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ABSTRAT. Objectsof consideation are variousnon-classicabonnectiveshidden” in theclas-
sicallogic in theformof G os with o —a classicalconnectiveand s —a propositionalvariable
Oneof themis negation, which is definedas G = s; anotheris necessitywhich is definedas
G A s. Thenew opemtionsare axiomatizedandit is shownthat they belongto the 4—valued
logic of Lukasiavicz.A2—pointKripke semanticss built leadingdirectlyto the4-valuediogical
tables.
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Dedication

In theissueof this Journal, which wasdedicatedo thememoryof Geoge Gargov,
JohanvanBenthemmentionedvhathe called“Sofia school of modallogic”. Indeed,
manyBulgarian logicians havebeensuccessfullyorking in the field of modaland
non-classicalogicsfor 40 yeais until now Prof. Dimiter Vakarelov is at thefounda-
tions of this school. He taughtand tutored dozensof Mastes and Ph.D. studentsof
mathematicalogic. Someof hiscolleagues—as,for instancethelate Geoige Gargov
and myself worked or haveworkedin closecollaboration with him. Prof. Vakarelov
is still genemting logical ideasandis pleasedo watd theseideasbeingrealizedby
hisdisciples.Atthesametime, | wouldlike to notehis capabilityto make mathematics
of everything beit philosophicalideasor puzzles During the mostdogmaticperiod
of Bulgaria, he publisheda logical theory of dogma. One of his bookswasdevoted
to thelarge variety of permutationtoyslike Rubik’s cube;and the completesolution
gaverise to new theolemsof the theory of groups. Anotheraspectof his work that
hasalwaysimpressedneis the clarity and surprising naturalnessof his ideas,even
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whenemepging from the mostsophisticatedlemonstations. Leavingasidethe tech-
nicalities of the proofs,everylogical inventionof Prof. Vakarelov could be explained
to the non-specialist.A popular presentatiorof his achievementsn logic, algebra,
topolagy, geometryand philosophywouldbeinterestingandfascinatingreading

Longlife to you, Mitko, andto your logical school!

1. Preliminary and Historical Notes

“Hidden” arelogical operationswhich do not occur explicitly in a certainlog-
ical systembut can be definedwithin it. For example,the disjunctionis “hidden”
in the pure implicational calculusbecausdt canbe expressedn it by A v B =
(A = B) = B. We will denotethe basicsystemsby listing the main elements
of their signature.So (=) is the systemof the classicaimplication, (=, A) is thatof
implicationplusconjunction etc.

Maybe Ch. Peircein the 1880-swasthefirst to obsere thatimplicationinvolves
mary propertiesof negationif any subformulaof the form X = s, wheres is a
distinguishedoropositionaletter, is interpretedas~ X. Let us denotethe negation
soobtainedby ~ (=, s) (read“negationproducediy implicationanda propositional
variables”). Whenit is clearfrom thecontext, only thesign~ will beused.A few ex-
amples:oneof thetransitvity laws (A = B) = ((B = C) = (A = (C)) produces
oneof thelaws of contrapositiof A = B) = (~ B =~ A) afterreplacingC with s.
In thesamemannerthelaw of commutatvity of theantecedentéd = (B = C)) =
(B = (A = ()) givesanotheraw of contraposition 4 =~ B) = (B =~ A).
Frege’s law of self-distrututivity ((4 = (B = C)) = ((A = B) = (4 = ()
gives a form of reductioad absudum (A =~ B) = ((4 = B) =~ A).
Modusponenspresenteddy the formula A = ((A = C) = C) givesthe weak
law of doublenegationA =-~~ A. Thelaw of reduction((4 = (4 = C)) =
(A = C) givesa variantof the Clavius law, (A =~ A) =~ A. Furtheron, the
Peircelaw ((A = C) = A) = A givesthe other Clavius law, or consequentia
mirabilis (~ A = A) = A. Sometimedifferentlaws can be derived: the tau-
tology (A = C) = B) = ((A = B) = B) givesboththe law of alternatve
(~A= B)= ((A= B)= B)andthelaw ~ (A = C) =~~ A.

It is reasonabléo ask: which aretheaxiomsof ~ (=, s)? In otherwords,whatis
thevolumeof thenggation“hidden” within theclassicaimplication?It includesapart
of theintuitionistic negation,but notall becausét doesnotsatisfy~ A = (A = B).
On the other hand, the new negationis not part of intuitionistic negation because
(~ A= A) = Aisnotanintuitionistic law. If disjunctionwerepresentgeventhe
law of excludedmiddle Av ~ A would be on thelist. Whereis the exact placeof
~ (=, s) onthescaleof known negations?

Of coursewe have to definepreciselythe possibleoccurrencesf theletters in a
tautology Obviouslywe shallnotinterprets = s as~ s. Perhapét would bebestnot
to touchsuchsubformulasat all. But, whatto do with the tautologys = (4 = $)?
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Oneway is to restrictthe consideratiorto formulasnot containingthe letter s asan
antecedenfexceptthe caseof s = s). A secondway is to “incorporate”s = into
the paradigmof = s. This meansto reduceary expressionof the first kind to an
expressiorof the secondkind. Both variantswill beregarded.

Let usshortlyretracethe history of the “hidden” negationandthe mainrelatedre-
sults.Accordingto [Prior 62] (Part1, Ch. 3, 81), theideato use"maximuminference”
and“minimum somethingelse”for building up thewhole propositionalkcalculuswas
promotedby Peircein 1885andimplementedoy M. Wajsbeg in 1937. The latter
introducedthe constantf (“falsehood”)defined~ X by X = f, addedanew axiom
f = Atotheaxiomsof implication,andobtainedthefull classicalpropositionalkal-
culusin theform (=, f = A). Thealternatve way for introducingnegationwasthe
axiomaticone. Thenthefull classicalpropositionalcalculuswasobtainedagainbut
in theform (=, ~). Thetwo systemsarenot equivalentbecausehe languageof the
first oneis richer: it containsa constantwhile the secondanguagecontainsvariables
only.

Neverthelesshey areequipollent A. Churchdevotedto this questionthreepages
of his eminentbook[Church56] (§23). Thatis why we will not discusghis topicin
detail. Givenaformula B of (=, ~), afterreplacingall its subformulasof the kind
~ C with C = f, its representatie By in (=, f = A) will be obtained. Thenit
canbeprovedthat B is atheoremof (=, ~) iff By is atheoremof (=, f = A). In
this senseve may saythatthe negation~ (=, f) is axiomatizableoy the axiomsof
(=, ~).

Earlieron, A. Kolmogoros [Kolmogoraor 25 andl. Johanssofyohansso37] de-
fined “minimal” negationin two ways. The first onewasby addinga propositional
constantf to the syntaxof the positive implication =" without specialaxiomsfor
it. Thenegation~ X wasanabbreiationof X =7 f. We will denotethis form of
negationby ~ (=7, f). The secondway was axiomaticand usedthe singleaxiom
Az: (A =~ B) = (B =~ A). Denotethis form of negationby ~ (=1, Az). The
two systemsreequipollentagain.

H. Curry [Curry 63] (Ch. 6, Sec. C, 86) noticedthat Johanssotadintroduced
alsoasystemdenotedoy /7 D whichwasanextensionof (=T, Az) by theadditional
axiom(~ A = A) = A. Curry judgedthat“no applicationsare known for HD,
andthe systemhasbeenlittle studied. Johanssoi...] suggestedhatit formeda
naturalsystemof strict implication, but this hasnot beenworked out”. Adding the
Peircelaw to H D, Johanssombtainedthe systemH FE and proved that the axiom
(~ A= A) = Aissuperfluousn it. Aswesee HE = (=, Az) andis equipollent
with (=, f).

S.Kangerin [Kanger55] alsoconsideredhesystem(=-, Az) andnotedthatit was
“a wealenedclassicalcalculusin the samesenseasthe minimal calculusis a weak-
enedintuitionistic calculus”. He obviously hadin mind theaxiom~ A = (A = B)
which, whenaddedto (=, Az}, produceshe classicalcalculus,and,whenaddedto
theminimal calculus producegheintuitionisticone.Kangerprovedthateachformula
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of (==, Az) hasarepresentatie A* in (=) obtainedby replacingall subformulasof
theform ~ B with B = s (s is avariableoccurringneitherin B norin theaxiomsof
(=, Az)). Then, A is atheoremof (=, Az) (resp.(=", Ax)) iff A* is atheoremof
the classicalintuitionistic) implicationalcalculus(=-) (resp.(=")).

It will be shavn below that the answerof our questionabout~ (=, s) is: its
adequateaxiomis Az. This meansthat the two systems,(=, Az) and (=), are
equipollent.However, this factcannotbe immediatelyderived from the equipolleny
of (=, Az) and (=, f). It is not correctto transferthe operationswith a constant
to operationswith a variable, evenwith an “arbitrary but fixed” one. The syntaxof
(=) is wealer thanthe syntaxof (=, f) becausehe constantf is not definablein
(=). Furthermorethe system(=>, /) containstheoremssuchas f =~ A, whichis
obtainedrom B = (A = B) but hasno analoguen (=-). Thereforea specialproof
for ~ (=, s) is neededandit cannotbe the proof of Kanger He interprets(=-, Az)
into (=) but we needaninterpretatiorin the oppositedirection.

A shortexpositionof someresultsconcerning‘hidden” negationwere presented
in [Sotirov 01].

2. The “hidden” negation

In a two-part paperpublishedin 1967-1968Vakarelw 65], [Vakarelw 6€], D.
Vakarelw investigatedvarious aspectsof somekinds of modalitiesand negations
addedto the classicalpropositionallogic, someof them “hidden” accordingto our
terminology He axiomaticallyintroducedwo unaryoperators:D (“doubtful”) and L
(“verisimilar”). The axiom schemegbesidethoseof the classicalimplication) were
thefollowing five:

L(LA = A);

(A= B)= (LA= LB);
(A= B)= (DB = DA);
(LA= B)= DDB;
DA= (A= (LB = B)).

Let usdenotethis systemby (=, L, D). AfterwardsVakarelw built atranslation
. of formulasof (=, L, D) into formulasof (=) usingapropositionaletters, which
doesnotoccurin thegivenformulas,by inductionon the constructiorof formulas:

v:(X) = X whenX is apropositionaletter;
ws(LX) = 5= p(X) andp:(DX) = ¢ (X) = s;
(X = Y) = ps(X) = ps(Y).
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A lemmafollows: if A is atheoremof (=, L, D) then¢.(A) is a theoremof
(=). For the conversepropositionVakarelw defineda translatiory, from (=) into
(=, L, D) by inductionon the constructiorof formulas:

(X)) = X for X — apropositionalvariableor theformulas = s;
Ps(s = X) = Ly(X) andys (X = s) = Dyps(X) for X # s;
PYs(X =Y) =9s(X) = ¢s(Y) for X, Y # s.

A next lemmafollows: if A is a theoremof (=) then,(A) is a theoremof
(=, L, D). Combiningboth lemmasandusingvy.(¢:(4)) = A, atheoremis ob-
tained: a formula A is provablein (=, L, D) iff ¢<(A) is provablein (=). (This
theoremprovidesthe decidabilityof (=, L, D).) Therefore(=-, L, D) and (=) are
equipollent.

Onecancountthe resultof Vakarelw ascloseto the answerof our questionbe-
causehis D is our ~ (=, s). Two peculiaritiesof his expositionhowever prevented
thedirectanswer Thefirst oneis the “direction” of the view: Vakarelw transforms
thetheoremsf (=, L, D) into (=) while we wantto transformthetheoremof (=)
into. .. And hereis thesecondoeculiarity: the systemof Vakarelw includesl. besides
D =~. Thetwo operationdnteractin axiomsandit is impossibleto separatehem.
To reversethe directionof the view aninverseequalityis neededips(vs(A4)) = A.
Thenthe definition of ¢, mustbe modifiedwith the permissionfor s to occurin A.
Thedemonstratiors almostthesame.As aresult,thefollowing theoremis obtained:

THEOREM 1. — Aformulad isatheoemof (=) iff s (A) isatheoemof (=, L, D).

Roughlyspeakingthe systemof I and D axiomatizess = and=- s. However,
the incorveniencewith the appearancef L remains.Indeed,we could benefitfrom
this incorveniencebecausat givesan answerto the question: what arethe axioms
characterizinghe two operationgeneratedby the two positionsof theletter s in the
implication? The axiomsarethoseof L and D. However, if we insiston the unique
operationgeneratedy = s, thesecondpartof Vakarelo’s papermprovidesa solution.
Following the spirit of the paper we shall changesomedenotationsand shortenthe
proof.

LX canbe representedis DT = X with T' — a fixed theorem. This is the
mentionedabove incorporatingof the expressions = into an expressioncontaining
only = s. In addition,replaceD with ~. Denotethis transformatiorby . It is easy
to shaw thattheaxiomsof (=, L, D) sotransformedtanbededucedrom Az. Onthe
otherhand,commute~ to D in (=, Az). ThenAz sotransformecanbededucedn
(=, L, D) (actuallyVakarelo workedwith theequialentpair of axiomsfor negation
(A= B)= (~ B=~ A)andA =~~ A whicharecloserto his axiomsof . and
D). Hence

THEOREM 2. — A formula A is a theoemof (=, L, D) iff A(4) is a theoem of
(=, Az).
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Combiningthetwo theoremgjivesriseto thefollowing

CoROLLARY 3. — Aformula A4 is a theoemof (=) iff A(ys(A)) is a theoemof
(=, Az).

The corollary is an expressionof the fact that although(=) and (=, Az) pos-
sesdlifferentsyntacticcapacity they have equalsemanticapacityhaving isomorphic
setsof theorems.This is the precisesensdan which we saythat Az axiomatizeshe
negation~ (=, s) “hidden”in (=).

The translation\y; transformsa formula containingboth s = and= s into a
formulacontaining~. As we mentionedthe classof transformedormulasmight be
restrictedto formulaswithout “left s”, i. e.,without subformulasf theform s = X
(excepts = s). Thecorollary andthe axiomof ~ (=, s) would thenbe the same.
However the proofsbecomemuchsimplet

LEMMA 4. — If A is atheoemof (=) notcontainingleft s, there existsa proof of
A notcontainingleft s.

ProoF. — If A4,..., A, = A is the proof of A, replaceeachleft s in the infer-
encewith T" = s (T is afixedtheorem). A3, ..., A% = A* is obtained. To beit
aninferenceof A*, it hasto be filled out by the proofsof 7', (T = s) = s, and
s = (T = s) togethemwith the membersproviding the substitutvity of equivalent
formulas. In resultaninferenceof A* will be obtainednot containingleft s. But it
will beaninferenceof A aswell becaused* = A. ]

We shallmodify thetransformationp, of (=, Az) into (=):

vs(X) = X whenX is apropositionaletter;

Ps(~ X) = po(X) = s,

(X =Y) = ps(X) = ¢s(Y).

To prove thaty,(A) is atheoremof (=) whenA is atheoremof (=, Az) it is
enoughto prove ps(4z) = (A = (B = s)) = (B = (A = s)) butit is obvious.

Modify alsothe corversetransformatiorfor formulasnot containingleft s (except
5= 3):

1¥4(X) = X for X — apropositionalvariableor theformulas = s;

Ps(X = 5) =~ (X)) for X £ s;

PYs(X =Y) =9s(X) = ¢s(Y) for X, Y # s.

To prove that.(A) is atheoremof (=, Az) when A is atheoremof (=), it is
enoughto prove all “s-readings”of the implicative axioms. We can choosethem
tobe,say A = (B = A), (4 = B) = (B=C) = (4 = (), and

((A = B) = A) = A. Only the lasttwo axiomshave suchreadingsandthese
readingsareunique:(A = B) = (~ B =~ A) and(~ A = A) = A. Itis notdif-
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ficult to deducehemfrom Az. Again ¢.(v¥<(A)) = A. In suchaway thefollowing
theoremis obtained:

THEOREM 5. — Aformula A containingright s only is a theoemof (=) iff 1;(A4)
is atheoemof (=, Ax).

Summarizingheresults,we seethatthe weaklaw of contrapositiorcharacterizes
axiomaticallythefull varietyof negations‘hidden” insidetheimplication,boththein-
tuitionistic andthe classicalone. Rearranginghe matterandchangingthe emphases,
we find theseresultsin the paperof Vakarelow. One canconcludethatthey arenot
surprisingtaking into accountthe constructionsoy Peirce,Johansson—-#lmogoroy,
Wajsbeg, andKanger However, the next resultof Vakarela wasreally surprising.

3. 4-valued semanticsof the “hidden” negation

Vakarelw found that the logic of the “hidden” negation coincidedwith the 4-
valuedmodallogic of J. Lukasievicz [Lukasievicz 53] andthereforeit possessed
truth-tablesemantics.But a new peculiarityappearedn the proof: it usedthe pres-
enceof theclassicahegation.To carryouttheproof strictly in the systenmof theplain
implication,the multiplication of truth-tableswill beapplied.

I do not know who inventedthis method. Lukasievicz usedit in his main paper
of 1953 without references.We meetit in an earlier paperof 1950 by J. Kalicki
[Kalicki 50]. H. Rasiavain 1955appliedthe samemethodwith areferenceo Kalicki
andto a paperof 1936by S. Ja&kowski aswell. Kalicki himself called the matrix
multiplication “well-known” andreferredto a paperof 1935by Wajsbeg. And so
on...Obviously it wasfolklore of the Polishlogicians. Anyway, the multiplication
of two tablessuccessfullyworksin a casewhena new propositionaloperationhasto
combinethe propertiesof two givenoperations. shallexploreit to build a 4-valued
table for “hidden” negation. SupposeM; and M, are the matricesof two binary
operations/; and/- arethematricesof two unaryoperationsandl is the designated
truth-value. Denoteby 77 and7% the setsof tautologiesproducedby the operations
with matricesM, I, and M-, Isrespectiely.

LEMMA 6 (KALICKI—LUKASIEWICZ). — The CartesianproductsM; x Ms and
1 x I, defineoperationswhosesetof tautologiesis the intersectionof 77 and 7%,
(1,1) beingthedesignatedruth-value“true”.

In the systemof ~ , its origin (the string = s) suggestghat the tautologies
of (=,~) coincidewith thoseformulaswhich are tautologieswhen ~ is treated
both as a (classical)negation— (in the cases = 0) andthe constant‘truth” ¢ (in
the cases = 1). The samecan be obsened in the fact that the axiom of ~ re-
mainstrue when ~ is replacedboth with — and¢. It will be cornvenientfor the
further to denoteby L(A) = (I(A4),r(A)) the value of A in the setof pairsof 0
and 1. Denotealsoby — and & the non-formalimplication and conjunctionex-
presseckitherby wordsor by numbers.Multiplying the correspondin@-valuedma-
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trices of implication (obtainingthe Cartesiansquare)as well asthe matricesof —
andt, the 4-valuedoperations= and~ aredefinedby (B = C) = (I{(B — C),
T(B — C)) = (l(B) — l(C),T(B) — T(C)) = (1 —lIlp+Igle,1 —7rp +TBTc),
wherefor shorti(B) = ip, etc. L(~ B) = (1 — ip, 1). Numberingthe pairsfrom
(1,1)to (0, 0) with thefiguresfrom 1 to 4, the operationshapento Table1:

= 11234 | ~ || = Al1234 (0| 1
1112343 |2\ 4 1(1234| 2| 3
2 11133 3|13 212244 | 2| 4
311212 (12| 2 313434 | 4| 3
4 {11111 |11 414444 4| 4
Tablel Table2

REMARK. — = istheclassicahegationintroducedwith L(—B) = (1 —ip,1 —rp);
! is comingto be considered.

THEOREM 7. — Aformula A containingright s onlyis atheoemof (=) iff v, (A4)
is atheoemof (=, Ax).

THEOREM 8. — Thesystem=-, Az} is characterizedby the 4-valuedmatrix.
Theproofis givenby Lemma6 andthe constructiorof the matricesfor = and~.

We cannotice after tukasiavicz that the order of the coordinateof (1 — i3, 1)
wasof no importanceandcould be reversed.In thatcasea new operationwould be
obtainedwith thesamegroundsto becalled“negation”as~. We denoteit by ; andits
valuesareshown in thetable. tukasievicz obsereda curiousfact: thereare“twins”
in hislogic — operationswhich have the samepropertiesvhenregardedseparately
but differentwhenthey appeartogether In our setting~ and: are “twins”. The
symmetrybetweenthem canbe derived alsofrom the fact that both of them satisfy
theaxiomof the negation.As aresultthey take partin the sametautologies However
they arenotequivalent.

The"twins” helpusconstructnew intuitive semanticsptherthanthatof Lukasie-
wicz. Supposehe world is divided in two partsaccordingto somecriterion. To
give somenamesjet us call them*“here” and“there”. Our sentencesiboutthe two
“worlds” areclassical,i. e.,they aretrue or falsebut with anindicationwhere they
aretrue or false— “here”, or “there”. If, for example,it rainshere,but notthere,the
situationis determinedby the couple(1, 0), shortly denotedby 2. If it is cold there
but not here, the situationis (0,1) = 3. In sucha case,is the sentencéif it rains,
it's cold” true? It dependstheimplicationis falseherebut not there. Thereforeits
truth-valueis (0, 1) = 3. In suchaway the whole matrix of the implication canbe
filled up. It is naturalto introducea “global” negation— inverting the truth-values
by coordinates:the negationof “It rainsherebut not there” (1, 0) will be “On the
contrary it doesnt rain herebut there” (0, 1). Imaginefurtherthatin the two halves
of theworld aretwo extremelydogmaticsectseachof themderying every statement
about“that” world but confirmingasa truth everythingconcerningtheir own world.
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Sotwo “local’ negationsare obtained,~ and:. As we see,the 4-valuedlogic can
senein this mannetthe “bi-polar” thinking.

4. The “hidden” necessity

Now weturnto thesystem(=-, A}, axiomatizedasusual.Thistimetheoccurrence
of apropositionaletter s insidea conjunctionwill bereadasa necessity1 . For ex-
ample,(AAC) = A givesDA = A afterreplacingC with s . It is notdifficult to re-
alizethatwell-known tautologiegproducesomeof themostpopularlaws of necessity
e.g.,0A AOB = O(A A B) togethemwith the corverseimplication,0A = OO A,
O(4 = B) = (OA = 0OB) andthestrongedaw (4 = B) = (0A = 0OB), and
soon. Especiallythestandardepresentatioof A asA AOT (T is afixedtheorem)
will beused.The mostimportantlaw missingin our list is 07" with T — atheorem.
Respectiely, therule of necessitatiomferring 1A from A is unsound{oo. Because
the conjunctionis symmetric,we have only onepossibilityto definethe necessityoy
s. At the sametime we have to take careof somebadinstancedike s = (s A s),
(AANs)=sorevenAA(sAs)= AANs.

It will be shavn that the axioms of the “hidden” necessityare (A = B) =
(0A = OB) andOA = A. Denotethis systemby (=, A,0). It is known as
the L-modal logic of Lukasievicz althoughhis original axiom includesa variable
functor é andthereforehaswider expressve capability tukasievicz refersto anun-
publishedpaperby Wajsbeg aboutthe completenesgheoremwith regardto the 4-
valuedtruth tables.Howeverthefirst publishedoroofis thatof T. Smiley [Smiley 61].
The adequag of the 4-valuedmatricesfor the plain O-axiomstogetherwith the s-
interpretationof I canbe extractedfrom the secondpaperby Vakarelw becausdis
L and D areinter-definablewith O (using—). His proofsare purely syntactic. Ten
yearslater the paper[Porte79] by J. Porteappeared.lt containedthe adequag of
the s-interpretationfor the 4-valuedmatrices(in fact Porteuseda constantinstead
of the variables). His proof applied multiplication of matricesand obviously was
independenof Vakarelo’s papers.

The procedureof the previous sectionswill not be givenin detail but only the
mainpointswill bemarked. Of coursejt would be elementaryto reducethe modality
to the “hidden” negationusingthe classicalnegation, but we prefernot to introduce
additionaloperations.

Defineatranslationy, of aformulaof (=,0) into (=, A) usinga propositional
letter s, accordingto the constructiorof the formulas:

vs(X) = X whenX is apropositionaletter;

ws(OX) = ¢s(X) A sfor X # T (T is afixedtheorem);
s(OT) = s for T — thefixedtheorem;

(X AY) = @s(X) A ps(Y);
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(X = Y) = ps(X) = ps(Y).

In sucha way ary theoremof (=, 00) is translatednto a theoremof (=, A) be-
causethis is true for the axiomsof (=), aswe sav in our examples. For the
conversetranslationy, we have two possibilities.If s occurssomavherein A out of
conjunctionsor in s A s, theny(A) couldbe A(s/OT), T — afixedtheorem.lt is
the simplestway but thentheoremdike (s = (s A s)) = ((A A s) = A) would lose
their moreinformative imageof the form G = (OA = A) with anappropriateG.
Thatis why we preferto obtaina [-imagewhich is maximally closeto the original.
Thedefinitionof v, follows (themanipulationoverT” is not speciallydescribed):

(X)) = X for X — apropositionalvariableor s = s;
Yels AX) = a(X A s) = Opa(X) for X # s;

Ys(s A s) =0T,

P(X NY) = 9u(X) Au(Y) fOr X,Y # s;
Yeo(s=Y) =0T = ¢, (Y) for Y # s;

Ys(X = 8) =9:(X) =0OT for X £ s;

Pe(X = Y) = u(X) = (V) for X, Y # 5.

It hasto be proventhatif A is a theoremof (=, A), theny(A4) is a theorem
of (==, A,0). Considerfirstly the axioms. The axiomsof implication do not con-
tain A and come underthe last caseof the definition. The resultis obvious. If
the axiomis (A A B) = A, the possibletranslationsare (07T A OT) = OT,
(OT A 9e(B)) = OT,Oy.(A) = OT, and (Oye(A) A Ope(B)) = Oype(A)
for A, B # s (for the third formula usethe standardepresentation)All threefor-
mulasaretheoremsf (=, ). The caseof (4 A B) = B is thesame.The axiom
A= (B = (AAB)producesIT = (OT = OT), 07T = (¢s(B) = Oys(B)),
Ye(4) = [OT = Oy.(4)), andy(4) = (¥:(B) = (¥<(A4) A 9.(B)) where
A, B # s; the standardrepresentatioms neededagain. To checkthat moduspo-
nenspreseresdeducibility is not difficult becaused and B in A = B cannotbe
s. Thereforea theorenm)(B) is obtainedfrom ¢.(A) = v¥.(B) andy.(A) which
are theoremsby assumption. This time . (vs(A)) is equivalentto A becausehe
strict coincidenceof both formulaswould requiretoo complicatedrulesfor ¢, and
1s. Thereforethe system(=-, A,0) may be consideredasan axiomatizationof the
necessityhidden” in the system(=-, A):

THEOREM 9. — A formula A is a theoemof (=, A) iff ¥.(A) is a theoem of
(=, A,0).
5. 4-valued semanticsof the “hidden” necessity

To obtaina 4-valuedmatrix adequatdor the necessityalmostthe sameobsena-
tion canbe madeasin the caseof negation. Following tukasievicz, notethat the
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axiomsof O remaintrue whenO is replacedwith boththe constant'falsehood”and
the operatorof identity. The sameconclusioncomesfrom the natureof [I: because
A is generatedrom A A s, JA = 0 is obtainedin thecaseof s = 0, anddJA = A
in thecaseof s = 1.

We find a third reasorfor sucha treatmenin the fundamentapaperby S. Kripke
[Kripke65]. He deduces-CA Vv (B = OB) asatheorem(in the systemwith —)
where4 and B maybeassumecdhotto have variablesn common.Thenthetheorems
of (==, A,O) areexactly thoseformulas,which are theoremssimultaneouslyof the
two systemsobtainedby addingrespectiely -[JA4 and B = 0B asa new axiom.
Thefirst additionalaxiomreduced to the operator‘f alsehood"andthe secondone
reduces]A to A. In otherwords, the system(=-, A,0) is the intersectionof the
Falsumandthe Trivial systems.Thelastfactwasfirst noticedby A. Prior [Prior 57]
(Ch. 1). He appreciatedt asanadditionalmotivation for the two-componenheces-
sity. “Necessarilyp, Prior proclaims,on no accountassertdessthanthatyp is actually
true,andnever assertsnore thanthatp is at oncetrue andfalse(for this lastis akind
of upperlimit to all assertions— if you'd believe thatyou’d believe anything)”. His
conclusions thatt.ukasievicz'slogic is thelogic of modalitieseachof themcovering
themaximalpartof the naturalspectrunof truthfulness.

Anyway the multiplication of the two 2 x 2 matricesfor A givesL(B A C) =
(Ip&lc,re&re) = (Iple,rpre). The matrix for O is obtainedby L(OB) =
(I3,0). Theinversedisposition(0,r5) givesHl, the “twin” of O. The resultsof
renamingthe pairsof 0 and1 arepresentedn Table2.

THEOREM 10. — Thesystem=-, A, ) is characterizedby the 4-valuedmatrix.

The proof follows from Lemma6 andthe constructionof the matricesfor =, A,
and.

6. Kripk e semanticsof the “hidden” operations

Whatis the Kripke semanticsor (=, A, 0)? Doesary readyto useresultexist?
Sincel(A A B) = (OA A OB) is atheoremandOT is not, the appropriateKripke
semanticshouldbe searchedamongthoseoneswhich Kripke called “non-normal”
[Kripke 65]. They includeframesof thekind (W, N, R) whereW £ {) is the setof
“possibleworlds”, N C W is the setof “normal” worlds,and R is an“accessibility
relation”in W. A valuationV is afunctionfrom worlds andpropositionallettersto
truth-valuesO and1. V(p) is thewhole“map of truthfulness”of p in the Universeof
possibleworlds: V(p) = (v(z1,p), v(z2,p), .. .) wherev(z;, p) is the truth-valueof
pin z;. Whenuv(z;,p) = 1 we write z; I+ p; otherwisewe write z; ¥ p, omitting
the letterv. The valuationis extendedto arbitrary formulasby induction on their
construction:z I+ (A = B) iff x I A impliesz I+ B; z I+ (A A B) iff z IF A and
z |+ B; z | OA iff bothz € N andy I A for all y suchthatzRy. Adding new
axiomsof [, correspondingdditionalconditionson £ and NV arise.Sothefirstaxiom
of necessity14 = A hasasa correspondingonditionthereflexivity of R inside/N.
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Thesecondaxiom,(A = B) = (A = OB) hasacorrespondingondition: R is a
subrelatiorof identity, i. e.,if xRy thenz = y. The completenestheoremholds: a
formula P is atheoremof (=, A, O0) iff P is valid in every world andary valuation.
Theadequag of this semanticds describeddy J. FontandP. H4jek[Font, Hajek02]
with areferenceao E. Lemmon[Lemmon66].

The “hidden” negationwas definedon the basisof the classicalimplication and
it would be naturalto look for semanticof the classicallogic extendedby an addi-
tional operationfulfilling Az. A big quantityof negationswith differentbasiclogics
were studiedin the Ph. D. dissertatiorof Vakarelw [Vakarelw 77]. Unfortunately
it is difficult of accessK. Segerbeg [Segerbeg 68] built Kripke semanticgor mary
extensionf the minimal calculusof Kolmogorar—Johanssonlo sene ourlogic, the
minimal calculushasto berestrictedo implication(without conjunction.etc.) but ex-
tendedwith theconstantf. TheKripke framesfor positive implicationareof theform
(W, N, R) whereR is areflexive andtransitive relationand V is downward-closed:
if zRy andy € N thenz € N. Valuationis closedunderR: for ary propositional
variable,if x IF p andxzRy theny I+ p. For the constantf we have x ¥ f for all
z. Thevaluationis extendedto arbitrary formulasby induction on their construc-
tion: z IF (A = B) iff for all y, zRy andy I+ A imply y I+ B; z Ik~ A iff
zl- (A= f)iffforally,y € N andzRy imply y ¥ A. In suchaway, anadequate
Kripke semanticoof (=7, f) is obtained.To obtain (=, f) from (=", f), positve
implicationhasto beexpandedo classicaimplicationby adding,e.g., thePeircelaw
((A = B) = A) = A. Thenthecorrespondingonditionfor R is: R is asubrela-
tion of identity. Thisis the systemthat Segerbeg denotedby J P. Thecompleteness
theoremfor (=, f) holdswith respecto suchstructures.

Two notesareto be madehere. The first one concerns(=, f). This systemis
not (=, Az) althoughit is equipollentto it, aswe sav. Thatis why the proof of
adequayg of the samesemanticsequiressomeadditionalconsiderationsWe will not
adducethem. The secondnoteis thatin our casethe basiclogic is implicative and
no propertyof disjunctionor negationcanbeusedin thedemonstrationsThatis why
themachineryof themaximalimplicativefiltersin implicative algebrass appropriate.
Thetheoremseedectanbetakenfrom themonograplof H. Rasiava 14.

We preferto give adirectconstructiorof anew Kripke semanticsavoidingin such
a way the involvementof the relationR. The standardoroceduresncluding “satura-
tion” of filterswill beomitted. Theframesareof theform (W, N} whereW £ () and
NCW.xzlFUOAiffz € N andz IF A. It is elementaryto checkthe validity of
the two axioms. Henceary theoremof (=, A, ) is valid. In the oppositedirection,
it hasto be provedthatif A is notatheoremiit is refutedin an appropriatemodel.
As usual,this modelwill bethe canonicalone. W consistsof all maximalfilters of
formulas,N = {z | OT € z}. For apropositionalariablep, definex I p iff p € =
andextendthe canonicalaluationby inductionto arbitraryformula. Thenz I+ B iff
B € z for ary formula B. Theprooffor B = C = D isroutine. Theonly new case
is B = 0OC. LetOC € z. Usingthe standardepresentation,1C' is equialentto
C AOT. Therefore(C A OT) € z, whenceC € z anddT € z, andthen, by the
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inductionstep,z IF C andxz € N. In the oppositedirection:letz I+ C andz € N,
i.e.,07T € z. Then(C AOT) € z, thatisOC € z. Finally, if A is notatheorem,
thereis a maximalfilter 2o suchthat A ¢ zq, thereforezq ¥ A. In suchaway we
provedthe maintheoremof adequayg of Kripke semantics:

THEOREM 11. — Kripke semanticswith frames(W, N} sud that W # § and
N C W, andvaluationz I OA iff z € N andz IF A4, is adequatdor (=, A, 0).

The correspondingheoremaboutnegationis

THEOREM 12. — Kripke semanticswith frames(W, N} sudh that W # § and
N C W, andvaluationz I+~ A iff z € N impliesz ¥ A, is adequatdor (=, ~).

ProOF. — DefineN = {& € W |~ T ¢ z}. The crucialmomentis to prove the
standardepresentation~ C € z iff (C =~ T) € z. If ~ C € z,take C € z. From
thetheorem~ C = (C =~ T), ~ T € z follows. Thenfrom~ T = (C =~ T),
A =~ T is obtained.Corverselyif ~ C ¢ z, thenthetheorem(C =~ C) =~ C
givesC € z (it is the implicative analogueof the law of excludedmiddle usedin

Booleanfilters). Furtheron,C = T gives~ T =~ C. But~ C ¢ z, whence
~TgCand(C=~T)¢ x. |

Along with its simplicity, this form of Kripke semantichasanimportantadwan-
tage:it leadsdirectly to the 4-valuedsemantics.

THEOREM 13. — TheKripke frame ({z1, 22}, {z1}) (with 1 # x2) determines
(=,~) ((=,A,0)).

PrROOF 14. — Of course,each2-pointKripke modelis a Kripke model. We shall
prove thatan arbitrarymodelmentionedn Theoreml1 canbe reducedo a 2-point
one. Let us considera formula A4, which is not a theoremandthereforeis refutable
at a point zg of a model (W, Noy) by a valuationof the variablesuy. Replaceeach
subformulaof the form OB with B A OT (T is atheorem;in somecasesl’ A OT

will appear)denotetheresultby A*. A* is equivalentto A . In this semanticseither
implication, nor conjunction nor necessityntroducea new variablewhentheir truth-
valueis beingcalculated.Thatis why zg is theonly letteroccurringin vq. Therefore
everywhereinside A* we have thefollowing two possibilities:either7 is trueat zg

andthenzg € Ny, or OT is falseat zg andthenzy € Ng. In thefirst casewe can
renamez, to z; andthe secondpointin Wy to 5. In the secondcasewe rename
zo to z2 andthe secondpointin Wy to ;. As we see,now A* will berefutedin a
Kripkemodel({z1, z2}, {z1}) containingho morethen2 points. Thesamereasoning
is applicableto (=, ~). [

REMARK. — ~ T andOT arenotinterrelatecdbecausef the lack of classicahega-
tion. Thatis why N cannotbecommonbothfor (=, ~) and(=-, A, ) (in thegeneral
case).In otherwords,thetheoremcannotbe formulatedfor (=, A, ~, O).

Any valuationof a formula A in the 2-point Kripke semantican be presented
asa valuationZ in the 4-valuedlogic in sucha mannerthat V(4) = L(A). To
prove this recall the notationsintroducedfor 4-valuationsand useinductionon the
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constructionof A. For a propositionalvariablep definei(p) andr(p): V(p) =
(v(z1,p), v(w2,p)) = (I(p),r(p)) = L(p). Suppose’(B) = (v(z1, B), v(z2, B)) =
(i(B),r(B)) = L(B) andanalogouslyfor C. Thenwe obtainfor =:
V(B=C)=(v(z1,B=C),v(z2, B=C)) =
(v(z1, B) = v(21, C), v(22, B) — v(w2,C)) = ((B) = U(C),r(B) — r(C)) =
(I(B=C),r(B=C))=L(B=C).
Thechainof equalitiesfor A is analogousFor ~:
V(~B)=V(B=~T)=V(B) = V(~T) =
(v(mlv ) (332’ B)) - (v(mlv ~ T)v U(aﬁg, ~ T)) -
(v(21, B), v(w3, B)) — (0,1) = (1 —v(z1, B),1) = (1 - I(B), 1) = L(~ B).
Finally, for [J:
V(OB) = V(B AOT) = V(B)&V(AT) =
(v(z1, B), v(za, B))&(v(z1,0T), v(ze, O
(v(z1, B), v(z2, B))&(1,0) = (v(z1, B),

In suchaway we provedthefollowing

T)) =
0) = (U(B),0) = L(B).

v(z1,

THEOREM 15. — Any 2-pointKripke modelgeneatesthe 4-valuedtablesof tuka-
siewicz.

COROLLARY 16. — Aformula A is a theoemof (=, ~) ({(=, A,00)) iff it is a 4-
valuedtautology.

This is a new proof of the completenestheoremof the 4-valuedlogic avoiding
the presencef classicalnegation. It alsoexpresseshe connectiorbetweerthe four
truth-valuesof Lukasievicz’s logic andthe distribution of the truthfulnessbetween
two possiblepartsof the humanknowledge: one of themrecognizingall thatis ac-
tually happeningasnecessarythe othercompletelyindeterministicand derying ary
necessity

7. Concluding remarks

From the point of view of Kripke semantics— a point naturally unknovn to
Lukasiavicz, the operations = (Vakarelo’s L) is a bettercandidatefor “necessity”
fulfilling thebasicaxiomsfor the“normal” Kripkesemanticst(A4 = B) = (0OA =
OB) togethewith OT for T — atheorem.However the necessityso obtainedpos-
sessesheimplausibleproperty4 = A whichis typical for the“possibility”.

I will neithercriticize norjustify Lukasievicz’s4-valuedogic. Mostprosandcons
aresummarizedn therecentlypublishedpaperby Font andHajek [Font, Hajek 02].
The main contribution in my paper if ary, is hiddenin its title: this logic livesin
classicalogic per se Whetherwe like it or not, whetherwe appreciatéts modalities
or not, it existshiddenin classicalogic.
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