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Abstract� The maximum principle for linear second�order elliptic equations in divergence form
is investigated� By means of new formulas for the �rst eigenvalue necessary and su�cient conditions
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�� Introduction� Let L be a linear second�order uniformly elliptic operator in
divergence form

Lu � � �akj �x�uxk � a�j �x�u
�
xj
� bj�x�uxj � b��x�u in �������

akj �x��
j�k � �j�j� for every x � �� � � Rn� � � const � 	����
�

Here � is a bounded domain in Rn� �� � C����

akj �x�� a
�
j �x� �W ������� bk�x�� b��x� � L����� fakjg � fajkg�����

and under the repeating indices the summation convention is understood�
Further on we will use also the following equivalent form of equation �����

Lu � ��akjuxk � �dj � cj�u�xj � �dj � cj�uxj � b�u���
�

where dj �
�



�bj � a�j �� c

j �
�



�bj � a�j ��

Let us recall the classical maximumprinciple� We say that the maximumprinciple
holds for the operator L in � if for every u � C���� � C��� the inequalities Lu � 	
in �� u � 	 on �� imply u � 	 in ��

The natural extension of the classical maximum principle for operators in diver�
gence form is the following statement� The maximum principle in a weak sense holds
for the operator L if for every u � H���� the inequalities Lu � 	 in �� u � 	 on
�� imply sup

�
u � 	� Here the function u satis�es u � 	 on �� if its positive part

u� � max�u� 	� � H�
����� The inequality Lu � 	 holds in a weak sense if the corre�

sponding bilinear form BL�u�w� �

Z
�

�
akjuxkwxj � a�juwxj � bjwuxj � b�uw

�
dx of L

is a nonnegative one� for all nonnegative functions w � C�
�����

This paper is concerned with the necessary and su�cient conditions for the va�
lidity of the maximum principle for ����� and ���
� by means of new formulas for the
�rst eigenvalue �L of L� The precise dependence of �L on the coe�cients akj � a

�
j � b

j�

b� is studied in connection with the applications to the maximum principle�
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The motivation for investigations of these problems is the comparison principle
for quasilinear second�order uniformly elliptic operator in divergence form

Q�u� � � �

�xj
aj�x� u�Du� � b�x� u�Du� in �������

As it is wellknown �see ����� the maximum principle in the linear case is crucial
for the validity of the comparison principle for weak C���� smooth sub� and super�
solutions of ������ More precisely� if

akj �x� �

Z �

�

�aj
�pk

�x� St� dt� a
�
j �x� �

Z �

�

�aj
�u

�x� St� dt������

bj�x� �

Z �

�

�b

�pj
�x� St� dt� b

��x� �

Z �

�

�b

�u
�x� St� dt�

where St � ���x� � t�u�x� � ��x��r��x�� t�ru�x� �r��x��� and u� v � C���� are
weak sub�and supersolutions of ������ then the comparison principle for ����� holds
if the linear equation ����� with the above coe�cients ����� satis�es the maximum
principle�

Another application of the maximum principle is the uniqueness and the con�
tinuous dependence on the data of the weak solutions for bvp for ����� and ������
Moreover� by means of suitable barrier functions the amplitude of the weak solutions
of ����� and ����� can be estimated� These estimates are an important step in the
proof of the existence of a solution with the Leray�Schauder �xed point theorem or
in the applications for the numeric methods of solving of bvp for ����� and ������

The maximum principle is important also in the investigations of the asymptotic
behaviour of the solutions of linear and quasilinear parabolic equations which appear
in the population dynamics modeling a population which will persist or will go extinct�

Let us recall that in the literature there are two type of conditions for the validity
of the maximumprinciple� The �rst of them are necessary and su�cient and are given
in ��� for linear equations in divergence form and in �
� for general nondivergence form
equations� One of the main results in ��� and �
� is that the maximum principle for
the operator L holds if and only if the �rst eigenvalue �L of L with zero Dirichlet
data is positive� It is clear that the positiveness of the �rst eigenvalue �L is not easy
checkable condition so that this result is more useful for theoretical investigations�
However� there are some qualitative properties of �L which one uses to �nd out lower
and upper bounds for the �rst eigenvalue �see� for example� �
���

There are also second type results which are only su�cient but easy checkable
conditions for wide class of equations� They are given� for example� in ���� ���� ��
�
�see also the references there� and guarantee the maximum principle for ����� if one
of the following assumptions is satis�ed�

�i� b� � div a� � 	 in �� a� � �a��� � � � � a�n��

�ii� b� � div b � 	 in �� b � �b�� � � � � bn�������

�iii� The matrix A �AT is a nonnegative one in ��
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where

�
akj bj

a�k b�

�
and AT is the conjugate matrix of A�

Unfortunately� conditions �����i� �����ii are not useful for quasilinear equations
����� because the derivatives of the coe�cients a�j � b

j given by ����� are not under
control� That is why �����i� �����ii are replaced in the nonlinear case with some
additional structure assumptions guaranteeing that a�j or bj are identically equal to
zero �see theorem ��� in ����� By the way� �����i� �����ii are not sharp even in the
linear case�

As for �����iii� it seems to be the most promising general su�cient condition which
is applicable in the nonlinear case but also is not sharp� Following the idea in ����
one can easily show that �����iii is not invariant if equation ����� is rewritten in an
equivalent way� for example

Lu � � �akjuxk � �a�j � fj�u
�
xj

� �bj � fj�uxj � �b� � div f�u�����

for arbitrary vector f�x�� fj � C������� Now �����iii for equation ����� �or equivalently
for equation ���� � is

The matrix Af �AT
f is a nonnegative one in �������

where Af �

�
akj bj � fj

a�k � fk b� � div f

�
�

Condition ����� can be better than �����iii for some special choice of f �
Starting from the idea of Protter in ���� we consider the whole class of equations

����� instead of ����� and su�cient conditions ����� instead of �����iii� In this way we
prove in section 
 that ����� is also a necessary condition for the validity of the max�
imum principle for symmetric operators if ����� is taken over the set of all admissible
vectors f�x�� Unfortunately� the same result is not true for nonsymmetric operators�

The reason is that the matrix
�




�
Af �AT

f

�
corresponds only to the symmetric part

L� �
�



�L�L�� of the operator L and ����� guarantees that the �rst eigenvalue of L�

is positive� However� the �rst eigenvalue of L can be far from the �rst eigenvalue of
L� �see theorem 
�� and example 
 in section 
�� Nevertheless� considering the set of
all nondegenerate transformations of the special type Lzu � e�zL�uez�� z � C�������
which preserve the �rst eigenvalue of L� we get as in the previous case a necessary
and su�cient condition for the maximum principle for nonsymmetric operators� In
this way we prove in section � several equivalent formulas for the �rst eigenvalue �L
for nonsymmetric operators� which are di�erent from the well known results and in
many cases are more convenient for lower and upper estimates for �L� Moreover �L is
obtained as an extremum of the �rst eigenvalues of some explicitely given symmetric
operators�

At the end of section � in proposition ��� we show that the symmetric condition
on fakjg in ����� is not essential because the nonsymmetric case is transformed to the
symmetric one�

Using the new expressions for �L we get in section 
 some qualitative properties
of the �rst eigenvalue �L with respect to the coe�cients a�j � b

j� b� and the matrix

fakjg� as monotonicity and concavity of �L�
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�� Linear symmetric operators� In this section we will consider only the case
of symmetric operators

L�u � � �akj �x�uxj � dj�x�u
�
xj

� dj�x�uxj � b��x�u in ���
���

with coe�cients akj � d
j� b� satisfying ���
�� ������

Let us recall the variational formula of the �rst eigenvalue for symmetric operators
L�

�L�
� inf

�
BL�

��� ��� � � H�
����� k�kL� � ���
�
�

As it is wellknown �see for example ���� the above in�num is attained for a positive
function u � H�

� ���� which solves the equation

L�u � �L�
u in �� u � 	 on ��

in a weak sense� Finally� every weak solution w � H�
���� of the above equation is a

multiple of u�
Moreover� the �max�min� representation formula for the �rst eigenvalue �L�

�L�
� sup

�
ess inf

x
�L��	��� v �W ��n���� � � 	 in ��
���

holds �see �
�� ��� and ��	� for more details��
Following the idea of Protter in ���� for every vector function f�x� with compo�

nents fj�x� � C������ we rewrite �
��� in the equivalent form

L�u � � �akjuxk � �dj � fj�u
�
xj

� �dj � fj �uxj � �b� � div f�u��
�
�

Now from �����iii the maximum principle for L� holds if for some fj � C������

The matrix Af � AT
f � 
Af is a nonnegative one in �� where�
���

Af �

�
akj dj � fj

dk � fk b� � divf

�
�

Fortunately� condition �
��� taken over the set of all admissible vectors f�x� is also
a necessary one� To explain roughly the idea let us formulate �
��� in the following
equivalent way� condition �
��� holds i� det Af � 	 or equivalently i� 
L�

�f� � 	�
where


L�
�f� � b� � divf � akj �f

j � dj��f
k � dk���
���

Here and further on we use notation f�kjg � f�kjg���
Finally� if sup

f�F
ess inf

x��

L�

�f� � 	 then �
��� holds for some f � F where F will

be a suitably chosen class of functions containing the Lipschitz functions�
In order to formulate the precise result in theorem 
�� we will need a little bit

wider class of functions fj�x� than the class of Lipschitz ones� For this purpose let
us introduce the following notation

F � ff�x� � �f��x�� � � � � fn�x�� � fj � div f � L����g��
���
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where divf should be understand in the distributional sense and


L�
� sup

f
ess inf

x��

L�

�f�� f � F��
���

More precisely we have the following result�
Theorem ���� Let the operator L� satisfy ����� and ������ Then 
L�

� �L�
and

the maximum principle for L� holds if and only if 
L�
� 	�

REMARK �� For the special choice of f � f � �d� we get immediately from �
����
�
��� condition �����i �which coincides with �����ii in the symmetric case� and for
f � 	� respectively� condition �����iii �

In fact 
L�
gives a di�erent expression for the �rst eigenvalue �L�

for symmetric
operators L�� The advantage of formula �
��� in comparison with �
��� is the possibil�
ity by means of an appropriate choice of a vector f�x� in �
��� �instead of the choice
of a scalar function ��x� in �
��� one to �nd out a lower bound for the �rst eigenvalue
�L�

�
Proof of theorem �� For arbitrary vector f�x� � F we get from �
��� the inequal�

ities

�L�
� inf

�

Z
�

�
akj�xj�xk � 
dj��xj � �fj���xj � b���

�
dx

� inf
�

Z
�

�
akj
�
�xj � �mj �d

m � fm��
�
��xk � �sk�d

s � fs���

�
�
b� � div f � �kj �f

j � dj��fk � dk�
�
��
�
dx � inf

�

Z
�

L�

�f��� dx

i�e�

�L�
� sup

f
inf
�

Z
�


L�
�f��� dx � sup

f
ess inf

x��

L�

�f� � 
L�
� f � F� � � H�

������
���

In order to prove the opposite inequality we will use a special choice of f �
Let us assume that akj � d

j � W �������� b� � L����� are extended in a wider
smooth domain �� � � preserving ���
�� For every positive constant � � 	� there
exists a smooth domain ��� �� � �� � � such that �L�

���� � �L�
� �� Let u� be the

�rst eigenfunction of L� in ��� From the Sobolev�s imbedding theorems � theorem ��
sec� ����
 in ���� it follows that akj � C���� so that u� � W ��p

loc ���� for every p � �

and hence u� � C����� Since u� � 	 in � and L�u
� � �L�

����u� easy calculations
give us that f � �akju�xk	u� � dj � F so that we get from �
���� �
��� the estimates


L�
� ess inf

x��

L�

�f � � ess inf
x��

�
b� � divd� �

�asju
�
xs�xj	u

�
�

�
	
akju

�
xku

�
xj	�u

���


� �

�kj �a
m
j u

�
xm��a

s
ju

�
xs�	�u

���
��

� ess inf
x��

h
���akju�xk � dju��xj � dju�xj � b�u��	u�

i
� �L�

���� � �L�
� ��
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After the limit � � 	 the inequality 
L�
� �L�

holds which together with �
���
proves theorem 
�� � QED

By the way� from �
��� we got a di�erent formula for �L�
which in some sense is

an intermediate one between �
�
� and �
����
Corollary ���� Suppose the operator L� satis�es ����� and ������ Then the

following identity is true

�L�
� sup

f
inf
�

Z
�

L�

�f��� dx� f � F� � � H�
� ���� k�kL� � ���
��	�

We will �nish this section with some comments about the regularity assumptions
of the coe�cients of L� in �
���� As it is well�known the variational formula �
�
� is
valid for L���� coe�cients of L�� For more regular coe�cients� for example satisfying
������ both of the notations �L�

and 
L�
are equivalent according to theorem 
��

However� it is not clear whether they give one and the same result for L� coe�cients
of L�� The answer of this question is deeply related with the continuous dependence
of �L�

and 
L�
with respect to the coe�cients� For completeness� in the following

proposition we formulate the qualitative properties of �L�
which will be used for

nonsymmetric operators in section 
�
Proposition ���� Let L� satisfy ����� and akj � d

j� b� � L����� Then

i� �L�
is a continuous function of the coe	cients akj � d

j� b� and � in the L�

norm

ii� �L�

is a monotone increasing function with respect to fakjg� b�� monotone
decreasing on the domain inclusions and a concave one with respect to the coe	cients
akj � d

j� b��

Proof� i� Let akj � a
k
j � d

j� d
j
� b�� b

� � L���� satisfy the estimates

kakj � akj kL� 
 �� kdj � d
jkL� 
 �� kb� � b

�kL� 
 ���
����

kakj kL� � kakj kL� � kdjkL� � kd
jkL� � kb�kL� � kb�kL� � K�

where � is an arbitrary positive constant� For convenience we will denote with �� � and
�� � the �rst eigenvalue and the �rst eigenfunction of the operator L�� respectively�
L� � where

L� � ��akjuxk � d
j
u�xj � d

j
uxj � b

�
u��
��
�

If � � H�
���� is some �xed function then from �
�
�� theorem 
�� and �
��� with

f � 	 we get the inequalities

ess inf
x��

�b� � �kjd
jdk� � � � BL�

��� ��� ess inf
x��

�b
� � �kjd

j
d
k
� � � � BL�

��� ���

i� e�

j�j� j�j � K��
����

where the constant K� depends on K�� �� �� n and the ellipticity constant � but is
independent of ��
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Easy calculations give us from ���
�� �
���� � �
���� and the unit L� norm of �� �
the estimate

k�kH�

�
���� k�kH�

�
��� � K��
��
�

with K� depending on K�� �� n and ��
Finally� from �
�
� and �
��
� we have

� � BL�
��� �� � BL�

��� ��

�

Z
�

h
�akj � akj ��xj�xk � 
�dj � d

j
���xj � �b� � b

�
��

�
i
dx � �� �K	

where K	 depends only on Ki� �� n and �� In the same way an estimate from below
can be obtained which proves the �rst part of proposition 
���

The continuous dependence and the monotonicity of �L�
with respect to the

domain � is well�known even under weaker assumptions and we omit the proof�
ii� The concavity of the �rst eigenvalue with respect to the coe�cient b� was

proved in proposition 
�� in �
� for general nonsymmetric operators� For completeness
we give here the proof�

If 	 
 t 
 � then for the operator T � tL� � ��� t�L�� L� is given in �
��
�� we
get from �
�
� the estimates

�T � inf
�
BT ��� �� � inf

�
�tBL�

��� �� � ��� t�BL�

��� ���

� t inf
�
BL�

��� �� � ��� t� inf
�
BL�

��� �� � t�L�
� ��� t��L�

�

� � H�
����� k�kL�

� ��
As for the monotonicity of �L�

with respect to fakjg� b� let us suppose that

fakjg � f�akjg� b� � �b�� Then from �
�
� we have as above for the operators L�� �L��
�L�u � ���akjuxk � dju�xj � djuxj � �b�u� the inequalities

�L�
� inf

�
BL�

��� ��� inf
�
B
L�

��� �� � �
L�

� � � H�
� ���� k�kL�

� �

which proves proposition 
���
As a consequence of proposition 
�� we get the following�
Corollary ���� Let L� satisfy ����� and akj � d

j� b� � L����� Then �L�
� 
L�

and the maximum principle for L� holds i� 
L�
� 	�

Proof� Since �
��� is valid without changes for coe�cients akj � d
j� b� � L����

then the inequality �L�
� 
L�

holds� In order to prove the opposite inequality we will
use the following matrix lemma�

Lemma ���� Let P �x� � fpkj �x�g� Q�x� � fqkj �x�g be strictly positive and

symmetric matrices and P � Q� Then for all vectors p�x� � �p��x�� � � � � pn�x���
q�x� � �q��x�� � � � � qn�x�� the inequality


 P��p� p ��
 Q��q� q � � 
 �P � Q����p� q�� p� q �

holds in ��
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Proof� From the trivial inequality


 P��p� p � �
 
 p� q � � 
 Pq� q ��
 P���p� Pq�� p� Pq �� 	

valid for all vectors p� q we get the estimates


 P��p� p �� sup
��Rn

�
 
 �� p � � 
 P�� � ��

� sup
��Rn

�
 
 �� q � � 
 Q�� � � �
 
 p� q� � � � 
 �P �Q��� � ��

� sup
��Rn

�
 
 �� q � � 
 Q�� � �� � sup
��Rn

�
 
 p� q� � � � 
 �P �Q��� � ��

�
 Q��q� q � � 
 �P � Q����p� q�� p� q � �

Now to �nish the proof of corollary 
�
 we choose a smooth approximation ak��j �

dj�� � W ������ of the coe�cients of L�� a
k��
j � akj � d

j�� � dj when �� 	 in the L�

norm � Moreover� we suppose that the following inequalities are satis�ed

a� � fak��j g 
 a � fakjg� ka� a�kL� � K��� kd� d�kL� � K��

for every � � 	 with a constant K� independent of �� From i� and Lemma 
�� with
P � a� Q � a�� p � f � d� q � f � d� where f � F we obtain the estimates

�L� � 
L� � sup
f

ess inf
x��

�
b� � div f� 
 �a�����f � d��� f � d� �

�

� sup
f

ess inf
x��

�
b� � div f� 
 ��f � d�� f � d � � 
 �a� a�����d� d��� d� d� �

�

� sup
x��


 �a� a�����d� d��� d� d� � �sup
f

ess inf
x��

�
b� � divf� 
 ��f � d�� f � d �

�

� sup
x��


 �a� a�����d� d��� d� d� � �
L�
� K��� 
L�

where the constant K� is independent of ��
After the limit � � 	 from i� we get the inequality �L�

� 
L�
which proves

corollary 
�

Another consequence of proposition 
�� is the following monotonicity result of the

�rst eigenvalue�
Corollary ���� Let L�� L� satisfy ������ ������ If a � a� a � fakjg� a � fakj g

and b� � b
�� 
 �a � a����d� d�� d� d � in �� then �L�

� �L�

�

Proof� From the equality
�



L� �

�



L� �

�



�L� � L��� the concavity of the �rst

eigenvalue and the assumptions of 
�� we get the chain of inequalities

�



�L�

� � �

�
L�
� �



�L�

�
�



�L��L�

� i�e�
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�L�
� �L�

� �L��L�

� sup
f�F

ess inf
x��

	
b� � b

�
� div f� 
 �a� a����f � d� d�� f � d� d �




� ess inf
x��

	
b� � b

�� 
 �a� a ��� �d� d�� d� d �


� 	�

�� Nonsymmetric operators� For general nonsymmetric operators ����� an
equivalent de�nition of the �rst eigenvalue of L by means of �
��� as in theorem 
��
is not more possible� The corresponding expression for 
L is a little bit more compli�
cated� The idea is one to consider all operators Lz derived by L with a nondegenerate
transformation Lzu � e�z��L�uez��� for every z � C������ which preserve the �rst
eigenvalue of L� i�e� �L � �Lz � There exists a transformation with the extreme prop�
erty that the new transformed nonsymmetric operator Lz has the same �rst eigenvalue

as its symmetric part Lz�� �
�



�Lz � L�z� �see theorems ��� and 
���� Thus theorem


�� is applicable for Lz�� as well as for Lz �
Now for every Lipschitz function z � C������ we have

Lz�� �
�




h
�e�z��L�uez��� � ez��L��ue�z���

i
�����

� ��akjuxk � dju�xj � djuxj � �b� � cjzxj �
�



akj zxj zxk�u

� L�u� �cjzxj �
�



akj zxj zxk�u

and the natural de�nition of 
L for nonsymmetric operators L is by means of 
Lz��
for the symmetric operator Lz��� For this purpose for every z � C������� f � F we
introduce the notations


L�f� z� � b� � divf � �kj �f
j � dj��fk � dk� � cjzxj �

�



akj zxj zxk���
�

and


L � sup
z�f

ess inf
x��


L�f� z�� z � C������� f � F������

The following theorem gives the relation between the �rst eigenvalue �L of the
nonsymmetric operator L and the �rst eigenvalues of the family of symmetric opera�
tors Lz�� de�ned in ������

Theorem ���� Let the nonsymmetric operator L satis�es ����� and ������ Then

L � �L and hence the maximum principle for L holds if and only if 
L � 	� More�
over� the identity


L � sup
z
�Lz�� � sup

z
inf
�
BLz�� ��� ��� z � C������� � � H�

����� k�kL� � ����
�
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is satis�ed�
Proof� Let � be the �rst eigenfunction of L in �� � � 	 on ��� For arbitrary

z � C������� w � Ke�z���� K �
�R

� e
�z�� dx

�����
we have from the variational

formula �
�
� for the symmetric operator Lz�� the inequalities

�Lz�� � inf
�
BLz�� ��� ��� BLz�� �w�w� � �L� � � H�

� ���� k�kL� � ��

Hence� from theorem 
�� and ���
�� ����� the estimate

�L � 
L � sup
z
�Lz��� z � C�����������

holds�
In order to prove the opposite inequality suppose that the coe�cients of L are

extended in a small neighborhood of � satisfying ���
� and ������ Let us consider
a sequence �j of C� smooth domains� �j � �� �j � �j��� �L��� � lim

j��
�L��j��

where �L��j� are the �rst eigenvalues of L in �j � If �j � 	� �j � 	 are the �rst
eigenfunctions of L and L� � respectively� in �j we consider the functions

zj � log��j	�j� for x � �� j � �� 
� � � � ������

Since �j � �j �W ��p
loc ��j� for every � 
 p 
	 it follows that zj � C������ as well

as �j � ��j�j���� �W ��p����
Simple computations give us from ����� the identity

Lzj ���
j � �L��j��

j in �� j � �� 
� � � � ������

Since �j � 	 in � it follows from corollary 
�� in �
� that� �L
zj��

��� � �L��j�

where �L
zj��

��� is the �rst eigenvalue of Lzj �� in �� Hence sup
z
�Lz����� � �L��j� for

every j � �� 
� � � �� which after the limit j �	 proves theorem ���
Using theorem ��� we will give some new expressions for 
L or equivalently of �L

which are useful for the investigations of the qualitative properties of �L in section 
�
Proposition ���� Let the operator L satisfy ������ ����� and bj � W �������

Then the identity

�L � 
L � sup
z

ess inf
x��

�
b� � div f � �kj c

jck � �kj �f
j � dj��fk � dk�

�
� z � Z�����

holds� where fj � 
cj � dj � akj zxk � Z � fz � C������� �
cj � dj � akj zxk�xj �
L����g�

REMARK 
� For the special choice of f and z in ������ fj � cj�dj � �a�j � z � 	

we get immediately from ����� su�cient condition �����i and for fj � �cj�dj � �bj �
z � 	 � respectively� condition �����ii �

Proof� of proposition ��� Let u � C���� be an arbitrary positive in � function�
For z � � logu and fj � 
cj � dj � akj zxk we get from ���
� and �
��� the equalities

sup
z

ess inf
x��

�
b� � divf � �kj �f

j � dj��fk � dk� � �kj c
jck

�

� sup
u

ess inf
x��

�
b� � divd� �

u
�akjuxk�xj �

�

u�
akjuxjuxk 
 divc
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��kj cjck 




u
cjuxj �

�

u�
akjuxjuxk � �kj c

jck
�

� sup
u

ess inf
x��

�
�akjuxk � �dj � cj�u�xj � �dj 
 cj�uxj � b�u

� �
u

� sup
w

ess inf
x��

�
�akjwxk � �dj � cj�w�xj � �dj 
 cj�wxj � b�w

� �
w

� �L� w �W ��n���

because � �akjuxk � �dj � cj�u
�
xj

� �dj 
 cj�uxj � b�u is equal to Lu or L�u� respec�

tively�
In order to prove the opposite inequality we will use the notations in the proof of

theorem ��� If �i� �L��i� are the �rst eigenfunction and the �rst eigenvalue� respec�
tively� of L in �i� �i � �� �L��i�� �L���� then zi � � log�i � Z�

Repeating the above calculations for f
j
� cj � dj � akj �log�

i�xk we get the in�
equality

�L��i� � b� � divf � �kj �f
j
� dj��f

k
� dk� � �kj c

jck

� sup
z

ess inf
x��

�
b� � div f � �kj �f

j � dj��fk � dk� � �kj c
jck

�
� z � Z

and after the limit i�	 we obtain

�L��� � sup
z

ess inf
x��

�
b� � divf � �kj �f

j � dj��fk � dk� � �kj c
jck

�
� z � Z

which proves proposition ��
�
For the last formula for �L in proposition ��
 we need an information about

the boundary behaviour of the �rst eigenfunction of an arbitrary uniformly elliptic
operator L� For completeness the following lemma is formulated

Lemma ���� Suppose l satis�es ����� � ������ Then for every function ��x� �
C����� � � 	 on ��� there exists a constant K� � 	 such that � � K�� in �� where
� is the �rst eigenfunction of L with zero data on ���

Sketch of the proof� From the boundary regularity of the weak solutions �see ch�
� in ���� it follows that � �W ��p��� for every p � � and from the Sobolev�s imbedding
theorems � � C�����

The next step is to prove that

��

�l
� �K
� on ��� K
 � 	������

where l is the unit outer normal to ��� For this purpose one can easily check that � is
a positive supersolution of the operator L�K� where K is a su�ciently large positive
constant such that K � b� � diva� � 	� K � �L � 	� i�e� �L�K�� � ��L �K�� � 	
in �� The rest of the proof of ����� follows as in the proof of the Hopf�s maximum
principle for classical supersolutions � see for example �
�� ���� ��
��using the weak
maximum principle� th� ��� in ��� or the strong maximum principle� th� ���� in ����
�see also the results in ���� ��	���
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Since the function K�� � �� for K� large enough� is positive in every compact

subdomain of � and
��K��� ��

�l

 	 in a neighborhood of ��� K��� � � 	 on ���

lemma ����� is proved� QED
Proposition ���� Let the operator L satisfy ������ ������ Then the identity

�L � inf
��h

BLh ��� ��� � � H�
� ���� k�kL� � �� h � H�����	�

holds� where H� � f�h�� � � � � hn��hj�� � H�
� ���� and div�h��� � 	for a�e� x � �g�

Lh � L� � �kj �c
j � hj��ck � hk�� Moreover� the in�nimum in ����
� is attained for

� � K�������� K �
�R

� �� dx
�����

� h
j
� cj � �

�a
k
j zxk � z � log��	�� where �� � are

the �rst eigenfunctions of L and L�� respectively�
Proof� From the regularity theory � see for example ch� � in ���� and the Sobolev�s

imbedding theorems it follows that �� � � W ��p��� � C���� for every � 
 p 
 	 so
that � � H�

� ��� because from lemma ���� 	 
 k� � �	� � k� 
 	 in �� ki � const�

Analogously for h
j
� cj � �



akj zxk we obtain that h

j
�� � H�

����� Moreover� simple

computations give us the following identities in �

div �h��� �

�
cj�� � �



�kj ���xk � ��xk�

�
xj

������

� ��



��akj�xk�xj �

�



��akj�xk�xj � �cj���xj

�
�



�

�
��L � b� � divd��� �

�
div�c���

�

�
�



�

�
��L � b� � divd�� � �

�
div�c���

�
� �cj���xj � 	�

Hence� h
j
� cj � �



akj zxk � H� � � � K������� � H�

� ���� k�kL� � � so that we

get the inequalities

inf
��h

BLh ��� ��� B
Lh
��� �� � BL�

��� �� �
K�




Z
�

akj zxjzxk�� dx����
�

� BL�
��� �� �K�

Z
�

�
cjzxj �

�



akj zxjzxk � cjzxj �

�



akj zxjzxk

�
�� dx

� BL�
��� �� �K�

Z
�

�
cjzxj �

�



akj zxjzxk

�
�� dx � BLz�� ��� �� � �L�

Here the operator Lz�� is de�ned in ����� and as in ����� one can check that
Lz��� � �L� in �� Moreover� in the above calculations we used the equality

Z
�

�
�cj � �



akj zxk

�
��zxj dx � �

Z
�

��
�cj � �



akj zxk

�
��

�
xj

z dx � 	

which follows from ����
In order to prove the opposite inequality we will use ���
� and theorem ������ i�e�

�L � sup
z
�Lz�� � sup

z
inf
�
BLz�� ��� ��� z � C������� � � H�

����� k�kL� � ��
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From the trivial inequality cjzxj �
�



akj zxj zxk � hjzxj ��kj �h

j� cj��hk� ck� after

multiplication by �� and integration in � we get the inequality

Z
�

�
cjzxj �

�



akj zxj zxk

�
�� dx �

Z
�

hjzxj�
� dx�

Z
�

�kj �h
j � cj��hk � ck��� dx

�

Z
�

�kj �h
j � cj��hk � ck��� dx

if h � H� because

Z
�

hj��zxj dx � �
Z
�

z div�h��� dx � 	�

Since the above estimate is valid for every z � C������ and every h � H� it follows
that

sup
z

Z
�

�
cjzxj �

�



akj zxj zxk

�
�� dx � inf

h

Z
�

�kj �h
j � cj��hk � ck��� dx�

Finally� from the chain of inequalities

�L � sup
z

inf
�
BLz�� ��� ��� inf

�

�
BL�

��� �� � sup
z

Z
�

�
cjzxj �

�



akj zxj zxk

�
�� dx

�

� inf
��h

�
BL�

��� �� �

Z
�

�kj �h
j � cj��hk � ck��� dx

�
� inf

��h
BLh ��� ��

we obtain the estimate �L � inf
��h

BLh ��� �� and with ����
� the desired result in ������

The last statement of proposition ��
 follows immediately from ����	� since �L �
inf
��h

BLh ��� ���

By the way� the last chain of inequalities in the proof of proposition ��
 gives
another formula for �L which can be combine with ���� in the following way �see also
the results in �����

Corollary ���� Let the operator satis�es ������ ������ Then the equality

�L � inf
�

�
BL�

��� ��� �����
�
� � H�

� ���� k�kL� � � holds �

where ����� � sup
z

Z
�

�
cjzxj �

�



akj zxjzxk

�
�� dx� z � C������

or ����� � inf
h

Z
�

�kj �h
j � cj��hk � ck��� dx� h � H��

Repeating the same argument as in the proof of proposition ��
 one can easily
�nd out the functions � and z for which the extremums in formula ���
� are attained�
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Corollary ���� Under the assumptions of proposition ��� the in�mum and the

supremum in ����� is attained for � � K�������� K �
�R

� �� dx
�����

� z � log��	���
where �� � are the �rst eigenfunctions of L and L�� respectively�

Note that � � H�
� ���� z �� C������ but formula ���
� is true for � � �� z � z�

We will �nish this section with a simple but useful remark about the case of
operators L with a nonsymmetric principle symbol� More precisely� we consider the
operator

Lu � � �akjuxk � a�ju
�
xj

� bjuxj � b�u������

with a nonsymmetric matrix akj �x�� a
k
j �x� �� ajk�x� for some j �� k�

Let us introduce the following notations akj �
�




	
akj � ajk



� tkj �

�




	
akj � ajk



so

that akj � ajk� t
k
j � �tjk for j� k � �� 
� � � � � n�

Using the identities
nX

j�k��

tkjuxjxk � 	�
nX

j�k��

�tkj �xjxk � 	 we can rewrite ������ in

the following way

Lu � � �akjuxk � tkjuxk � a�ju
�
xj

� bjuxj � b�u

� � �akjuxk � dju
�
xj

� djuxj �
�

u
div�cu�� � �tkj �xjuxk � b�u

� � �akjuxk � dju
�
xj

� djuxj � b�u�
�

u

��
ck � �



�tkj �xj

�
u�
�
xk

� i� e�

L � �
�
akjuxj �

�
a�j �

�



�tjm�xm

�
u

�
xj

�

�
bj � �



�tjm�xm

�
uxj � b�u�����
�

Thus we have the following simple proposition�
Proposition ���� Suppose akj � W ������� a�j � W ������� bj� b� � L���� and

akj satis�es the uniform ellipticity condition ������ Then the �rst eigenvalue of L can
be de�ned by means of formulas ������ ������ ����
� for the operator �������

�� Properties of the �rst eigenvalue� In this section we will give some ap�
plications of theorems 
��� ��� and propositions 
��� ��
� ��
� ��� for the qualitative
properties of �L� For this purpose let us recall the well�known monotonicity and con�
cavity properties of �L with respect to b�� More precisely� �L is a concave function
of b� and when b� increases the �rst eigenvalue �L increases� too � see for example
proposition 
�� in �
���

For the time being it is not known whether a similar monotonicity result for �L
is true with respect to the matrix fakjg or coe�cients a�j � b

j� respectively� dj� cj� To
give some partial answer of these questions we will need the following properties of
�L�

Theorem ���� Let the operator L satis�es ����� and ������ Then the inequalities

�L�
� �L � �L��
���
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hold� where L� � L� � �kj c
jck� Moreover� if bj �W ������ then

�i� �L � �L�

� � � �� in � 
� div�c���� � 	 in �� where �� �� are the �rst

eigenfunctions of L and L� respectively��
�
�

�ii� �L � �L�

� cj � akj pxk for some p � W ������ and more precisely�

p �
�



log��	�� where � is the �rst eigenfunction of L��

REMARK �� Since �L � �L� condition �
�
�i can be extended in the following
way

�L � �L�

� � � �� 
� div�c���� � 	 
� � � � 
� div�c��� � 	

�
�
��i 
� div�c��� � 	 
� �L � inf
�
BL��� ��� � � H�

����� k�kL� � ��

The following example illustrate the situation described in �
�
�i�
Example �� Consider the operator

Lu � ��u� 
K�yux � 
K�xuy � 	

in �� where � � R� is a bounded smooth domain and � is the �rst eigenfunction
of the Laplacian� K � const� Since c� � K�y � c

� � �K�x� d
� � d� � 	 simple

computations give us the identity div�c��� � K��y�
��x � K��x�

��y � 	 in � and
hence �L � �L�

� ���� � � � � � where �� � are the �rst eigenfunctions of L and
L�� respectively� Note that the norm of the coe�cients cj� jcj � Kjr�j increases to
in�nity when K �	� but the �rst eigenvalue �L of L does not change at all� By the
way� the divergence of the coe�cients cj stays constant for every K� i�e� divc � 	 in
��

Proof of theorem ���� By integration by parts we get immediately the estimate

�L � BL�
��� �� � inf

�
BL�

��� �� � �L�
� � � H�

����� k�k � ��

Since cjzxj �
�



akj zxj zxk � �kj c

jck for every z � C������ we have from �
���

and proposition 
�� the inequalities �L � sup
z

inf
�
BLz�� ��� �� � inf

�
BL� ��� �� � �L� �

z � C������� � � H�
����� k�kL� � ��

Now let us suppose that div�c���� � 	 in � and for simplicity let us denote

�L�
� ��� Since Lu � L� �

�

u
div�cu�� it follows that L�� � ����� �� � 	 on ���

�� � 	 in �� i�e� from corollary 
�� in �
� �� is the �rst eigenfunction of L� � � ��
and �L � ���

Suppose that � � �� in �� Easy calculations give us the identity

�L�� � �L� � L� � L�� � L��� �
�

��
div�c���� � ���� �

�

��
div�c����

i�e� ��L � ������ � div �c���� in �� Integrating the above expression in � we get
immediately that �L � �� and div�c���� � 	 in ��

Finally� let us suppose that �L � ��� By integration by parts we haveBL�
���� ��� �

�� � �L � BL��� �� � BL�
��� �� and from theorem 
 in section ��� in ��� it follows

that � � ���
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To prove �
�
�ii let us suppose that cj � akj pxk for some p �W ������� Since the

operator e�pL�uep� � L�u has the same �rst eigenvalue as the operator L we have
�L � �L� � Moreover� if �� is the �rst eigenfunction of L� then � � ep��� � � e�p��

and p �
�



log��	���

Now let us suppose that �L � �L� � From corollary ��� it follows that �L �

BLz�� ��� ��� where � � K�������� K �
�R

�
�� dx

�����
� z � log��	��� so that we get

the inequalities

�L� � �L � sup
z

inf
�
BLz�� ��� �� � BLz�� ��� �� � BLz�� ��

�� ��� � BL� ���� ���

�
Z
�

�kj �c
j � �



amj zxm��c

k � �



askzxs���

��� dx

� �L� �
Z
�
�kj �c

j � �



amj zxm ��c

k � �



askzxs���

��� dx

i�e�

	 �

Z
�
�kj

�
cj � �



amj zxm

��
ck � �



askzxs

�
����� dx�

The positiveness of �� and ���
� gives the desired result cj �
�



amj zxm in �� QED

An open question is to characterize the conditions guaranteeing when �L coincides
with some strictly interior point of the interval ��L�

� �L��� However� the following ex�
ample illustrates by means of a family of equations having one and the same �maximal
operator� L� that the �rst eigenvalue �L covers the whole interval�

Example 
� Consider the operator

Lu � ��u� 
�p�x � q�y�ux � 
�p�y � q�x�uy � ��pu � 	

in �� where � � R� is a bounded domain with a smooth boundary� ��� � are the �rst
eigenvalue and the �rst eigenfunction of the Laplacian and p� q � const� p� � q� � ��

Since c� � p�x � q�y � c� � p�y � q�x� d� � d� � 	 we have �kj c
jck � jcj� � jr�j��

i�e� the �maximal operator� L� � L� � �kj c
jck � ��� jr�j� is independent of the

parameters p� q� We will use also the following notations Ltu � ��u � tjr�j�u�
	 � t � �� so that L� � L��

For all p� q on the unit circle from �
���i we get the estimate �L � ��� In order
to obtain an estimate from below for �L we will use theorem ��� and ���
�� ����� i�e�

�L � 
L � sup
z�f

ess inf
x
�divf � jrf j� � �p�x � q�y�zx � �p�y � q�x�zy � �



jrzj��

� sup
f

ess inf
x
�divf � jrf j� � �p�x � q�y�
p�x � �p�y � q�y�
p�y � p�jr�j��

� sup
f

ess inf
x
�divf � jrf j� � p�jr�j�� � �p� �



MAXIMUM PRINCIPLE FOR ELLIPTIC EQUATIONS ��

where in the above inequalities the function z was replaced with 
p� and �t is the
�rst eigenvalue of Lt�

Thus we proved the �nal estimate

�p� � �L � �� for every p� q� p� � q� � ���
���

From example � when K � �q we know that �L � �� for p � 	� q� � �� Using the
continuous dependence of the �rst eigenvalue �L with respect to the coe�cients cj

�see proposition � in �
�� and �
��� we obtain that �L covers the whole interval ���� ���
when p� increases from zero to one�

Note that in this example� in a contrast to example �� the norm of the coe�cients
cj� jcj � jr�j�� stays constant for all p� q� while the divergence of cj� div c � p�� �
���p�� strictly decreases when p increases from �� to ��

Using theorems ������ �
��� we will give some partial results about the mono�
tonicity of �L with respect to the matrix fakjg� For this purpose we introduce the
operator

Mu � ��mk
juxk � �dj � cj�u�xj � �dj � cj�uxj � b�u in ��

Proposition ���� Let the operators L and M satisfy ����� and ������ Suppose
that fakjg � fmk

j g and one of the following assumptions is satis�ed�

i� �M � �M�
� M� �

�



�M �M��


ii�cj � akj pxk for some p � W ������ and �kj c
jck � �kj c

jck� f�kjg � fmk
j g����
�
�

iii� fakjg � fmk
jg � rI� r � const � 	� I is the unit matrix and �kj c

jck �
r ��n	j�j���n� where �n is the volume of the unit ball in Rn and j�j � mes ��

Then the inequality �L � �M holds�
Proof� i� The proof follows immediately from �
��� and ii� in proposition 
��

because �L � �L�
� �M�

� �M �
ii� Since from �
�
�ii �L � �L� we get from ii� in proposition 
�� and �
��� the

inequalities �L � �L� � �M� � �M where L� � L� � �kj c
jck� M� � M� � �kj c

jck�
iii� From �
��� and the Poincare inequality we get the estimates

�M � �M� � inf
�
BM� ��� ��

� inf
�

Z
�

	
akj�xj�xk � 
dj��xj � b��� � r ��n	j�j���n �� � rjr�j�



dx

� �L�
� �L� � � H�

� ���� k�k�L � ��

The following example illustrates that� without additional assumptions �
�
� only
with condition fakjg � fmk

j g the result in proposition 
�
 is not true�
Example �� Consider in � the operators

Lu � ��u� 

p
��uxn � 	� Mu � ���u� 


p
��uxn � 	�
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where � � Rn is a bounded domain with a smooth boundary� 	 
 � 
 �� � �
const and �� is the �rst eigenvalue of the Laplacian with zero Dirichlet data� Since
Lzu � e�zL�uez� � ��u � ��u� Mz�� � e�z��M �uez��� � ���u � ���	��u and

�L � �Lz � 
��� �M � �Mz
� �� � ��	����� � 
��� where

p
��xn � z� it follows

that �L 
 �M �
As for the monotonicity of �L with respect to dj and cj� it is trivially to prove

that �L increases when divd decreases� However� the monotonicity of �L with respect
to cj is not clear� For convenience we will denote with �c� �c� �c the �rst eigenvalue
and the �rst eigenfunctions of L� L� respectively� when the coe�cients akj � d

j� b� are

�xed and cj vary�
Proposition ���� Let the operator L satis�es ������ ������ Then �

i� �ct is a concave monotone increasing function of t���
���

ii� �ct � �c for some t� jtj �� � 
� �ct � �� for every t � R�
Proof� i� For arbitrary t�� t� � R and 	 
 s 
 � we de�ne t from the equality

t� � ��� s�t�� � st��� From ����	� we get the inequality

�ct � inf
h��

�
BL�

��� �� �

Z
�

�kj �tc
j � hj��tck � hk��� dx

�

� inf
h��

�
BL�

��� �� � t�
Z
�

�kj �c
j � hj��ck � hk��� dx

�

� ��� s� inf
h��

�
BL�

��� �� � t��

Z
�

�kj �c
j � hj��ck � hk��� dx

�

�s inf
h��

�
BL�

��� �� � t��

Z
�
�kj �c

j � hj��ck � hk��� dx

�
� ��� s��ct� � s�ct�

where the in�nimum is taken over the functions � � H�
����� k�kL� � � and h � H��

As for the monotonicity of �ct � as in the proof above� the inequality

�ct � inf
h��

�
BL�

��� ��� t�
Z
�

�kj �c
j � hj��ck � hk��� dx

�

� inf
h��

�
BL�

��� �� �

Z
�

�kj �c
j � hj��ck � hk��� dx

�
� �c

holds for every t� � ��
�ii� Suppose that �ct � �c for some jtj � �� From proposition ��
 we have the

equality

�ct � BL�
��� �� �

Z
�

�kj �tc
j � h

j
��tck � h

k
��� dx
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where� � � K��ct�ct�
���� K �

�Z
�

�ct�ct dx

�����
� h

j
� tcj � �



akj zxk � z �

log��ct	�ct�� Hence

�ct � BL�
��� ���

�

t�

Z
�

�kj �tc
j�hj��tck�hk��� dx�K�

�
�� �

t�

�Z
�

akj zxjzxk�ct�ct dx

� inf
h��

�
BL�

��� �� �
�

t�

Z
�
�kj �tc

j � hj��tck � hk��� dx

�

�K�

�
�� �

t�

�Z
�

akj zxjzxk�ct�ct dx � �c �K�

�
�� �

t�

�Z
�

akj zxjzxk�ct�ct dx

and from �ct � �c we get the identity
R
� a

k
j zxjzxk�ct�ct dx � 	�

From the positiveness of �ct� �ct and ���
� it follows that rz � 	 in � i�e�
�ct � �ct in �� Applying theorem �
��� �and more precisely� �
�
��i in remark �� we
get immideately that div �tc���� � 	 in �� Hence� from �
�
�i it follows that �ct � ��
for every t � R�

As for the concavity of the �rst eigenvalue �L with respect to di�erent coe�cients
c� c� c �� c a similar result as in �
���i is true with a correction term� In general� without
this correction term the convexity of �L fails as one can see in the case of coe�cients
of the special type� cj � akj pxk � �c

j � akj �pxk where p� �p � W ������ are arbitrary

functions� For convenience we denote with �L the operator

�L � ��akjuxk � �dj � �cj�u�xk � �dj � �cj�uxj � b�u�

Proposition ���� Let the operators L� �L satisfy ������ ������ Then for every
	 
 s 
 � the inequality �S � ��� s��c � s�c holds� where

S � �� � s��L � s�L � s�� � s��kj �c
j � �cj��ck � �ck��

Proof� Let zi� �zi be de�ned in ��� for the operators L� �L� Then from ���
� we
have

�L � lim
i��

�L
zi��

� ��L � lim
i��

��L
zi��

and

Lz��� �Lz�� are given in ������ For every 	 
 s 
 � we introduce the notations C �
��� s�c� s�c� Zi � ��� s�zi � s�zi� Easy calculations give us the chain of inequalities

CjZi
xj �

�



akjZ

i
xjZ

i
xk � ��� s��cjzixj �

�



akj z

i
xj z

i
xk� � s��cj �zixj �

�



akj �z

i
xj �z

i
xk �

�s�� � s���cj � cj���zixj � zixj � �
�



s��� s�akj ��z

i
xj � zixj ���z

i
xk � zixk �

� ��� s��cjzixj �
�



akj z

i
xj z

i
xk� � s��cj�zixj �

�



akj �z

i
xj �z

i
xk �
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�s�� � s��kj ��c
j � cj���ck � ck��

If

Sz��u �
�




	
e�z��S�uez��� � ez��S��ue�z���




� L�u�

�
Cjzxj �

�



akj zxjzxk � s�� � s��kj ��c

j � cj���ck � ck�

�
u

then from theorem ��� we get the estimate

�S � sup
z
�Sz�� � �S

zi��
� ��� s��L

zi��
� s��L

zi��
� z � C������

which after the limit i � 	 proves proposition 
�
 In the above considerations we
used the simple fact that for symmetric operator Mu � ��akjuxk �dju�xj �djuxj the

inequality �M�b� � ��� s��M�p� s�M�q holds for every 	 
 s 
 �� b�� p� q � L�����
b� � �� � s�p � sq� The proof of this statement follows directly from variational
formula �
�
��

We will �nish this section with some simple properties of �c which illustrate how
complicated is the dependence of �c from c� For this purpose let us introduce the
following set of functions

Nc � fh�x� � �h��x�� � � � � hn�x��� hj�x� � C������� div�h��c� � 	 for a�e� x � �g�
It is clear that Nc for every �xed c is a linear subspace of the Lipschitz vectors de�ned
in ��

Proposition ���� Let the operator L satisfy ������ ����� and bj � W �������
Then the following statements are true�

i� for every h � Nc the equalities �c�h � �c� �c�h � �c hold

ii� �c � �g 
� �c � �g and c � g � Nc � Ng� as a consequence the identity

Nc � Ng holds�
iii� c � Nc 
� �c � ��

iv� for every h � Nc the estimate �th � �c holds for every t � R�
Proof� i� Since

L��c �
�

�c
div��c� h���c� � L��c �

�

�c
div�c��c� � �c�c

and �c � 	 in �� �c � 	 on �� it follows from corollary 
�� in �
� that �c�h � �c and
�c�h � �c�

ii� Suppose that �c � �g� Then from the identities

�
�c � �

��c
div�c��c�

�
�c � L��c � L��g �

�
�g � �

��g
div�g��g�

�
�g

�

�
�g � �

��c
div�g��c�

�
�c

we obtain that div��c� g���c� � �c � �g � Integrating the above equality in � we get
immediately that �c � �g and div��c � g���c� � div��c � g���g� � 	 in � i�e� from the
de�nition of Nc�Ng we have c� g � Nc �Ng �
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Suppose that �c � �g and c� g � Nc �Ng � Since

�c�g � �g�g � L��g �
�

�g
div�c��g� �

�

�g
div�g � c���g

� L��g �
�

�g
div�c��g�

and �g � 	 in �� �g � 	 on �� it follows that �g � �c�
iii� If �c � �� then from �
�
�i we have div�c���� � 	 in �� i�e� c � Nc�
Suppose that c � Nc� Then div�c��c� � 	 in � and from the equality �c�c �

L��c �
�

�c
div�c��c� � L��c and the positiveness of �c in �� �c � 	 on �� it follows

that �c � ��� �c � ���
iv� If c � Nc we have from iii� that �c � �� so that �th � �� � �c for every t � R

and iv� is proved� Suppose now that c �� Nc� From i� for a �xed h � Nc the identities
�c�th � �c� �c�th � �c hold for every t � R� If �c�sh � �c for some s � R then
from the continuous dependence of the �rst eigenvalue with respect to the coe�cients
�see proposition ��� in �
�� we have the inequality �c�sh��c � �c for a su�cient small
positive constant �� However� from �
���ii it follows that

�c � �c�hs������ � ��c�hs��c������� � �c�hs��c � �c

which is impossible�

REFERENCES

��
 S� Agmon� On positivity and decay of solutions of second�order elliptic equations on Rieman�

nian manifolds� in Methods of Functional Analysis and Theory of Elliptic Equations� D�
Greco ed�� Lignori Ed� Napoli� ����� pp�����
�

�

 S� Ahmad and A� Lazer�On the role of Hopf s maximum principle in elliptic Sturmian theory�
Houston J� Math�� � ������� pp���������

��
 A� Alexandrov� Uniqueness conditions and estimates for solutions of the Dirichlet problem�
Vestnik Leningrad Univ�� �� ������� pp� ��
� � Ammer� Math� Soc� Transl�� �� ������� pp�
�������

��
 H� Berestycki� L� Nirenberg and S� R� S� Varadhan� The principal eigenvalue and maxi�

mum principle for second order elliptic operators in general domains� Comm� Pure Appl�
Math�� �� ������� pp� ����
�

��
 J� M� Bony� Principe du maximum dans les espaces de Sobolev� C� R� Acad� Sci� Paris� Serie
A 
�� ������� pp� ��������

��
 M� Donsker and S� R� S� Varadhan� On the principal eigenvalue of second�order elliptic

di�erential operators� Comm� Pure Appl� Math�� 
� ������� pp������
��
��
 J� Douglas� T� Dupont and J� Serrin� Uniqueness and comparison theorems for nonlinear

elliptic equations in divergence form� Arch� Rat� Mech� Anal�� �
������� pp� ��������
��
 L� Evans� Partial Di�erential Equations� Graduate Studies in Mathematics� vol� ��� AMS�

Providence� Rhode Island� �����
��
 D� Gilbarg and N� Trudinger� Elliptic Partial Di�erential Equations of Second Order� 
nd

ed�� Springer� Berlin � �����
��	
 P��L� Lions� A remark on Bony s maximum principle� Proc� AMS� �� ������� pp� �	���	��
���
 M� Protter� Lower bounds for the �rst eigenvalue of elliptic equations� Annals of Math�� ��

����	�� pp� �
������
��

 M� Protter and H� Weinberger� Maximum Principle in Di�erential Equations� Prentice�

Hall� New Jersey� �����


