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1. Introductory Notes 

“La maniere d'enoncer vulgaire regarde plustost les individus, mais celle d'Aristote a plus d'egard aux 
idées ou universaux. Car disant ‘tout homme est animal’, je veux dire que tous les hommes sont compris 
dans tous les animaux; mais j'entends en même temps que l'idée de l'animal est comprise dans l'idée de 
l'homme. L'animal comprend plus d'individus que l'homme, mais l'homme comprend plus d'idées ou plus de 
formalités; l'un a plus d'exemples, l'autre plus de degrés de realité; l'un a plus d'extension, l'autre plus 
d'intension” (GP V, 496).  

These important words taken from Nouveaux Essais sur l'Entendement humain (1704) prove 
that Leibniz was acquainted with two semantics of the syllogistic propositions and thought them to 
be equipollent. Following his own expressions, the first semantics usually is called extensional and 
the second one is called intensional. For some hard reasons Leibniz preferred the intensional 
semantics and in practice, all his logical manuscripts contain it. There is one important exception: 
the geometric interpretation by circles consecutively follows the extensional semantics. In some 
places Leibniz notes that all his conclusions could be paraphrased also in the terms of the 
extensional semantics: “Using fitting characters, we could demonstrate all the rules of logic by 
another kind of calculus than the one developed here, merely by an inversion of our own calculus” 
(in Latin: A VI, II, 200). However I have to point out that no rules of the translation have been 
described explicitly.  

Leibniz tried to build an adequate representation of the two basic syllogistic relations sAp (“all s 
are p”) and sIp (“some s are p”) using different tools: algebraic, geometric, set-theoretical, 
arithmetical. Here I will consider only the last one. The central idea of the arithmetical models was 
to interpret notions by integers (being their characteristic numbers) and to translate syllogistic 
relations A and I into arithmetical relations between integers, using mainly divisibility. In such  a 
way Leibniz hoped to realize his programme of calculating “the truth” and to promote his popular 
motto ‘Calculemus!’. Leibniz’s favourite example was:  if the number of animal were 2 and that of 
rational were 3 then the number of man being by definition a rational animal should be obtained by 
multiplication 3·2. Then the answer to the question “Is every man a rational being?” could be 
reduced to the fact that 6 is divisible by 3.  

The last example is a proof that Leibniz was clinging to the intensional semantics of the 
universal affirmative (UA) propositions (the predicate is contained in the subject). Unfortunately 
there is no translation of a concrete particular affirmative (PA) proposition in the manuscripts. What 
is even worse, all attempts to use single integers turned out to be incorrect. A detailed analysis of 
the faulty procedures, the causes of the faults, and two correct realizations of the primary Leibnizian 
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idea have been already presented in my paper Arithmetizations of syllogistic à la Leibniz1. In fact, 
Leibniz mixed both semantics: the interpretation of UA-propositions followed the intensional 
semantics while the interpretation of PA-propositions followed the extensional one. Finally  Leibniz 
constructed an adequate model using pairs of integers. However I will not review this model as a 
part of the scope of this report. 

On the previous Leibniz Congress I presented a working arithmetical procedure in accordance 
with the extensional semantics2. Now I will continue the work by describing the intensional 
arithmetical semantics. It will be the extensional semantics on a concrete example. In such a way 
the model preferred by Leibniz will be completely rehabilitated and shown in action. 

 

2. Extensional and intensional semantics: a comparison 

Relevant to our task – an implement of a natural and working translation of syllogistic into 
arithmetic – are Leibniz’s manuscripts of April 1679. The most important papers devoted to models 
with single numbers are Elementa characteristicae universalis (A VI, II, 181–194), Elementa 
calculi (A VI, II, 195–205), and Calculi universalis elementa (A VI, II, 205–216). The example of 
‘man = rational animal’ gives a criterion for UA-propositions: sAp is true when s is divisible by p. 
(The letters used for terms are the same as the ones used for their characteristic numbers.) In 
Leibniz’s  general notation: s = xp.  

The interpretation of PA-propositions in Leibniz's manuscripts is less clear and more 
problematic. In the last variant it means that  sIp is true when s, being multiplied by another integer, 
is divisible by p. This is an arithmetical expression of Leibniz’s reduction of PA-propositions to 
UA-propositions: sIp is true when s enhanced with an additional requisite x is p. In Leibniz's 
notation: sx = yp. In the paper quoted in the footnote 1 I have remarked that if we take this rule 
literally, it will become trivially true because any integer s becomes divisible by any other integer p 
after multiplying it by a suitable integer, e.g., by p itself. That is why it is natural to complete the 
criterion for PA-propositions by the condition that the multiplier must be less than the number of 
the predicate. Then it is easy to prove that both criteria proposed by Leibniz can be formulated in a 
uniform manner: sAp is true when each divisor of p is also a divisor of s; sIp is true when s and p 
have a common divisor greater than 1, or, gcd(s, p) > 1. 

However, some syllogisms cease to be true given this interpretation. For example, let us check 
the syllogism Darii: all m are p, some s are m, ergo some s are p. Take the notions mammal, biped, 
and rational and let a, b, and c be their characteristic numbers. The composition ca gives the notion 
man and ba gives the notion biped mammal. Now, the UA-proposition “All men are rational” is true 
because ca is divisible by c. The PA-proposition “Some biped mammals are men” is also true 
because (ba)c is divisible by ca. Or if translated in words, all biped mammals with the additional 
requisite rational are men. To prove that the conclusion “Some biped mammals are rational” is true 
we must check whether (ba)x is divisible by c for some additional requisite x. We see however that 
x may be only c – a trivial situation that is excluded by the rule. Therefore this arithmetical model is 
not adequate. 
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The equivalent formulation of the criteria using divisors of the characteristic numbers reveals 
the confusion of the two semantics: sAp is true when the set of divisors of s includes the set of p 
(the intensional semantics) while sIp is true when s and p have a common part (the extensional 
semantics). Both criteria can take their own places by obtaining in effect two adequate semantics. In 
the extensional arithmetical interpretation terms are evaluated by integers greater than 1; sAp is 
replaced with ‘s is a divisor of b’, and sIp with ‘gcd(s, p) > 1’. If empty terms are admitted, they are 
evaluated by 1. For the intensional interpretation, an arbitrary integer u > 1 (a “universe”) must be 
introduced and terms are evaluated by u’s arbitrary proper divisors (i. e., the divisors which are less 
than u); sAp is replaced by ‘s is divisible by p’, and sIp by ‘lcm(s, p) < u’ (lcm denotes the least 
common multiple). If empty terms are admitted, they are evaluated by u. In both semantics the 
characteristic numbers do not admit multiple factors. 

Considering integers s and p as sets of their (prime) factors and applying the usual symbols of 
set theory, sAp and sIp are true in the extensional semantics when s⊆p and s∩p ≠ ∅ respectively (∅ 
is the empty set, the second relation corresponds to Leibniz’s criterion for PA-propositions). For 
Aristotelian syllogistics all sets are supposed to be non-empty (and the characteristic numbers are 
different from 1). In the intensional semantics, sAp and sIp are true when s⊇p and s∪p ≠ u 
respectively (u is the universe, the first relation corresponds to Leibniz’s criterion for UA-
propositions). For Aristotelian syllogistics no set (number) is equal to u. The difference between 
both semantics is not big from a mathematical point of view because they are mutually dual 
(Leibniz calls them inverse). Namely, when the case is the one of sets, the intensional semantics 
will be obtained from the extensional one after replacing each set by its complement to u, ∩ by ∪, 
⊆ by ⊇, ∅ by u, and vice versa. When numbers are used, each number k has to be replaced by u/k, 
the expression ‘is a divisor of’ by the expression ‘is divisible by’, gcd by lcm, 1 by u, and vice 
versa.  

The situation fundamentally changes when a configuration of the representing sets is drawn. 
Passing from extensional to intensional semantics all plausibility of the Leibniz circles (known as 
well as Euler circles and sometimes incorrectly named Venn diagrams) disappears. Our intuition 
loses the transparency and clarity of the overlaying and overlapping circles and leads us astray into 
the jungle of strange and artificial curves. Only an extremely inventive mind is able to draw a 
syllogism containing two particular propositions! In the next figure the rather elementary diagrams 
of sIp in both semantics should be compared: the black segment on the left side denotes that s and p 
have a common part and the black triangle on the right denotes that there is a part out of both of s 
and p. 

     
Fig. 1. sIp in extensional semantics (left) and in intensional semantics (right) 



  

The representation by circles in extensional semantics has the advantage to avoid the empty sets, 
so to say, automatically: it is not possible to draw a “null-circle”. Respectively, the number 
corresponding to the empty set is 1 and it does not need to be introduced separately. It is constant 
for all models. The universe becomes necessary only when term negation is introduced into 
syllogistic. On the contrary, the universe u occurs in the interpretation of sIp in intensional 
semantics even when negation is not present. Moreover, the universe has to be changed if new 
elements are added to the model. Beside the intuitive and graphical obstacles intensional semantics 
represents some linguistic obscurities. Therefore it is not surprising that Leibniz invented a few 
geometric extensional representations and no intensional one. The most popular of them is 
described in De formae logicae comprobatione per linearum ductus (C, 292–321). All syllogisms 
are presented there by circles in a perfect form following the extensional semantics. It is notable 
that on many places of the manuscripts sAp is thought also as s⊇p following the intensional 
semantics. However not the slightest idea of a diagram of sIp in that semantics can be found. We 
may conclude that Leibniz had correct geometric but wrong arithmetical intuition concerning 
syllogistics. The 20 year span between them is a possible explanation of this contradiction. 
Obviously the intensional semantics is sophisticated if it represents a problem even to many 
contemporary authors.  

 

3. The intensional arithmetical interpretation in action 

In what fallows we shall test the intensional arithmetical semantics on an extremely simple 
model, which nevertheless should be sufficient for the purposes of this work because it contains all 
Boolean term operations. The example for our test is rather illustrative and does not claim adequacy 
to established taxonomy. Here it should be noted that Leibniz himself composed detailed 
classifications with definitions filling lots of pages (e. g., in Table de definitions, C, 437–510). 
Furthermore I believe it would be a better illustration of his idea to apply the arithmetical models to 
certain real biological classifications.  

In order to become comparable, the frame of notions is the same as that in the report quoted in 
footnote 2. In the previous interpretation the characteristic numbers followed the extensional 
semantics (Fig. 2) and now they will follow the intensional one (Fig. 3). Then the notions were 
treated as classes of objects and now they are classes of properties. The notion on the top is animal. 
From the extensional view it is the wider class of objects but according to the intensional view it has 
a minimal bundle of properties and none is specific. The class of animals is supposed to consist of 
reptiles, mammals, birds, and insects only. Mammals are subdivided into dogs, mankind, and bats. 
The easiest way to obtain the new characteristic numbers is to replace each number in Fig. 2 by its 
reciprocal with respect to the “universe” (u = 2·3·...·13). The results are represented on Fig. 3. 

Now it would be straightforward to verify the UA-propositions by using simple division. For 
example, “Every man is a mammal” is true because the number 3·5·7·11·13 is divisible by 7·11·13. 
“Every bat is winged” is also true: 2·3·7·11·13 is divisible by 2·3·7. Let us check some PA-
propositions. For example, let us answer the question “Are there winged mammals?”. We have to 
verify if there is a prime number between 2 and 13 that does not divide neither the number of 
mammals (7·11·13) nor the number of winged (2·3·7). Such a number is 5 and 2·3·7·11·13 obviously 
corresponds to the class of bats, which appears below mammals and winged on the diagram. 
According to our scheme, the answer to the question “Are there winged reptiles?” is “no”, because 
2·3·5·11·13 together with 2·3·7 contain all factors of u. Indeed, nothing is placed below reptiles and 
winged. Here it is important to note that Leibniz treated existence like a logical consistency. As a 
result of this we have to assume that flying mammals should exist even if nobody has them seen. 



  

Their existence is logically possible because no property of mammals contradicts a property of 
winged according to our data. On the contrary,  winged reptiles do not exist because they cannot 
logically exist as all reptiles are wingless.  

 
Fig. 2. Extensional semantics 

 
Fig. 3. Intensional semantics 

Based on our example we can demonstrate the arithmetical translation of all Boolean operations 
with notions. If the question is disjunctive, e. g., “Which is the class of men and dogs?”, or in other 
words “What does unite men and dogs?”, the answer is: the class of the wingless mammals unites 
them because the gcd(3·5·7·11·13, 2·5·7·11·13) is 5·7·11·13 and the corresponding class is the 
nearest one placed above the dogs and mankind. Furthermore, the negation of winged is wingless 



  

(apterouse) and its number will be obtained by dividing u by 2·3·7 (for winged). Of course the 
result is 5·11·13 – the number of wingless. 

Unfortunately, the full Boolean diagram contains 26 = 64 vertices and is difficult to fit on a 
page. Therefore for the next consideration a simple algebra of 23 = 8 elements (Fig. 4) would be 
useful. Take the three basic painting colours (as the atoms of the algebra): yellow, red, and blue and 
allocate the prime numbers 2, 3, and 5 to them respectively. Then the pairs of properties will 
represent the composed colours: orange (2·3), green (2·5), and purple (3·5). The “empty” colour 
white does not contain any other colour however it is included into each of the others. The 
combination of all three colours is black – the “universe”, and its number is 2·3·5. If a question 
“Does orange colour contain red?” is asked then the answer will be “Yes, because 2·3 is divisible 
by 3”. The answer to “Does green contain red?” will be “No, because 2·5 is not divisible by 3”. 
“Are orange and purple contained in any colour?” – “Yes, but only in black, because 2·3 and 3·5 
together contain all factors.” “Does orange and purple contain a common colour?” – “Yes, because  
2·3 and 3·5 have a common divisor 3 and this colour is red.” “Which is the ‘negative’ colour of 
blue?” – 2·3·5 divided by 5 gives 2·3 and the answer is “orange”. &c. 

 
Fig. 4 

Finally, let us return to the initial Leibniz criterion for sIp: there exist x and y such that 
sx = py. If x < p and y < s this requirement is equivalent to gcd(s, p) > 1. The latter is equivalent to 
lcm(s, p) < sp. However we already know that the correct rule is lcm(s, p) < u. Indeed, the last 
example clearly shows the difference between trivial and appropriate calculations. For example, 
there is a colour containing both red (3) and blue (5) and this is purple (3·5). However we cannot 
consider this fact as a triviality because lcm(3, 5) < 2·3·5. The composition of two notions a and b 
(the conjunction of properties such as rational animal) always is ab in the intensional semantics 
(with the obvious limitation cc = c for any factor c). The problem is in the existence of ab, i. e., in 
the truthfulness of aIb. The multiplication 3·2 = 6 will not guarantee by itself that rational animal 
exists. Otherwise the fact that 6 is divisible by 3 with the same success would lead to the conclusion 
that “All flying men are flying” and “All square triangles are square” as well. In order to distinguish 
between the logically possible objects (e. g. angels) and the self-contradictory ones, a universe u is 
necessary to distinguish the case ab < u from ab = u. This distinction has not been pursued by 
Leibniz.  


