEOREM 3.1. Let the nonsymmetric operator L satisfies (1.2) and (1.3). Then
o = Ap and hence the mazimum principle for L holds if and only if o > 0. More-
over, the identity

(3.4) op =supAr, , = supirl}fBLz)D[V, v], € COHQ), v € H}(Q), |Vl =1
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15 satisfied.

Proof. Let ¢ be the first eigenfunction of L in €, ¢ = 0 on 9. For arbitrary
2 € CONQ), w = Ke™?/?¢, K = (fﬂ e 7 ¢? da:)_l/z we have from the variational
formula (2.2) for the symmetric operator L, p the inequalities

A, =inf Br v, v] < B, [w,w]= AL, v € Hy(Q), |[v||2 = 1.

Hence, from theorem 2.1 and (3.2), (3.3) the estimate
2 € C%Y(Q)

2,09

(3.5) AL > o =supAp

holds.

In order to prove the opposite inequality suppose that the coefficients of L are
extended in a small neighborhood of Q satisfying (1.2) and (1.3). Let us consider
a sequence Q; of C™ smooth domains, Q; D Q, Q; D Qi41, AL () = lim AL (Q;),

j—oo

where Ap(€;) are the first eigenvalues of L in Q;. If ¢ > 0, ¥ > 0 are the first
eigenfunctions of L and L* , respectively, in §2; we consider the functions

(3.6) 2 =log(¢? /7)) forz €Q, j=1,2,---.

Since ¢7 7 € I/Vli’cp(Q]) for every 1 < p < oo it follows that 2/ € C%1(Q) as well
as vl = (¢II)H? € W2P(Q).
Simple computations give us from (3.1) the identity

(3.7) Lo =X/ inQ, j=1,2,--.

Since v4 > 0 in Q it follows from corollary 2.1 in [4] that, Az _, (€) > AL(2)
where Ay _; (€2) is the first eigenvalue of L.j o in Q. Hence sup Az, ,(22) > AL(€;) for

every j = 1,2, which after the limit j — oo proves theorem 3.1 0
Using theorem 3.1 we will give some new expressions for oz or equivalently of Ap
which are useful for the investigations of the qualitative properties of A in section 4.
PROPOSITION 3.2. Let the operator L satisfy (1.2), (1.3) and b9 € W1 (Q).
Then the identity

(3.8) Az :o-L:supessilelg[bo—l— div f+a§cjck—a§(fj—I—dj)(fk—i—dk)], €7

holds, where fi = +¢/ — d/ + a?zxk, 7 = {2z € COYQ); (£d — &/ + a?zxk)xj €
1)) o
REMARK 2. For the special choice of f and zin (3.8), f = ¢/ —=d? = —a?, z2=0
we get immediately from (3.8) sufficient condition (1.7); and for f/ = —¢/ —d/ = —b7,
z = 0, respectively, condition (1.7);; .
Proof. of proposition 3.2 Let u € C'OO(Q) be an arbitrary positive in Q function.
For z € —logu and f/ = 4+¢/ — d/ + a?zxk we get from (3.2) and (2.3) the equalities

sup ess HElg [bo + divf — a?(fj + dj)(fk + dk) + a?cjck]

1 1
_ : 0 : k k .
= sgp ess xHelf b” — divd — » (a] ka)xj + ) a5 Uy Ug,, £ dive
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. 9 .
ki k k k. ik
—ozjc]c + ECJij - ﬁajuxjuxk + ozjc]c

o o 1
= sup ess ing [(a?uxk + (& F)u)e, + (& £ )ug, + bou] hl
u

u TE

o o 1
< supess ing [(a?ka + (' F ) w)e, + (& £ )we; + bow] —=AL, we€ WZn(Q)
w

w TE

because — [a?uxk + (& F cj)u]xv + (& £ cj)uxj + b9 is equal to Lu or L*u, respec-
tively. ’

In order to prove the opposite inequality we will use the notations in the proof of
theorem 3.1 If ¢%, A (£2;) are the first eigenfunction and the first eigenvalue, respec-
tively, of L in Q;, Q; D Q, AL () = AL (Q), then 2/ = —log ¢’ € Z.

Repeating the above calculations for 7‘7 =c —dl - a? (log ¢'),, we get the in-
equality

AL(Q) = 00+ divF — of (F + &) (T +d*) + alicl

< sgpessxilelgz [bo—l— div f—a?(fj +dY(f* 4 d¥) —|—oz§cjck] L2 €7
and after the limit i — co we obtain
AL () < supess HElg [bo + divf—a?(fj +dj)(fk —|—dk) —|—oz§cjck] L2 €Z7

which proves proposition 3.2. O

For the last formula for Ay in proposition 3.4 we need an information about
the boundary behaviour of the first eigenfunction of an arbitrary uniformly elliptic
operator L. For completeness the following lemma is formulated

LEMMA 3.3. Suppose | satisfies (1.2}, (1.3). Then for every function v(z) €
C’l(ﬁ), v =0 on 0Q, there exists a constant Ko > 0 such that v < Koé in Q, where
@ 1s the first eigenfunction of L with zero data on 0S.

Sketch of the proof. From the boundary regularity of the weak solutions (see ch.
91in [9]) it follows that ¢ € W7 (Q) for every p > 1 and from the Sobolev’s imbedding
theorems ¢ € C'1(Q).

The next step is to prove that
(3.9) 66—? < —Kz7, on 0%, Kz>0,
where [ is the unit outer normal to 9€2. For this purpose one can easily check that ¢ is
a positive supersolution of the operator L+ K, where K is a sufficiently large positive
constant such that K + 5% — diva® > 0, K+ A > 0,ie. (L+K)¢p = (AL + K)o >0
in Q. The rest of the proof of (3.9) follows as in the proof of the Hopf’s maximum
principle for classical supersolutions ( see for example [2], [9], [12])using the weak
maximum principle, th. 8.1 in [9] or the strong maximum principle, th. 8.19 in [9],
(see also the results in [5], [10]).
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Since the function Ky¢ — v, for Ky large enough, is positive in every compact

Ko —
subdomain of {2 and W < 0 in a neighborhood of 9, Kgé — v = 0 on 99,

lemma (3.3) is proved. QED
PROPOSITION 3.4. Let the operator L satisfy (1.2), (1.3). Then the identity

(3.10) A =inf Bpalv,v], v € Hy(Q), ||V||lzz= =1, h € H,

V7

holds, where H, = {(h',--- h");hiv? € HY(Q), and div(hv?) = Ofor a.e. = € Q},
Ih =Ly + a?(cj — hi)(ck — h*). Moreover, the infinimum in (3.10) is attained for

v = K((/n/))l/z, K= (fﬂ oY dx)_l/z, B =i = % ?zxk, = log(¢/¢) where ¢, ¢ are
the first eigenfunctions of L and L*, respectively.

Proof. From the regularity theory ( see for example ch. 9 in [9]) and the Sobolev’s
imbedding theorems it follows that ¢, v € W*P(Q) N CH(Q) for every 1 < p < oo so
that 7 € H}(Q) because from lemma 3.3, 0 < k1 < (/)/1/) < kg < 00 in £, k; = const.

1
Analogously for W o= - 2a] Zz, We obtain that W2 e H}(2). Moreover, simple

computations give us the following identities in €2

(3.11) div (h7?) = [chsw——a](ka qka)]

= _%¢(a§¢xk)xj + %¢(a§,¢)xk)x] + (C]¢1/))x]
= %1/) [(AL —b° 4+ divd)¢ — % div(c¢>2)]

+%¢ [(/\L — 6% + divd)yp — %div(cwz)] + ( ¢v)e, =

—; . 1
Hence, 7’ = ¢/ — 2a]zxk € Hy, 7= K(¢)? € HY(RQ), |72 = 1 so that we

get the inequalities

72

: K - -
(3.12) inf B [v,v] < B, 7[7,7] = By,[7, V]+TAa§zszxk¢¢dx

V7

. 1 . 1
|:C‘77xj Zak Z;Zay — c]Exj akzx zxk:| oY dx

:BLD[7,7]+I(2/ 1% 5%

Q

. 1
= BLD[P, 7] + ](2/ |:C‘77xj — Za‘?ijka] oY dx = BLZD[U, 7] =AL.

Q

Here the operator L, o is defined in (3.1) and as in (3.7) one can check that
Lz ¥ = A7 in 2. Moreover, in the above calculations we used the equality

/[ 4= a]zxk](/n/)zxjdx_—/ [( 6‘7—1—1%2”)(/)1/)] Zdr =0
Q Q 2,

7

which follows from (3).
In order to prove the opposite inequality we will use (3.4) and theorem (3.1), i.e
AL =sup A, , =supinf By [v,v], 2 € COHQ), ve HI(Q), ||v|[==1.
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J
multiplication by »? and integration in Q we get the inequality

. 1 . o
From the trivial inequality ¢/ z,, — Za’?zxj Zoy < hzp, + a?(h] — c])(hk — ck) after

. 1 . o
/ﬂ(c]zxj—ia";zszxk) Vzdxg/ﬂh]zxjyzdx—i—/ﬂoz?(h]—c])(hk—ck)yzdx

if h € H, because
/ hjyzzxj dr = —/ z div(hyz) dr = 0.
Q Q

Since the above estimate is valid for every z € C%!(Q) and every h € H,, it follows
that

. 1 o
sup/Q (c]zxj — Za?zszxk) vide < i%f/ﬂa";(h] — c])(hk — Ck)ljz dzx.

2

Finally, from the chain of inequalities

. 1
Ar =supinf By [v,v] <inf [BLD[V, V] —|—sup/ (c]zxj - Za?zszxk) V2 dx]
2 4 ’ - v Q

2

< inf (BLD[I/, V] —1—/ a?(hj — ) (hF = F)? da:) = iIllfBLh[I/, V]
v, Q v

)

we obtain the estimate Ay, < inlf Bprr[v,v] and with (3.12) the desired result in (3.5).

The last statement of proposition 3.4 follows immediately from (3.10) since Ay =

inlf Brrlv,v]. O

)

By the way, the last chain of inequalities in the proof of proposition 3.4 gives
another formula for Az which can be combine with (33) in the following way (see also
the results in [6]).

COROLLARY 3.5. Let the operator satisfies (1.2), (1.3). Then the equality

Az = inf (BLD[I/, v]+ 6(1/2)) v e HIQ), ||lv||lz2=1 holds ,

where 6(1/2) = Sup/ﬂ (C]ij - Zaﬁzszxk) v? de, z € Co’l(Q)

2

or B(v?) = i%f/ alf (B =) (h* — F) P de, he Hy.
Q

Repeating the same argument as in the proof of proposition 3.4 one can easily
find out the functions v and z for which the extremums in formula (3.4) are attained.
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COROLLARY 3.6. Under the assumptions of proposition 3.4 the infimum and the
supremum in (3.4) is attained forv = K(¢¢)'/?, K = (fﬂ o dx)_l/z, zZ = log(¢/¥),
where ¢, Y are the first eigenfunctions of L and L*, respectively.

Note that 7 € H}(Q), 7 & C*'(Q) but formula (3.4) is true for v =7, z = 7.

We will finish this section with a simple but useful remark about the case of
operators L with a nonsymmetric principle symbol. More precisely, we consider the
operator

(3.13) Tu=— (E?uxk + a?u)xv + bjuxj + 0%

with a nonsymmetric matrix E?(a:), E?(x) + E‘,i(x) 1for some j # k. '
Let us introduce the following notations a? =3 (E? + E‘,ﬁ), t? 3 (Ek — E‘Zc) S0
thata —ak,tk —t], forj,k:l 2,-

Using the identities Z Fu,. o = 0, Z Je,er = 0 we can rewrite (3.13) in
7,k=1 7,k=1
the following way

Tu=— (a?uxk + t?uxk + a?u)xj + bjuxj + %y

) . 1
_ (a‘?uxk + dj“)xj + d]uxj + E diV(cuz) - (t‘?)xjuxk + bu

=— (a?uxk —I—d]u)xj + dlup, +00u + - |:<Ck — 5(15";)%) uz]xk i e

- 1 . 1
(3.14) L=- [a?uxj + (a? + 5(15‘2,1)“1) u] + [b] - 5(15‘3,1)“1] Uy, + bu.

J

Thus we have the following simple proposition.

PROPOSITION 3.7. Suppose @ € W»>(Q), aJ € Wh>(Q), b/,b° € L= (Q) and
E"; satisfies the uniform ellipticity condition (1.2). Then the first eigenvalue of L can
be defined by means of formulas (3.3), (3.8), (3.10) for the operator (3.14).

4. Properties of the first eigenvalue. In this section we will give some ap-
plications of theorems 2.1, 3.1 and propositions 2.3, 3.2, 3.4, 3.7 for the qualitative
properties of Ay. For this purpose let us recall the well-known monotonicity and con-
cavity properties of Az with respect to 6°. More precisely, Az is a concave function
of % and when b° increases the first eigenvalue Ay increases, too ( see for example
proposition 2.1 in [4]).

For the time being it 1s not known whether a similar monotonicity result for Ay
is true with respect to the matrix {ak} or coefficients a . b, respectively, d7, ¢/. To
give some partial answer of these questions we will need the following propertles of
AL.

THEOREM 4.1. Let the operator L satisfies (1.2) and (1.3). Then the inequalities

(4.1) ALy <AL < Apo
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hold, where L° = Lo + a?cjck. Moreover, if b € WH(Q) then
()AL =Ap, <= ¢=do in Q <= div(cod?) =0 in Q, where ¢, ¢o are the first

(4.2) eigenfunctions of L and Ly respectively,

(i) A\, = A\, <= ¢ = a?pxk for some p € W*(Q) and more precisely,
1
r=g log(¢/v) where ¢ is the first eigenfunction of L*.

REMARK 3. Since Ap = A« condition (4.2); can be extended in the following
way

A = AL, €= ¢=0¢¢ = div(ep) =0 = ¢ =1 <= div(c¢?) =0

(4.2)} = div(ey?) =0 <= A\ = iIl}fBL[I/, v], v € HYRQ), |lv||r= = 1.

The following example illustrate the situation described in (4.2);:
Example 1. Consider the operator

Lu=—-Au+2K0yu, —2K0,u, =0

in Q, where Q C R? is a bounded smooth domain and @ is the first eigenfunction
of the Laplacian, K = const. Since ¢! = Kf,, ¢* = —K#@,, d* = d* = 0 simple
computations give us the identity div(cf?) = K(6,6%), — K(6,6%), = 0 in Q and
hence Ap = Ap, = A_a, ¢ = ¢ = 0 where ¢, ¢ are the first eigenfunctions of L and
L~ respectively. Note that the norm of the coefficients ¢/, |¢| = K|V4| increases to
infinity when K — oo, but the first eigenvalue Ay of L does not change at all. By the
way, the divergence of the coefficients ¢/ stays constant for every K, i.e. dive = 0 in

Q.
Proof of theorem 4.1. By integration by parts we get immediately the estimate

AL = BLD[¢’¢] > iIl}fBLu[Va V] = /\Lua Ve H(%(Q)’ ||V|| =1

Since ¢/ zy; — Za?zszxk < a?c]ck for every z € C%1(Q) we have from (27),

and proposition 2.3 the inequalities A\f = supinf Br_ ,[v,v] < inf Byo[v,v] = Apo,
z€C(Q), ve HYQ), |lv|lt-=1.
Now let us suppose that div(cg¢?) = 0 in Q and for simplicity let us denote
1
AL, = Ag. Since Lu = Lg + —div(cuz) it follows that Lég = Agdo, ¢o = 0 on 012,
u
¢o > 0 in £, i.e. from corollary 2.1 in [4] ¢¢ is the first eigenfunction of L, ¢ = ¢q
and Ar, = Ag.
Suppose that ¢ = ¢y in Q. Easy calculations give us the identity

Argo =Apé = Lé = Léo = Logo + % div(egg) = dodo + ¢—10 div(cgg)
ie. (AL — Ao)¢2 = div (c¢?) in Q. Integrating the above expression in  we get
immediately that Az = A\g and div(eg2) =0 in Q.
Finally, let us suppose that Ay, = Ag. By integration by parts we have By, [¢o, ¢o] =
Ao = A = B¢, ¢] = Br,[¢, ¢] and from theorem 2 in section 6.5 in [8] it follows
that ¢ = ¢q.
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To prove (4.2);; let us suppose that ¢/ = a?pxk for some p € W2 (). Since the
operator e P L(ue?) = L%u has the same first eigenvalue as the operator L we have
AL = Aro. Moreover, if ¢° is the first eigenfunction of LY then ¢ = P ¢°, ¢ = e P¢"

1
and p = 3 log(¢/v).
Now let us suppose that Ay, = Aro. From corollary 3.6 it follows that A\ =
Bp_ [V, 7], where v = K(¢)? K = (fﬂ oY dx)_l/z, Z = log(¢/¢), so that we get

the inequalities

/\LD = AL = SupingLz,u[Va V] = BLZD[;’ 7] S BL;,D[¢0, ¢0] = BLD[¢0a ¢0]

1 .
- [ ok = G ) - Gaiz ) (@) da

1.e.

= / a? (c] - %a??xm) (ck - %a,i?xs) ()2 de.
Q

Zs,, in Q. QED

An open question is to characterize the conditions guaranteeing when Ar coincides
with some strictly interior point of the interval (Ar,, Aro). However, the following ex-
ample illustrates by means of a family of equations having one and the same ”maximal
operator” LY that the first eigenvalue A; covers the whole interval.

Example 2. Consider the operator

o1
The positiveness of ¢g and (1.2) gives the desired result ¢/ = 3¢

Lu = —Au+ 2(ply — q0y)us + 2(pfy + ¢z )ty + Aopu =0

in Q, where Q C R? is a bounded domain with a smooth boundary, g, # are the first
eigenvalue and the first eigenfunction of the Laplacian and p, ¢ = const, p? + ¢% = 1.

Since ¢! = pl, — ¢by, ¢ = pby + q0;, d* = d* = 0 we have a?cjck = |c|? = |VO|?,
i.e. the ”maximal operator” L% = Lo + a?cjck = —A + |V0]? is independent of the
parameters p, q. We will use also the following notations Liu = —Au + ¢|V0|?u,
0<t<1,sothat L= L;.

For all p,q on the unit circle from (4.1); we get the estimate A, < A;. In order
to obtain an estimate from below for Ay we will use theorem 3.1 and (3.2), (3.3) i.e.

. . 1
A\ = o =supessinf(divf — |V f|* + (pb — q0y) 70 + (pOy + ¢0s) 2y — Z|Vz|2)
z,f ¢

> supessinf(divf — |Vf|* + (pfr — q0y)2p0, + (py + q0,)2p0, — p*|V|?)
f xr

= supessinf(divf — |V f|* + p?|VO|?) = Apz,
f xr



MAXIMUM PRINCIPLE FOR ELLIPTIC EQUATIONS 17

where in the above inequalities the function z was replaced with 2pf and A; is the
first eigenvalue of L;.
Thus we proved the final estimate

(4.3) Ap2 <A < Ay for every p, g, p +q¢=1.

From example 1 when K = —¢ we know that Ay = A\ for p = 0, ¢> = 1. Using the

continuous dependence of the first eigenvalue Ay with respect to the coefficients ¢/
(see proposition 5 in [4]) and (4.3) we obtain that Az covers the whole interval [Ag, A1]
when p? increases from zero to one.

Note that in this example, in a contrast to example 1, the norm of the coefficients
¢/, le| = |[V0]?, stays constant for all p, ¢, while the divergence of ¢/, div ¢ = pAf =
—Aopt, strictly decreases when p increases from -1 to 1.

Using theorems (3.1), (4.1) we will give some partial results about the mono-
tonicity of Ap with respect to the matrix {a?}. For this purpose we introduce the
operator

Mu = —(m?uxk + (dj — c])u)x] + (dj + c])ux] + % in Q.

PROPOSITION 4.2. Let the operators L and M satisfy (1.2) and (1.3). Suppose

that {a?} > {m?} and one of the following assumptions is satisfied:

, 1 .
Z) AM:/\MD. M0:§(M—|—M ),’
(4.4) i) = a?pxk for some p € W2(Q) and p";cjck = a?Jck, {N?} = {m";}_l;

iii) {a?} > {m?} +rl, v = const > 0, I is the unit matriz and u?cjck <
r (wn/|Q|)2/n, where wy, is the volume of the unit ball in R™ and |Q] = mes Q.

Then the inequality Ay > Ay holds.

Proof. 1) The proof follows immediately from (4.1) and ii) in proposition 2.3
because Ap > A, > Ap, = Aur-

ii) Since from (4.2);; A = Apo we get from ii) in proposition 2.3 and (4.1) the
inequalities Ay = Apo > Appo > Ay where IY=1ILy+ a?cjck, MY = My +/1§cjck.

iii) From (4.1) and the Poincare inequality we get the estimates

/\M S /\MD = infBMD[I/, I/]

< inf/ (a?uxjyxk + 2djy1/xj +0%% 4 p (wn/|Q|)2/n v r|V1/|2) dx
Q

<AL, <AL, v € H(Q), vz =1.

O

The following example illustrates that, without additional assumptions (4.4) only
with condition {a?} > {m?} the result in proposition 4.2 is not true.

Example 3. Consider in 2 the operators

Lu = —Au+ 2/ dug, =0, Mu=—FAu+ 2/ Aouy, =0,
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where 2 C R" i1s a bounded domain with a smooth boundary, 0 < 5 < 1, G =
const and Ag is the first eigenvalue of the Laplacian with zero Dirichlet data. Since
Lou = e ?L(ue®) = —Au+ Aou, M, )5 = e B M (ue?!P) = —BAu + (Ao/B)u and
AL = AL, = 2Xo, Ay = A, = (B4 (1/8))Xo > 2Xo, where Aoz, = z, it follows
that Ap, < Apr.

As for the monotonicity of Ay with respect to d/ and ¢, it is trivially to prove
that Az increases when divd decreases. However, the monotonicity of Ay with respect
to ¢/ is not clear. For convenience we will denote with A., ¢, 1. the first eigenvalue
and the first eigenfunctions of L, L* respectively, when the coefficients a?, d?, b° are
fixed and ¢/ vary.

PROPOSITION 4.3. Let the operator L satisfies (1.2}, (1.3). Then :

(4.5) i) Aet i85 a concave monotone increasing function of t%;

i) Aet = Ac for somet, [t| £1 <= Aot = Ag for everyt € R.
Proof. 1) For arbitrary ¢1,t2 € R and 0 < s < 1 we define ¢ from the equality
12 = (1 — s)t7 + st3. From (3.10) we get the inequality

Aer = inf [BLD[V, V] —1—/ a?(tcj — W) (tch — hF )2 dl‘]

Q

)

= ihnf [BLD[V, 1/]—1—152/ a?(cj — W) (" = hF)? dx]
v 0
>(1—s) 1th1£ [BLD[V, V] —|—t%/ﬂa§(cj — hi)(cF — hF)? dl‘]

—I—Sihnf [BLD[V, V] —|—t§/ a?(cj — W) (" — hF)? dx] = (1= 8)Act; + sAct,
v Q

where the infinimum is taken over the functions v € H}(Q), ||v||z= =1 and h € H,.
As for the monotonicity of A.; , as in the proof above, the inequality

Aet = ihnf [BLD[V, 1/]—1—152/ a?(cj — W) (" = hF)? dx]
v 0

> ihnf [BLD[V, V] —1—/ a?(cj — hI)(cF = hF)? dx] = A
v 0

holds for every ¢2 > 1.
(ii) Suppose that Aee = Ac for some |t| > 1. From proposition 3.4 we have the
equality

Aet = B, [7,7] + / ot — )t — )PP da
Q
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log(¢et/tet). Hence

1 - —k i 1 o
Aot = BLD[p,p]th_zAaﬁ(td_h])(tck—h )72 dae+ K* (1— ﬁ) Aaﬁzszxk¢ctwct da
. 1 . .
> in [BLD[V, v+ t—z/ﬂoz‘/l;(tc7 — W) (t" — BF)? dx]

1 1
+[{2 (1 — t—z) / a?zszxk¢ct'¢)ct dr = Ac + [{2 (1 — t—z) / a?zszxk¢ct'¢)ct dx
Q Q

and from A, = A. we get the identity fﬂ a??xjixkqbcﬂ/)ct dx = 0.

From the positiveness of ¢e, ¢ and (1.2) it follows that VZ = 0 in Q i.e.
et = Per in . Applying theorem (4 1) (and more precisely, (4.2); in remark 3) w
get immideately that div (tc¢2) = 0 in Q. Hence, from (4.2); it follows that A, = /\0
for every t € R. O

As for the concavity of the first eigenvalue Ay with respect to different coefficients
¢, T, ¢ # ¢asimilar result as in (4.5); is true with a correction term. In general, without
this correction term the convex1ty of /\L falls as one can see in the case of coefficients
of the special type, ¢/ = af JPoy, ¢ = ak ka where p, p € W2°°(Q) are arbitrary

functions. For convenience we denote Wlth L the operator

L= —(ak

Mg, + (47 — &)u)g, + (& + & ug, + 6%

PROPOSITION 4.4. Let the operators L, L satisfy (1.2), (1.3). Then for every
0 < s < 1 the inequality Ag > (1 — s)Ac + sAz holds, where

S:(l—s)i—i—si—l—s(l—s) (6‘7 &) (k= k).
Proof. Let z%, 7' be defined in (3) for the operators L, L. Then from (3.4) we
have

/\L = hHl /\L

1—00 zt,07

L; o, Ezyo are given in (3. 1) For every 0 < s < 1 we introduce the notations C' =
(1 —s)e+sé, 7" = (1 —s)z" + sz". Easy calculations give us the chain of inequalities

1 i ~j i
Za? jzxk) +s(¢ 2, —

i i 1 i i i i
VAR Zaﬁzszxk =(1—s)(d2, -
S v i 1 k(i i (i i
_5(1 - 5)(6] - C])(ij - ij) + 15(1 - S)G'(ij - Zx])(z - Zxk)

> (1—s)(c¢d 2L — lakzl 2. )+5(6j2;j -

rj 4]x]xk
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—s(1 —s)a (6‘7 c])(c —ck)
If

Sz 0t = (6—2/25(uez/2) +6z/25*(ue_z/2))

N | —

= Lou+ (C’jzxj — la]zszxk +5(1 — s)e (6‘7 c])(c —ck)) U

4
then from theorem 3.1 we get the estimate

Ag = Sup/\gz)D > /\Szz 0 > (1 — 5)/\Lzz o + 8/\1”/ PR 4 S 00,1(5)

which after the limit i — oo proves proposition 4.4 In the above considerations we
used the simple fact that for symmetric operator Mu = —(a? Ug, + dju)xj + djuxj the
inequality Apsip0 > (1 —8)Apr4p + SAar4q holds for every 0 < s < 1, 8% p, g € L™= (),
b° > (1 — s)p + sq. The proof of this statement follows directly from variational
formula (2.2). O

We will finish this section with some simple properties of A, which illustrate how
complicated is the dependence of A. from c¢. For this purpose let us introduce the
following set of functions

Ne = {h(z) = (h' (), -, h"(x)), B (x) € COHQ), div(h¢?) =0 for ae. € Q}.

It is clear that N, for every fixed ¢ is a linear subspace of the Lipschitz vectors defined
in Q.

PROPOSITION 4.5. Let the operator L satisfy (1.2), (1.3) and b9 € W1 (Q).
Then the following statements are true:

i) for every h € N the equalities Aeyn = Ae, Gerh = ¢c hold;

i) g0 = ¢ <= Ao = A and ¢ — g € N, N Ny, as a consequence the identity
N = Ny holds.

iii) c € No <= Ac = Ag;

iv) for every h € N, the estimate Ayp, < A holds for everyt € R.

Proof. 1) Since

1 . 1 .
Lode + ¢—d1v((c + h)¢?) = Lod. + ¢—dw(c¢§) = A
and ¢. > 0in ©, ¢. = 0 on 99 it follows from corollary 2.1 in [4] that A.yp = A. and

¢c+h == ¢c~
ii) Suppose that ¢. = ¢,. Then from the identities

(Ac - %div(casz)) be = Lode = Lody = ( g ¢2dw<g¢ >) &

= (Ag ¢2d1V(g¢ )) e

we obtain that div((c — g)¢?) = Ac — A,. Integrating the above equality in £ we get
immediately that A\. = A, and div((c — g)¢?) = div((c — g)qf);) =01n Q i.e. from the
definition of N.,N, we have ¢ — g € N. N N,.
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Suppose that A\ = A; and ¢ — ¢ € N. N Ny. Since

Acg = Agpg = Loy + idiv(cqb;) + Ldiv(g — c)qb;
Pg Pg

= L0¢)g + i le(Cd);)
g

and ¢4 > 0in Q, ¢, = 0 on 992 it follows that ¢, = ¢..
iii) If Ac = Ag then from (4.2); we have div(c¢3) = 0 in Q, i.e. ¢ € N.
Suppose that ¢ € N.. Then div(e¢?) = 0 in Q and from the equality A.¢. =

1
Loo. + ¢—div(c¢z) = Lgé. and the positiveness of ¢, in ©, ¢. = 0 on 01 it follows

that ¢e = do, Ae = Ao.

iv) If ¢ € N, we have from iii) that A. = Ag so that Ay, = Ag = A; forevery t € R
and iv) is proved. Suppose now that ¢ ¢ N.. From i) for a fixed h € N, the identities
Actth = Acy Petth = ¢c hold for every t € R. If Aeysp > Ac for some s € R then
from the continuous dependence of the first eigenvalue with respect to the coefficients
(see proposition 5.1 in [4]) we have the inequality Actsp—cc > Ac for a sufficient small
positive constant e. However, from (4.5);; it follows that

Ac = Ac+hs/(1—e) = A(c+hs—ec)/(1—e) Z Ac+hs—ec > Ac

which is impossible. O
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