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MODAL THEORIES WITH INTUITIONISTIC LOGIC

Viadimir H. Sotirov

A few basic types of intuitionistic ‘modalities are considered. The minimal intuitio-
nistic modal logic (/ML) is an expansion of the intuitionistic propositional calculus by a

new operator M together with the rule ; the modality M may be -inferpreted as a

MA=MB
“necessity” T (with additional axiom M[AAB]=MAAMB) or as a “possibility” ( (axiom
M{Av B]=MAvMB) with or without the rules of normalization (p% and — Il“il respecti-
|
vely). Adequate algebraic; topological, Montague and Kripke semantics are introduced for
these basic logics and for some extensions of theirs. A %reat number of JML-s are proved
to have a finife model property (f. m. p.). Examples of JML-s without the f. m. p. are
shown, too. A more important example is thai of a logie which is an extension of Dum-
mett’s LC (it is' well known that any non-modal exztension of LC has the f. m. p.), its
corresponding classical logic has the f. m. p. (moreover, (1A=A is provable classically and
so its classical analogue is fictiously modal), and finally (1A=A is true on any finite mo-
del for that logic (so its proper modal theorems can be separated by infinite models only).

1. INTRODUCTION

If one looks through. the existing literature on.intuitionistic modal lo-
gics he will undoubtedly notice a peculiar regularity : there is an outburst
of interest in this topic each decade.

As it seems to us the first relevant paper is the 1948 work of Fitch
[19], where he proves by a purely syntactical method some theorems in the
intuitionistic modal predicate calcuius, extended by Barkan formulas for [
and O. In the paper [21] Bull considers the intuitionstic analogue of 85,
introduced by Prior as early as 1957 [20], gives a characterization of its
algebraic models and proves the finite model property. Later he achieved
the reduction of this system to the monadic intuitionistic predicate calcu-
lus [23). In 1968 Minc gave a deciding algorithm for the same system
in- [24], where he considered also the intuitionistic predicate calculus, exten-
ded with Prior’s axioms. Besides this, in 1965 Bull [22] introduced an intu-
itionistic analogue of 85, which corresponds to our Z85 ((1+ ¢ ), and pro-
ved by the normal form method a theorem similar to our Corollary 5. He
introduced also a system denoted by him JM (which we treat here under
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the name Mon3 () in theorem 11), gave an algebraic characterization and
using it proved the decidability of /M. In the same paper he investigated
several extensions of the same system (amongst which we can find our
184 ((J)) and proved their decidability.

In 1975 there appeared two papers of Gabbay [25, 26]. In the second
paper he gave a semantics for the case of JK ({J). In a series of papers
{27—31] FisherServi considered the reduction of intuitionistic modal
logics to bi-modal logics of S4-type: the S4-imodality covers the intuitio-
nistic connectives, and the additional modality represents the intuitionistic
modality. In the first paper however she reduced only the intuitionistic $5
to the bi-modal §4-85 system. In [29] analogously to the monadic algebras
of Bull, she defined the monadic Heyting algebras, which serve at the same
time fo imodel the monadic predicate calculus and the modal logic from [21].
In the last paper [30] she tried to obtain a Kripke-style semantics from the
reduction procedure. Given a bi-modal S4-logic and a classical modal logic L,
she defined the intuitionistic analogue /L as the set of formulas, valid under
the reduction into the bi-modal logic (when the second modality of the
latter satisfies the axioms of L). This procedure generates a relational se-
mantics. Her basic result is that a formula of the intuitionistic modal logic
is valid in the obtained Kripke semantics iff it is provable in the ahove
described sense, i, e. if its traslation is valid in the semantics for the bi-
modal logic. It is not clear however, whether this analogue is axjomatizable
at all and can one get the most natural intuitionistic modal logics as, for
example, 184 from [22]. ' '

In his recent paper Ono considered several classically equivalent but
intuitionistically different -analogues of 84 and §5. He presented a-Kripke
semantics and proved the finite model property [32,33). . =
- As far as [34] and {35] are concerned it should be mentioned that
while in the first paper we have a purely syntactical way of introducing
intuitionistic modal logic (/ML) in the second the author provides a seman-
tics for a minimal non-normat FML. This paper however contains a serious
error: the < relation is pot in any way connected with R and R* (for the
modalities (7 and ¢). So we cannot prove that from x||[—A and x<y it
will always follow y|-— A. Hence, the correctness theorem formulated there
is not true and therefore the semantics is not adequate, _

This brief historical survey shows that there were at the time of the
writing of the material,” presented below, several important open questions
in the field of IML: o o _

1) Semantics for the weakest JML-s (non-normal and so on).

2) Syntax and semantics for logics with ¢ -as well as 1.

3) Connections with the classical bi-modal logic and with the bi-topo-
logical spaces. - _ . -

4) General methods for proving decidability.

5) The finite model property of IML-s. - Ce e

In the present paper we give  solutions to-some. of this-problems. Na-
mely we present Montague, topological ‘and Kripke semantics, prove- seve-
ral- completeness results. In the last.part. we study the. finite model property
(f. m. p.) and show that it is in.a way absolute.- We give :examples. of
intuitionistic modal. extensions of 784 for which the f.'m, p. fails. We dis-
cuss -also the question of decidability of IML-s. _ _ -
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2. MONTAGUE SEMANTICS

Here we investigate the intuitionistic propositional calculus, extended
by a new unary connective M. We call it “modality”, but as the only re-
quirement for M is the extensionality principle: if A and B are equivalent,
then MA and MB are also equivalent, it is clear that M can be interpreted
not only as modality but also as, for example, deontic operator and so on.
Different kinds of negation have this property too. Thus one may think a
part of this paper as a study of the most general type of negation, added
to intuitionistic logic. On the other hand, there are operators, which are
clearly non-extensional, e. g. “I know that...”: if I know that A and A
is equivalent to B then it is not always the case that I know B becausc
the logical equivalence could be unknown to me.

The system under consideration will be called intuitionistic modal pro-
positional logic (IMPL). -

The language of IMPL contains propositional variables: p, ¢, 7,...;
the propositional constant 0, the connectives A, V, = and M; the sequent
symbol < and parentheses [,]. The formulas 4, B, C,... are obtained
from the atomic formulas (variables and 0) by applications of the connec-
tives. The negation of a formuta A denoted 1A is defined as A=0. Further
we set 1=0=0.

1f A and B are formulas, then A< B is called a sequent. Basic seqitents
are the sequents of the folliowing kind: . ‘ o

| A=A AAB=A, AAB=B, 0=A,
)  A<AVB; B<AVB, [A=BIAA<B.
AszB denotes the pair of sequéxlts [A<B, B<A}.
The following:are the -rulés of inference: : o
' A<B BsC ~AsB. ASC  A=C, B=C ANB<C - A=B

A=C ’ AsBAC AVB=C’' A=8=(C" MA<MB
D n : ’ . . = . AE B
(the last rule gives the extensionality principle m).
A proof is a finite sequence of sequents S, ..., S, each member of

which S; satisfies one of the conditions:
1. 8, is a basic sequent;
P
2. @/<?) &~ is an instance of a rule;

. .LS;'- Sk . . .

3. (3, k<i) 5 s am instance of a rule.
As usual we call a sequent provable if there exists a proof with last ele-
ment equal to the sequent. :

Detinition. A formula A is provable (|- A) iff the sequent 1=<4 is.

From now on when. mentioning a sequent A=<B we shall consider it
provable (unless the contrary is stated explicity). :

Proposition 1. A<B iff |-A=2B.

We omit the easy proof. : :

The logical calculus just introduced will be denoted by M. Usually we
shall identify the logics under consideration with the set of formulas pro-
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vable in them (and sometimes with the set of provable sequents) and cm-
ploy the notstion Li— A for A¢L, if L denotes a logic.

We go on now to study the semantical characterization of M.

Definition. A Montague frame is an ordered triple (K, <, R
where :

1. K+ (@ is the set of states or possibie worlds x, »z...

2. = is a binary reflexive and transitive relation in K:

3. RC KxX2K;

4. for PC K we have: xRP and x=y imply yRP.

Definition. A Montague model is an ordered quadruple (K, =,
R, |—) where:

l. (K, <, R) is a Montague frame;

2. |l (the forcing) is a relation between states and atomic formulas
(x|—4A);

3. (vxeK) (not x[—0);

A x=y and x||—A imply y| - A4, for all atomic A.

We can extend the forcing to a relation between elements of K and
arbitrary formulas, by induction on the complexity of the formula: x[[—AAB
iff x|l—A and x|—B; x!'—AVB iif x|—A or X|—B; x|—A=B iff
for all y=x, y[|—A implies y|l—B; x{—MA4A ift xR{y|y|— A4} Let us
n(!)te that it follows from the definition that x|-— 4 iff for all y=x, not
yi—A

From now on we denote {x/x |— A} by H(A). _

Proposition 2. For any formula 4, if x[-—A and x.<y, then
yli—A).

| The proof is by induction on the complexity of A. The case of M fol-
lows from the monotonicity condition on R: if X |-—MB then xRH(B), and
from y=x it follows that yRH(B), i. e. y|—MB. :

Proposition 3. In any Montague model for arbitrary x: x|—1.

Definition. A formula A is frue in a model (K, <, R, ||—) iff for
all x¢K, x{[—A. A sequent A=< B is true in a mode! iff for all x¢K,
x|!— A implies x||— B.

Definition. A formula (sequent) is valid in a ‘Montague frame
(K, =, R) iff it is true in all models of the kind (K, =, R, {[—). A for-
mula (sequent) is Montague walid iff it is valid in every Montague frame.

Proposition 4. A formula A4=B is true in a model (valid in the
frame, valid) iff the sequent A<B is true in the model (valid in the frame,
valid),

The proof is easy. From it we get that a formula A is true in-a mo-
del iff 14 is.

If we denote {y|x<y} by L(x), we can introduce sei-theoretic ope-
ration = as follows:

P=Q 4 {xILx)nP= Q).

Now we can rewrite some of the facts about Montague models. Let x
be a point in a model, 4 and B — formulas:

x € H(A) implies L{x) < H(A);
HO)=g;
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HANB)=H(A) N H(B);
H(AV B)=H(A)U H(B);
H(A = B)=H(A)> H(B);
HMA) ={x| xRH(A)};
A=< B is true iff H(A)< H(B);
A=B is true iff H(A)=H2B).

Lemma 1. If a sequent (a formula) is provable, then it is valid.

The proot goes by checking the validity of all basic sequents and estab-
lishing the fact that the rules preserve validity.

For the proof of the converse we need the theory of pseudo-Boolean
algebras (cf. [3]). Here we adopt the following view: a pseudo-Boolean
algebra (pBa) is an algebra with three binary operations (A, V, =), a
constant 0 and a reflexive and transitive relation on it (=), so the diffe-
rence from the well known definition lies in the fact that < is not in
general a partial order. But apparently postulating the relation == (where
a=b is a<b and b=a) to be a congruence, the quotient algebra of ==
leads to the usual notion of pBa. We prefer this more general approach in
order to by-pass the construction of the so-called Lindenbaum aigebra and
work directly with formulas and not with equivalence classes.

Proposition 5. The set of all formulas in the language of the
calculus M forms a pBa.

Definition. A subset x of a pBa is called a filter if:

2) aex and a=<b imply b¢x,
3) a¢x and bex imply aAbCx.
It is easy to check that these conditions can equivalently be replaced by:
1) a==1 implies a¢x;
2)a=>bex, atx imply b¢x.
Here 1 is 0=>0 or if we set Ja=a=0, | is 70.

Definition. A filter is prime if it is proper (i. e. does not coincide
with the whole pBa) and for all a, &: a\Vbex implies a€x or bex.

It is shown in [3] that for any subset x of a pBa the set {¢|(3a,,...,
a,ex)a N\ Aa,<<c} is a filter. We say that this is the filter, generated
by x. For a given subset x and an element ¢ in a pBa we say that a filter
is generated by x and g if it is the filter, generated by x | {a}. We denote
this filter by (x, a).

Lemma 2 If x is a filter and a=b6¢ x, then b¢(x, a).

Lemma 3. If a filter y, does not contain an element & then it can
be extended to a proper filter y such that b4y, too.

These are standard facts and can be found for example in {4].

Lemma 4. I x is a filter, a=b ¢ x, then there is a prime y: x < y,
acy, b¢y.

The following notion is dual to the notion of filter. It is studied in
detail -in [9]. .

- Definition. A subset x of a pBa is called a co-filter if:
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1) it is 2 proper subset;

2) aex and a<b imply b€ x;

3) avvbex imply atx or béx.
It is easy to establish the following

Proposition 6. A subset of a pBa is a prime filter iff it is a
filter and a co-filter at the same time.

Lemma 5 (interpolation). If x is a filter, m — a co-filter, x < m,
then there is a prime filter y such that x = y < m.

Proof. Consider the set of all filters 2, such that xSz 1t s
immediately clear that under inclusion this set is a partially ordered set
satisfying Zorn conditions. Pick a maximal element y. This y'is an exten-
sion of x and y < m. We-are left to show .that v is-prime. If a\V/b¢y but
neither a¢y, nor b¢y, then-(y,-a) and (y, b) are extensions of y and (as
can be easily shown) proper. Further x < (y, a) and xC {3 b). At least
one of them is contained in m, because otherwise we can. find _uE(y, ay
and ©¢(y, b) such that #¢m, v¢m and consequantly u\vém (m is a co-
filter). From here we get a contradiction by a fam:llar argument uNTey
and at the same time y < m. '

This proves the lemma. '

Now we are able to show the: followmg

Lemma 6. If a sequent (formula) is Montague-valid then it is pro-
vable in the calculus M.

Proof. We prove 'the contraposntlon 1f a formu!a (or & sequent) is
not provable then it is not true in a suitable Montague-model In fact we
can do a bit more — to construct an universal model in the¢ sense that any
non-provable formula is refuted in it. Such a model is the cannoenical one.
Moreover we shall build two models which differ in respect to the defi-
nition of R.

Let K be the set of all prime filters in. thc pBa of formulas. The rela-
tions = is inclusion — clearly it is tramsitive and reflexive (in fact — -
partial order). Let A(A4) denote the set of all prime fiiters containing A.
We can define in two different ways R between prmle filters and subsets

of K:
xR'\P iff (gA)[P; A A) and MAEx],

xR2P iff (yA) [if P=h(A) then MA¢ x).

R! is familiar from other papers on Montague semantics-[6, 7, 11, 13]
Unfortunatelly R' is not sufficient to eover all the logics (even in the clas-
sical case) in which M is interpieted rather as “possibility” then as “ne'c’és-'
sity”. For the former we shall use R2,

Now we show that (K, <, RY) and (K, <<R?) are Montague frames.
Assume that xR'P, i. e. for som_e A, P=m(A) and MA¢x, and at the same
time x=2y (that is x < y). C]early we have MA ¢y, too. So, yR'P. The mo-
notonicity condition for R2is establlshed in the same way. Note that xR'P
implies xR*P.

We can define Montague models on these two frames, settlng x[—A
iff Acx, for atomit formulas.

As all prime filters are proper it is clear that (yx) (not xj|— Q). Again
il x<y and x|}—A4, then y{—A (for atomic formulas). Extending f-— to
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the set of all formulas following the inductive definition, we are able to
show that for arbitrary formula F: x|—F iff F¢x. The proof of this fact
is standard and exploits the properties of the prime filters. We mention
explicity only the case of modality M. Cousider first the model with R\
If x]—MA, then xR'H(A) and there is a formula B such that A(A)=#h(B)
and MB¢x. But using the induction hypothesis we have H(A)=/4(A) and
so A=B is true in the model. By the extensionality principle we have
MA=MA true in the model, and MA¢ x. In the opposite direction: if MA¢x
then, since H(A)=~hA(A), we immediately get xR'H(A), therefore x[|—MA.
Now for the model with R2: if x[—MA, then xR*H(A) and MA¢x. In
case MA¢x, we have B(A)=h(B) and A=:B true in the model, so MA=MB
is true. This implies that MB¢ x and xR3%(A) but the induction hypothesis
gives A(A)== H(A) and therefore x||—MA.

To end the proof assume that A=A is not provable. Then the filter x,
generated by A is proper (B does not belong to it) and can be extended
fo a prime Tilter x, such that B¢.x. Then x{—A but xjl~-B by the pre-
vious consideration. Thus the sequent A=<B has at least two countermodels.

In this way we have proved

Theorem 1 (Montague-completeness). A sequent (formula) is pro-
vable in M iff it is valid.

M is a very general modal logic and the operator M has no special
properties besides the extensionality. On the other side the relation R is
arbitrary (but monotone with relation to =), It is clear that we should be
able to treat more specific systems with the connective M containing axioms
which describe it either as “necessity” or as a “possibility”. We can extend
our completeness proof to several such systems just by imposing additional
conditions on the relation R. These systems are obtained from our basic
system M by additional axioms and additional rules. Sometimes these will
be called proper modal axioms and rules.

Definition. A logic L is complete for a class .# ol Montague
frames if any formula (sequent) is provable in L iff it is valid in every
frame from ..

Now we introduce a two-sorted language of Ist order with threc
binary predicates: =<, ¢ R. The variables of the first sort range over ele-
ments of the frames, and variables of the second sort — over special sub-
cets of the frames. A condition C on a frame is simply a formula (or a set
of formulas) in this language.

Definition. We say that a sequent S (a rule P) is adeguate to a
condition C iff the logic with additional axiom S (additional rule P) is
complete for the class of Montague frames determinated by the condition C,

In practice we have to check that all additional axioms are valid in ail
frames of the class, determined by C, that all additional rules preserve this
property and, on the other hand, that any unprovable formula has a coun-
termodel in the same class of frames, in order to prove the adequacy. In
most of the cases we just show that cannonical frame of the logic belongs
to the class of frames satisfying C.

Definition. A logic is Montague-complete (or simply complete)
if it is complete for some class of frames. (It should be noted that some-
times the class of frames cannot be described in the language we have
introduced.)
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Theorem 2. The following axioms and rules are’ adequate to the
conditions on the right:

MAAMB=M[AA B) If XxRP and xRQ then xR(P(\Q)
MA=A if xRP then x(P
A
M1 o 1g) xRK
M[AvB]<MAvMB it xR(PJQ) then xRP or £RQ
A=MA if x¢ P then xRP
74
jMG (or =M ) not xR¢

The proof goes along the lines given abave, It is left to the reader to
check the validity of the sequents in all frames of the corresponding classes,

It can be seen that the first group of axioms are typical for “necessity”
while axioms of the second group exhibit some of the features of “possi-
bility”.

For the proof of the remaining part of our theorem we use the can-
nonical frame with R for the first group and with R? for the second. Let
us consider an instructive example: take the firsi condition, and let xRP
and xR'Q in the cannonical frame, i. e. for some A and B we have P=h(A),
Q=~(B), MAcx, MBex. But x is a filter and so MAAMB¢x and using
the axiom M[AAB|¢x; besides. this P Q=h(AMNABY=H,AAB), hence
xRY{PN Q). -

We assume that the proof of Theorem 2 is clear now.

A typical rule that distinguishes modalities from other connectives

(as negations for example) is the monotonicity rule: A=5B We cail

MA<MB =
a logic monotone if it is closed under this rule. ,
Proposition 7. Monotonicity is adequate for the condition “if
P<Q and xRP, then xRQ".
For the proof of this fact we have to introduce new relations R in the
cannonical frame:

XRWP iff (3AYA(A)S P and MA¢x),
xR® P iff (ywA)(if H(A)= P then MAC x).

Now it is not difficult to prove the proposition.

The troubling feature of this method of proof which was originated by
Gabbay (6] is that we in fact change the relations in the cannonical
frame. Now if the logic is not monotone we have to use R! or R2 but if
we add the monotonicity rule, then we are forced to switch to R or R,
That is why there follows an exposition of a more direct methed of proof,
that was invented (in the classical case) by Segerberg [7]). His proof
however, contains a mistake, corrected in the paper of Chellas and Mc
Kinney [8] _

We give now the proof of Proposition 7 by a variant of this method.
The validity of sequents provable by monotonicity rule in all frames with
the corresponding condition was already established, so we treat only the
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second half of the proof. By Theorem 1 we have that all unprovable in M
sequents are refuted in two models (K, =, R, |—) and (K, =, R, ||— ).
On that base we can define two new models: (K, =<, R: =) and (K, <,

RE, |-=- ) by postulating

xR'P itf PP~ < P and xR'P7),

<RP iff (yPHYP < Pt implies xR2Pt)
and x|-= A4 iff x|—A for atomic formulas A. Clearly R! and R? are mo-
notone. We are going to show that for an arbitrary A, x[-= A iff x|— A,

if the logic is a monotone extension of M. All other cases being trivial
we check only formulas of the kind MA. Take R': if x{—MA then auto.
matically x |- MA; if x - MA, then xR'H(A), i. e. for some P~: P~ H(A)
and xRP—, but P~=H(B) for some formula B (from the definition of (R')
and MB¢ x. Now the monotonicity implies that MA¢x and so x| —~MA. If
we are in the model with R? it is easy to show that x|l MA implies
x i—MA; for the opposite implication: if not (x||—*MA) then for some P*,
H(A)c Pt and not xR®Pt, then there exists B such that Pt== H(B) and
MB¢ x. From this and monotonicity we get MA¢x, i.e not (x|-—M(A).

By the same method we can prove that for any axiom or rule from
Theorem 2, monotonicity rule -+ axiom are adequatc for the condition from
Proposition 7 plus the condition from Theorem 2 which corresponds to the
axioms or rule. It should be noted that in {he papers mentioned above
there is no analogues of our R?, R® or R~

Now we change the relation / in a Montaguc frame (K, <, R) to an
operation J, which maps 2K into 2K, Define: JP={f[{RP}. We get the so
called modified Montague frame (K, <, Jy and J and R are connected by
xRP ift x€JP. Note that we have the following property: if x¢J# and
x<y, then y¢JP. Also H(MA)==JH(A). It is easily seen that the two mo-
dels (K, <, R, [[—) and (K, =, J, ||—) are equivalent. Using the new
symbols we can simplify and extend Theorem 2 and Proposition 7.

Proposition 8 The following axioms and rules are adequate to
the given conditions:

A=B
C MA=ME ' it P<Q then JPC IO
| or M[AA B]=MA, or XPNQ)CIP,
% or MA=M[Av B] or JIPSHPUQ)
' M1 (or ﬁ%) JK=K
. MO Ig=o
MA=: A IPcp
# MA=MMA JPcllp
. A=<MMA PclipP
J[AAMA] PNIP=y
. MO Ig <K
MAAMB=M[AA BJ I1PNIQ S IPHIQ)

147



A
MO (or %ﬂ) JG=
A<MA PcIp
MMA<MA JPeJp
LMAVBI=MAVMB  (PYQISIPYIQ

The proof is left to the reader. We just mention the definition of J!
(which corresponds to R') in the cannonical frame for the axioms of the
second group:

{x|MA¢€x} if P=A(A) for some A,

JiP—
& otherwise,

and J? for the axioms of the third group:
{xIMAcx} if P=h(A) for some A,

S2P=
{K otherwise,

Note that due to the extensionality principle the formula A appears
vacuously in the definitions of J.

Sometimes we are interested not only in adequacy (completeness with
respect to some condition) bt also in Characterizability.

Definition We say that a formula A (a sequent A==B) characterizes
the condition C, if A(A<B) is valid in a frame iff this frame satisfies the
condition C, A rule P characterizes C if it preserves validity in the frame
just in case the frame satisfies C. _

Now define a translat on § from the modal language into a set-theore-
tic language with constants X, @, N, U, =, J, — and variables P, (),
R,..., ranging over cones of K. A cone is a subset of K growing upwards
w. I t. <.

S(p)=P, S(g)=Q,... for propositional variables p, g,...
S(AAB)=S(A)n S(B),

S(AV B)==S(A) U §(B),

S(A= B)=S(A)=S(B),

S(MA) = JS(A),

SO =@, S(1H)=K.

Theorem 3. A formula A characterizes the condition S(A)==K in a
Montague frame (K, <, J), a sequent A<B8B characterizes the condition
S(A) < S(B).

The proof is clear, It is sufficient to establish by induction that if for
a given i|—, H(p)=8(p), then for an arhitrary formula A we have the
same : H(A)= S(A)

The connection between completeness and characterizability is quite
interesting. If a logic L which is obtained by adding an axiom A to' M, is com-
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plete for any class of frames, then it is complete for the class of frames
determined by the condition S(A)=Kover cones and this class is the great-
est class with such a property. Analogously we can prove

Proposition 9. If a logic with additional axiom A=A is complete
then S(A) & S(B) over cones determines the maximal class for which the
logic is compiete.

In this way the question about the form of the adequate condition (if
the logic is complete) is solved for the case of Montague frames and a
useful description of one of the classes for which the logic is complete is
given.

3. TOPOLOGICAL SEMANTICS

In this Section we investigate the possibility of topological interpreta-
tion for a fairly wide class of ZML-s and not only for the most “obviuos”
one, such as for example intuitionistic $4, taken moreover with “necessity”’
only. Our aim is to define a suitble translation into bi-modal classical
logics, working in a variety of cases (not only in the case of §4-§4 classic-
al bi-modal logic).

The well known Godel translation W of intuitionistic propositional
claculus into S4 has the following characteristic property :

A is provable intuitionistically iff $4} - W(A).

From this property and the usual Kripke semantics for 84 one can
obtain Kripke semantics for intuitionistic propositional calculus [11]. However,
§4 has Montague semantics, too. It is interesting to see what kind of semantics
does the Godel translation generate in this case. The answer is: The induced
semantics is the topological interpretation, familiar from the days of Tarski and
McKincey. Below we generalize this interpretation to JML-s and especially to
184 (C) and 184 (¢). In fact we give a general translation into the bi-
modal M-84 logic and get a semantics for the IML-s, which should be
called “Montague-Montague” interpretation.

Definition. A generalized topological space is a set K0, to-
gether with two operations on subsets of X:1 and J, satisfying :

K=K, 1P P, IPC P, (PN Q)=IPN1Q, UP=JP.

Clearly [ is an interior operation and generates a topology in which alt
sets JP are open. Given a generalized topological space (K, I, J) and an
evaluation of the propositional variables p, ¢, 7,...; @ p)— an open subset
in {K, I}, we can extend it to evaluation 2(A) of an arbitrary formula A4:

AANB)=o(A) [ 0(B), WAV B)=v(A)Un(B),
WA= By=1 (@A) U uB)). ©(]1A)=1 (@A)
O oMA)=Jv(4)

{(here is the complementation operation). A formula A is called valid
in space (K, L, J) if w(A)=K and topologically wvalid (top-valid) if it is
valid in every generalized topological space.

149



In accord with the natural usage a space with evaluation in it should
be called (generalized) fopological model. 1t is easily seen that always o(A)
is open. :

Now given a Montague model (K, =, J, |— ) we define the corres-
ponding top-model by £¢IP iff L{{) = P; »{p)=H(p) and so on... These
two models are equivalent in the following exact sense:

Lemma 7. If (K. I, J, v) corresponds to (K, <, J, |-~ ) then for
any formula A we have o(A)=H(A), i. e. x| A iff xcv(A).

Proof. By induction on the complexity of A.

By Lemma 7 if a formula (or a sequent) is top-valid it is Montague
valid and vice versa. [Hence all provable in M formulas are top-valid.

Theorem 4 (topological completeness). The logic M is complete for
the class of generalized topological spaces.

How can we go from spaces to frames, Given a space (K, I, J) we
define (K, <, J) by x=<y iff (yQ)[if x¢IQ, then y¢ Q]. 1Q <Z @ implies
that =< is reflexive, 1Q < IIQ — the transitivity of <. Moreover since JP is
open, if x¢JP and x=<y, then y¢JP. Unfortunatelly we cannot prove that
the two notions -— spaces and frames are equivalent, in particular because
every quasi-order generates a topology, but certainly not every topology
is generated by a quasi-order (in such topologies for examples we have
[N P=,1P; which is not generally true). We are able however to prove
the weaker (but nevertheless usefull)

Lemma 8. If a given additional axiom is without implication (and
consequently without negation) and is valid in every Montague frame (X,
<, J) from a class, defined by a condition Con J, then it is valid in every
space in the class of spaces (K, I, J), determined by the same condition
C on J.

Proof. If A is refuted in a certain topological model (K, I, J,
with J satisfying C, we consider the generated Montague mode! (K, <,
J, |— ), where x!—p iff x¢o(p), for variables p,... Clearly the frame
(K, =<, J) is from the class given by C. By induction on the complexty of A4
we show that A(A)=v(A) and so A is not true in this specific model. The
same proof holds for sequents A=< B, where A, B do not contain =, 7.

This lemma shows that the connection between topological spaces and
Montague frames is rather tricky. Nevertheless, it gives the opportunity to
automatically transfer results about Montague-completeness to the case of
spaces. In the following theorem we describe topologically a wide class of
IML-s (for the first time):

Theorem 5 Any of the extensions of M mentioned in Proposition 8
is complete for the class of generalized topological spaces, satisfying the
corresponding adequate condition.

The proof is an easy consequence of Lemma 7 and of the observation
that all axioms can be written in the form, required by Lemma 8.

Now, we turn to a more detailed investigation of the intuitionistic
analogues of §4. From now on we use [ instead of M. The classical
Lewis’ system 84 is defined by certain axioms (see [11]), for I§4 ([7) we
take the same axioms. In particular DA< A, DA<=T0A, O[AAB)=JAA B,
11 are axioms of /84 ().

By Theorem 5 we have the following adequate conditions for these
axioms: -
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JPS P, IPC JIP, JIPNQ)=IPNIJQ, IK=K.

It is clear that the operator J becomes a second interior operator and we
get a second topology on K, which is weaker then the topology generated
by L If we adopt the name of interior bi-topological spaces for such general-
ized spaces, where JP is open in the other topology, we can formulate
Corollary 1. 184 ([1) is complete for the class of interior bi-topo-
logical spaces.
If we go from J back to relation R then we get the following:

xRK, if xRP, then x¢P;
- if xRP, then xR{y|yRP};
if xRP and xRQ, then xR(PNQ);
it xRP and P Q, then xRQ;
if xRP, then x¢l1{y|yRP}.

Reading xRP as “P is a neighborhood of x” we readily recognize in the
first five conditions the properties of neighborhoods of points [9]; the last
condition expresses the fact that if P is a neighborhood of x, then x be-
longs to the interior of the set of afl points, that have P as neighborhood.
If we define the new topology as the collection of all sets that are neigh-
borhoods of all its members, then we have the same topology as generat-
ed by J, but “described” in more “antique” way.

It is known that 84 classically can be formulated with “possibility”¢.
Now I§4 () is the system with additional axioms:

700, SIAVB[=0AV OB, A< A, O OA<OA.
They can be equivalently replaced by:

100. 55505+ OAVEI<0AV OB, A<OA, 0 0ASOA.

Using Theorem 5 we obtain the following adequate conditions for 184 (0)
(we use D for better readability):

D@=@, D(PUQ)=DPyDQ, P=DP, DDP< DP.

As we see D also generates new topology, but now D is interpreted more
naturally as closure operator. The fact that DP=IDP shows that any closed
set in the second topology is open in the main topology. Let us call such
bi-topological spaces closure bi-topological spaces.

Corollary 2. IS4 ) is complete for the class of closure bi-topo-
logical spaces.

Next to discuss is a translation of JML-s into the classical bi-modal
logic. _

Definition MS4-bi-modal logic we call the classical §4 extended
by a new modality M together with the rule ﬁ—ffzz—:g and the axiom

MA<[MA. ,
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Lemma 9. MS4 is complete for the class of models (X, R, J, ||-—)
where (K, R, |— ) is a classical Kripke model for §4 (R —- transitive and
reflexive) and J satisfies “if x¢JP, then xRy implies y¢JP”, and also
H(M(A)=JH(A).

Lemma 10. M$4 is complete for Montague-Montague models of the
type (K, L J, |~ where I(PNQ)=IPNIQ, IK=K PSP, IPCIIP,
JPC WP and H(NA)=1H(A), HMA)=JH(A).

The transiation W from M into MS4 is defined as follows:

W0)=0, W(p)="ip, Wig)=11g,...;
W(ANB)= WA\ W(B), W(AV B)=W(A)V W(B),
W(A=B)=1(OW(A)V W(B)], W(MA)=MW(A),
WA= B)=W(4)< W(B).

Lemma 11. A formula A (sequent 4=<B) is valid in Montague nio
dels for M iff W(A) (W(A)=W(B)) is valid in models for MS4.

Lemma 12. A formula A (sequent A=<RB) is top-valid iff W{A4)
(W(A)<=W1(B)) is valid in all Montague-Montague models.

The proofs of these two lemmas are based on transforming a counter-
model of one type into a countermodel of the respective type, they do not
present any special difficulty and are left to the reader.

As a consequence we have’

Theorem 6. M|— A iff M§4|— W(A) (and analogously for sequents)

4. KRIPKE SEMANTICS

This Section is devoted to those extensions of M, that possess a new
kind of semantics — Kripke semantics. As we shall see the modality ope-
rator in M can be given two different meanings (adding different axioms) —
that of “possibly” and that of “necessary”. In the classical case they are
interdefinable: ¢ is 77 and, vice versa, [] is 7¢ 1. Here though, hav-
ing an intuitionistic logic as base, we cannot expect ¢ and [ to be dual
Hence we are to expect interesting nontrivial relations between them. Un-
fortunately the existing works on intuitionistic modal logics either consider
very strong systems where the modalities are too special, or do not men-
tion ¢ at all. '

Here we start with a minimal logic JK, ({3, ¢) with axioms (besides
purely intuitionistic tautologies):

DAAOB=0O[AAB], O[AVB]=0AV OB
and rules {besides modus ponens):
 A=B A=8
TA=0RB $A<OB
It is clear that JK, (2, ¢) is in fact M <“taken twice”. By IK,([D) we
denote the logic with only modality [J and ZK, () concerns only ¢.
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Definition A 6-tuple (K, M, N, <, R, R¥ is called a Kripke
frame if

1-3. K and < satisfy the conditions from the delinition of Montague
frame ;

4 MC K, NS K;

5. i x¢M and y<x, then yeM;

6. if x¢ N and x=y, then yeN;

7. R< K? (when {x, ¥)¢R we shall write xRy):

8. the same for R*; :

9. xRy, u=<x and y=<v imply #4Rv (“extrapolation” of R);

10. R* can be “interpolated”: x=u, v<y, xR*y imply uR*.

On a Kripke frame one can define Kripke models by assigning cones
of K to propositional variables and extending the assignment to all formu-
las by the familiar inductive definition, in particular the causes for (] and
¢ being: -

x|l 14 iff x¢N and (yy) (if xRy, then y|l-- A),
xil— QA iff xe¢M implies (3y)}{xR*y and yi— A)

Here xjl— A (the “forcing” relation) means that x belongs to the subsgt
of K assigned to A. A straight-forward argument shows that all such sub-
sets are cones, i. e. x[|—A and x=y imply y{—A. Now we can give
literally the same definitions of truth in a Kripke model, validity in a
Kripke frame and of Kripke validity, as in the case of Montague frames.

Before we proceed to the proof of the completeness theorem for K,
(i1, ¢) we mention the fact that it will be pieced together from two inde-
pendent analogous proofs. for IK, () and for JKy(¢)- This will bring
about certain advantageous properties, used later on.

Lemma 13. If a sequent (formula) is provable in 7K, (1) then it is
Kripke valid.

The proof is evident by checking. We consider only the modal axiom:
let x|— (JAADIB, then x}— 4 and x[— 1B, so for an y, such that
xRy, we have simultaniously y||—A and y|—B and (by the definition
of — ) yl— AAB. Hence we get x|— O[AAB], as x¢N.

For the converse statement we again build up a frame from the prime
filters in the formula algebra. Let K be the set of ail such filters, =< be
the set theoretical inclusion. Define N={x|Jl¢x}. It is clear that x¢N
and x=y imply y¢N. Denoting by [Ix the set {A] 1A¢x} we have the
following

Proposition 10. if x is a filter and “11¢x then [Cix is again a
filter.

Proof. Since [11¢€x then 1¢[Ix, sollx=@. i Ac{Ox and A=< B then
(by the monotonicity rule) (1B¢x and B¢ [Jx. Finally the modal axiom
gives the closure of [ix with respect to A.

Define R by xRy iff Jx&y. The «“extrapolation™ property is evident.
Thus we have obtained a Kripke frame for the language with 3. Defining
a model on it by assigning to variables the set of all filters that contain
them, we are able to prove the main feature: x |— A iff A¢x, not only
for atomic but for arbitrary formulas. The proof is by induction on the
complexity of the formula A. The only new case is the case T1A. Assume

153



(JA¢x, then A¢Mx and (J1€x, s0 x¢N. Now if xRy, then TJx <y, Aty
and (by the induction hypothesis) Yll— A, thus x|— JA. In the opposife
direction : if DA¢x and D1¢x, then, as just proved, JJx=y, is a filter
such that A ¢y, Then we extend y, to a prime y also excluding 4. For
this ¥ we have xRy and not y{—A (by the indiction hypothesis). There-
fore not x|— MA.

In this way it is shown that (&, N, <, R, |—) is a Kripke model for
the logic without ¢, where all unprovable formulas are refuted. So we get

Proposition 11. A sequent (formula) is provable in IK, (O0) iff
it is Kripke valid, o

Next we consider the system without . ,

Lemma 14. If a sequent (formula) is provable in IK, (¢ ) then it is
valid. -

As with correctness lemmas, the proof is just checking the validity of
axjoms and the property of rules to preserve validity. For the converse
statement we again use the described above structure X. Define M c- K by
M={x| (0 ¢ x}.

Proposition 12. If x is a co-filter, and {O0¢x, then Ox is a
co-filter, too.

We omit the proof which is analogous to that of Proposition 9.

The relation R* is introduced by setting xR*y iff y < O x. In this case
the “interpolation” property is evident. Using the familiar forcing we can
as above prove by induction on the complexity of a formula A that x |— A
iff A¢x. Thus we obtain _

Proposition 13. A sequent (formula) is provable in IK, () iff it
is Kripke valid.

Below we consider the question of additional axioms and additional
properties of Kripke structures. Recall the notion of adequacy from Section 2.

Theorem 7 (the case of non-normal extensions). The following axioms
and conditions are adequate:

0l N=K '

100 M=K Z
o1l = |

Q0 M=

11=0 NNM=gp |

O0=1 MUN=K |

Govnl McCN !

O01=750 NcM

O0vI00 if x¢Mand x=xy then ye M

1viol if €N and y=<x then y¢N

O1= 00 M=N

Ol if x €M then (3 y)fxR*y|

Go N=K and R=y
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For the proofs of all these, we shall use one and the same model —
the cannonical model of the corresponding system. We treat only one
example : the axiom [10. Assume that in any model on a frame satisfying
the conditions for some x, not xil— 0. This means that either x ¢ N (con-
tradiction with the condition N=K) or for some y, xRy and not yi—0
(contradiction with R==(@). In the cannonical frame: [(10¢x and so x¢N,
i e K=N;if there is an y such that xRy, then we get 0¢y — a contra-
diction, so R=(.

Hete we have chosen examples that exhibit properties typical for non-
normal systems (concerning M and N). If we consider connections between
R and R* we usuaily get {in the case of non-normal logics) _conditions and
the respective adequate axioms which have a rather complicated “apendexes”™:

TOMA=A M=K, and if yR*x then xRy
Ml ={d= TG A] if x¢N and xRy then yR%x

A=004 . N=K, and if xRy then yR*x
(Jl=Av 17HoA if x¢ N and xRy then yRx 1

We omit the proofs (completely analogous to the ones presented above).

The independence of the completeness proofs for each of the “half”
logics 2K(3) and IK(¢) allows us to establish easily

Theorem 8 (modal separation theorem). If a formula (sequent) comn-
tains only [ (¢{) it is provable in IK, (), ¢) iff it is provable in
IK(O3) (IK(0))-

Proof. lf A contains only [, belongs to IK(3, ¢) and can not be
proved in ZK () alone, then we can construct a countermodel (KN, <, R, [|[—
by Proposition 11. The expansion (K, K, N, <, R, K2, li—) is clearly a model
for IK(Cl, O) (here M=K and R*==K?) such that any formula B without
O is simultaneously forced or not forced by x¢K in both models. Thus,
the second model is a countermodel for A, too. A contradiction.

Theorem 9 (conservative extension theorem). JK((J, Q)is a conserva-
tive extension of (pure) intuitionistic propositional calculus, i. e. il a formula
A without 1 and ¢ is provable in JK, (i, ) then it is an intuitionistic
tautology.

Proof In view of the completeness theorem for the propositional intu-
itionistic logic, any A which is not an intuitionistic tautology is refuted in
a model (K, <, |—). As in the proof of the previous thcorem we expand
this model to a model for IK ([, O):(K, K, K, <, K K% |-, where A is
refuted, too. So, A is not a theorem of JK, (1, ¢ )

Now we turn to normal extensions of the minimal logic. These are

. A 1A . . .
jogics closed under the rules 55 and =54 OF equivalently, containing the
axioms 11 and 7¢00. The minimal normal logic is denoted by JK([T, o).
By the above results (Theorem 7) we have for the adequate semantics a
condition M=N=K.

: Proposition 14. IK(, O) is complete for frames of the kind
(K, <, R, R%),

We note that in this case the forcing relation is simplified: x{|— 0 A

iff (wy) [if xRy then y[-—A] x[i— &4 iff (qy)[xR*y and y[— Al.
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It can be said that in general the semantics for normal modal intuition-
istic logics with 77 was known, although there have not been published
studies of ¢ and, what is more important, the considered cases were extreme-
ly simple (some variants of intuitionistic &4 and §5). Below we give a
large number of examples of axioms with their corresponding adequate
conditions. Among them there are some that are anything but evident. Be-
sides, we answer some very natural questions concerning R and R* as for
example what modal formulas guarantee the symmetry of the relation R,

Theorem 10 (normal extensions). The folowing list consists of
axioms and adequate conditions on the semantics:

OA=A4 ©if xR*y then yRx
A=00A if xRy then yR*xr
C14=A ' XRx {or: #f x<y then xRy)
A=A if xRy then x=<y
A=0A XR¥x (or: if x=y then yR%x)
A=A if yR¥x then x=y
NA=1CA if xRy and yRz then xRz
OOA=OA if xR*y and yR*z then xR¥z
AvioOoA if xRy then yRx
LAy o4 if xRy and xRz then (3p) yRp and zRp]
QAVIOA and OO A=A if xR¥y then yRex
OAvTIGA if xR*y and z<x then zR%y
JAvTIOA if ARy and x=<2 then zRy
2{Aw 4] it xRy and 2=y then z=y
DAvOA4 it xRy and xRz then y=z
co1aAwvod it xRy and xRz then yRz
NA=OA (33) [¥Ry and xR*y]
OfAv Bl=[1AviiB il xRy and xRz then (3p){p=<y. p=z and xRp]
QANOB=O[ANB] it xR*y and xR*z then (3p)[y=p, 2<p and xR#p}
QLA OA if ¥R¥*y and xRz then (3p){ yRp and 2ZR*p]
074="14 if x<y then (3f)[«Rf and yx¢]
OmA=r1A4 ' it xRy then (3¢)[xR¢ and Ry}
OAvA if xRy then xR*y
CloA=B]vU[o8=>4] it xRy and xRz then yRz or zRy
[C2A= Blv[GB= 4] f x=yand x=z then yRz or zRy
A= Blv [B= A) if ¥Ry and xRz then y<z or z=y
A=r50A4 if xRy and Rz then x=z
OA="TA4 it xR#y then (35)[x=s and yxs]
AV IA4 il x=y and x=z then (3p)[ yRp and zRp)
CA=T4 if x=y then (3p)[y<p and xRp]
CTA=TIAr L1 A=<T10TI4, or OA=T10374, or LDA=<TIGA or [AAOTIA)
it xR%y then (38)[xRs and y<s] '

We are not going to check all these (most of them will be left to the
reader) and takc up a couple of (instructive) examples: (1), O JA< 04 -
first we show that the conditions imply the validity of the sequent. If in a
model on a frame satisfying the conditions %[0 A then there is an y,
xR¥y and for all 2, yRz implies z|— A. Now if xRf we have to show that
tl— O A or equivalently exhibit an w, fR*w with w||-- A. By the condition
from xR*y and xRf we get an o such that YRz and fR*v. But yRo gives
v/~ A by the choice of y. So v is what we need (put w=1v). For the
converse, consider the cannonical frame and take x, ¥, z—prime filters
with xR*y and xRz, i. e. Dxc 2, V< Ox, and hence, Oy < OOy, O 0x
=z On the other hand T Ox G Mx which is easily proved using the
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axiom. Thus [jy< Oz But Yy is a filter, (}z—a co-filter, and applying
the Interpolation Lemma therc is a prime filter p: Ty S p = O2, 1. e yRp
and zR*p.

(2). mO0A=1A4. Clearly the conditions imply the validity of the axiom.
Conversly, in the cannonical frame if xRy then there is a prime filter £
with xRfRy. To show this we use Zorn lemma: let @ be the set of all
z — proper filters, that satisfy 1xCz, [JzCy. ® is not empty: Txed. Ii
& is ordered by set-theoretic inclusion then it has all properties required by
Zorn lemma. So @ has at least one maximal element £ This filter is prime:
if we assume the contrary, i. e. A\ B¢f but A¢f, Bé¢t, we can form (£, A)
and (¢, B) both of which are proper filters and extend {. At least onc of
them, (£, A) or (¢, B) has the property 1{({,A)T y or (¢, B)= y. If not
then we can find C and D, OC¢(t, A), QD¢ B), Céy, D¢y. So Cy D¢ y.
But then for C', D’ from {:CANA=0OC, D'AB=<0D, Ay B¢t, CAND' ¢t
and so {AVBIA[CAD|<=0OCvOD; hence CCyODEL and moreover
O[CvD]¢t, therefore C\v D¢y —a contradiction.

We have just shown the completeness of several logics with respect to
classes of Kripke frames. A proposition of a somewhat different nature is
also true in theses cases: the axioms characterize the conditions, i. e. they
are valid in a frame iff the frame satisfies the condition.

The problem of comleteness and the problem of characterization are
related but may have different solutions. Any axiom characterizes a second
order condition. The situation is identical with that in the case of Montague
frome: we can effectively write down the (second order, with quantifiers
ranging over cones) condition characterized by an axiom.

Sometimes (and these are the interesting instances) this second order
sentence is equivalent to a sentence in the first order fragment of the same
language, i. e. a sentence without quantifiers over cones.

- Proposition 15, The listed sequents characterize the following first
order conditions:

TA=OA {4y [x=y and (yz) [if y=2z then xR*z]
O0A<A (3}’}%ny and (yz)[if yR¥z then 2= x|
=(O0A (3v) [zR%y and (y2z)[if yRz then x=z]]

O14Av DA if xRy then (38)[xR*¥¢ and (ys)[if £=5 then s=yl}]

d0714=0QA @p)[x=p and (yy)[if pRy then xR*y]| !
T0A=01A4 if xRy then (32} [x=z and zR¥y] l
TlA=0A if xRy then (3p) [x=p and (yg)[if p=g then g=y]] 5
7014=04A if xRy then (3z, fifr=z zR* ¢ and (ys) [if f<s then s<y] {

We omit the fedious but otherwise quite straithforward proof.

Again we should mention that if a logic is complete with respect to a
class of Kripke frames, then if it is given by additional axioms, we can
claim that it is complete also with respect to the class of Kripke frames,
determined by the corresponding conditions. This class is the maximal class
with such a property. Unfortunately there are incomplete logics, and we can
not have a full duality between logics and classes of Kripke frames.

There is a narural connection between Kripke and Montague semantics.
The former turns out to be a special case of the latter.
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Proposition 16. If a logic is Kripke complete, then it is Montague
complete. Moreover, it is complete with respect to a class of Montaguc
frames (K, <, J, D) where J(Pn Q)=IPnJQ and D(P Q)=DPy DQ.

The proof is based on the observation that given a Kripke fraine
(KM, N, <,R,R*) we can construct a Montague frame (the generated
frame) (K, =, J, D) setting :

x€JP iff x¢N and (yy){if xRy then yeP,
X€DP iff x€M implies (3¥)[xR*y and YEP.

The verification of the properties of J and D required by the definition of
Montague frame and in the proposition are left to the reader.

Now any model on the Kripke frame can be transformed into a model
on the generated Montague frame, preserving the forcing for atomic formu-
las. It can be proved by induction on the complexity of formulas that the
two forcings coincide for all formulas. Now in particular, if we consider
only normal logics, we have

Proposition 17. If a normal logic is Kripke complete then it is
Montague complete and moreover one may restrict his attention to frames
where JK'=K and D@ - (.

Proposition 18. If a logic is Kripke complete then it is topologi-
cally complete.

Flere we have first to show that Montague completeness implies topo-
logical completeness and then apply Proposition 16.

Definition. /S5(Q+¢) is the - extension of 1$4(0, &) by the
axioms Av 0704, 0AVIOA, CICA=TA O OA<A, A< OO A.

Here the sign - emphasizes the fact that R and R¥ are not independ-
ent but coincide. By Theorem 10 the added axioms make R=R* reflexive
and transitive; and the symmetry of the relation is guaranteed hy Av N OA,
QAVICA and 010 A<A.

Corollary 3. /S5(07 -+ ¢) is complete with respect to Kripke frames
where R=R* is an equivalence relation.

Corollary 4, IS5(0]-+ @) is complete for the class of Kripke frames
having the kind (K, <<, K2, K2, .

This can be established by fixing a countermodel for a iion-provable
in I85(0 + ¢) formula A taking an x such that not (x||— A) and forming
the so-called generated submodel (in fact it will consist only of the members
of the equivalence class of x with respect to R). This submodel will have
the properties described in Corollary 4 and will be a countermodel for A.

We can say even more;

Corollary 5. I85(0 + ¢ ) is complete for frames of the kind (K, <)
where x|i— DA iff (yy) [y]l— 4] and x|— 0.A iff (39)[y|—A].

This interpretation” of S§5-modalities is the same as in the case of the
classical modal system §5 (with the appearance of =< of course). From it
one can easily get a purely syntactic result:

Corollary 6. In IS5(0+¢) O A4 and ¢ A are Boolean, i. e. (3 4V
104 and $AVIOA are theorems.

Nevetheless, even in the presence of O0A<A we have

Corollary 7. IS5( - ) is a conservative cxtension of the infui-
tionistic propositional calculys,
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Corolary 8. (a separation theorem for 785(00+¢)). The connect-
ives {1 and ¢{ can be separated in I85([3-- Q).

Corollary 9. IS5(0+0)I—0A4=1014.

The proof of the latter corollary is semantical, by the use of the com-
pleteness results on 285 (0 + O ).

It must be noted that () cannot be defined by means of ¢ in the
same way. We can construct a model where Tp=:70Jp is not true.

This shows that in intuitionistical modal logic, even in the stongest
systems, the duality between ¢{ and [J is not complete,

5. DECIDABILITY RESULTS

In this Section of our paper we are going to apply the apparatus deve-
loped in the previous parts in order to show the decidability of some of the
introduced logics. More precisely, we shall prove for some systems that they
are complete with respect to classes of models of a special kinds, namely,
of finite models. This property of a logic is usually termed “the finite model
property” (f.m.p.). We prefer to call it finite completeness. 1f a logic is
finitely (Montague, topological or Kripke) complete and axiomatized by a
recursive set of axioms, then it is decidable. The decidability is a consequ-
ence of the familiar method establishing the theoremhood: list all proofs in
an effective way and search for the proof of a formula A, parallel 1o that
start another process of checking the truth of A in finite models. This pro-
cedure is always terminating and gives a definite answer, if the logic has
the f.m.p. (cf. [10] and [7]). Moreover there is an a priori upper bound {
(depending on the complexity of A) for the number of elements in the re-
futing model. .

elow we list about 30 systems, among them intuitionistic analogues
of all interesting classical modal systems, for which we prove decidability.
The basic tool to be used is the well known method of filtration of alge-
braic models (to be described shortly). Of course, the intuitionistic case is
more complicated. An example: for the classical logic of Brouwer a very
simple filtration procedure yields finite completeness, while for the intuition-
istic analogue it is necessary to carry out a systematic and non-trivial
investigation of its syntactic properties before we can apply the method.

Definition. An 7-tuple (¥, 0, =, A, V, =, M) is called modal alge-
bra it (¥, 0, A, V, =) is a pseudo Boolean algebra, and M- an unary ope-
ration in ¥ (i. e. a==b implies Ma=Mb), A modal algebra (¥, 0, =, A, V,
=, M) equiped with a valuation f (i.e. f is a function from all proposition-
al variables to elements of the modal algebra) is called an aigebraic model.

In an algebraic model the valuation f is inductively extended to all
formulas A. We call A true in the model if f(4)=1. A sequent A<B is
true if f{A)<f(B). Further, A is valid in a modal algebra if A is true in
every madel based on that algebra. Finally A is algebraically valid if it is va-
lid in every modal algebra. Analogous definitions can be given for sequents.

It is clear that any logic L is algebraically complete, i. e. it is equal
to the set of all formulas valid in every algebra where all theorems of L
are valid. Indeed in one direction this claim is established trivially and in
the other we use the Lindenbaum algebra of L.
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This shows that algebraic semantics is very general, but at the same
tinie not very informative because it differs insignificantly from the logic
itself. Sometimes though, the existence of just one refuting model is suffi-
clent for the decidability and an algebraic model of this kind always exists,
S0 we are going to make use of this fact.

Each modal algebra (¥, 0, <, A, V, =, M) generates a Montague frame
(K, =, J) where K is the set of prime filters in ¥, x=y iff xCy, and xe¢JP
iff (3a)[P=4~(a) and Ma¢x]. An algebraic model on {*F,0, <, A, V, =, M)
with valuation f defines on the generated frame a Montague model: x|—p
it f{p)€x, for a propositional variable p. '

Lemma 15. If an algebraic model (¥, 0, <, A, V, =, M, /) generates
a Montague model (K, =, J, |-—), then for an arbitrary formula A : x|l—A
iff f(A)¢ x.

We omit the easy proof which gives by induction.

For the extension of /K3, ¢) we introduce the bi-modai algebras
(W, 0, <, A, V, =, O) Given such an algebra the generated Kripke
frame is (K, M, N, <, R, R*) where K is again the set of all prime filters
n ¥ N={x¢K|Olex}, M={xeK|O0¢x}, x=y if xZy, xRy if Oxy,
and xR*y if y& O x. Again we have

Lemma 16. If a bi-modal algebraic model generates a Kripke modei,
then for every A: x| — iff AA)ex.

We have now four kind of models: algebraic, Kripke, Montague and
topological. We shall call a model finite if its underlying set is finite.

Definition. A logic L Is called finitely complete if there is a class
«# of finite frames (or algebras) such ‘that all theorems of L are valid in
all stuctures of .# and any non-provable formula is refuted in a model
based on a structure from .. ' ' _

Lemma 17. (i) If an extension of IK,([J. O) is finetely completc
with respect to bi-model algebras, then it is finitely complete for Kripke
frames. ' ‘
(ii) If a logic is finitely complete for Kripke frames, then it is finitely
complete for Montague frames.

(iii) If a logic is finitely complete for Montague frames, then it is finite-
ly complete with respect to generalized topological spaces.

(iv) If a logic is finitely complete for topological frames, then it is
finitely complete for inodal algebras.

Proof. The proof of (i)—(iv) are quite straightforward. We use the
generated structures and by the above lemmas establish the desired result.
Only in case (iv) we have to define an algebra given a generalized topolo-
gical space (K, 1, J). The algebra is (K* 0, <, N, U, =, M where XK* is
the class of all I-open subsets of K (), J, == are the usual set-theoretical
operations (a=b=1(aub)) and Ma-=Ja.

Thus we obtain the following absoluteness property :

Proposition 19. The extensions of 1K, ([, Q) are equivalently
finitely complete with respect to: :

(i) Kripke frames; (ii) Montague frames; (iti) generalized topological
spaces; (iv) bi-modal algebras.

Analogously we can show _

Proposition 20. The extensions of M are cquivalently finitely
complete with respect to:
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i) Montague frames; ii) generalized topological spaces: iii) modal algebras.

We turn now to the description of the method of filtration applied in
the case of algebraic semantics. We shall follow H ansson and Garde n-
fors [13], [14] where one can find a clear exposition of the construction
of finite refutation algebras. In the classical case a finite subset ¥ of a
Boolean algebra will generate a finite Boolean subalgebra, while in case of
pseudo Boolean algebras the generated algebra may be infinite.

Nevertheless, we can include ¥ info a finite pseudo Boolean algebra
such that the restrictions of all operations in it to ¥ coincide with the ope-
rations in the original algebra-—this is the well-known McKinsey — Tarsky
theorem (cf. [3])

We shall apply their result according to the following scheme: if a
logic L is an extension of M, then it is characterized by the class of modal
algebras in each one member of which all theorems of L are valid. In par-
ticular the Lindenbaum algebra of L is in this class, so, when a formula A
is not provable it is refuted at least in one modal algebra of this kind, In
order to construct a finite algebra in this class we take a finite set ¥’ of
formulas, containing all subformulas of A and consider its image in the
Lindenbaumn algebra (i.e. the sef of equivalence classes of members of ¥
The image is finite, too. By McKinsey - Tarski theorem it is a part of a
finite pseudo Boolean algebra WO and all operations within ¥’ are preserved
as well as 1 and 0. In general, though, ¥° will not be well defined modal
algebra. We solve this problem by defining for each particular logic a spe-
cial operation M which coincides with the original operation on the relevant
elements and in such a way that the modal algebra (P9, M) is in the class,
defined by the logic. This last feature makes of (¥°, M) the refutation alge-
bra we need.

For logics having Kripke semantics we shall employ the filiration me-
thod. Assume (K, =, R,R¥%[-—)is a wmodel for a normal extension of
IK(O, ¢) and ¥ is a set of formulas closed under subformulas (0 is sub-
formula of any formula). Define ~ on K as follows: x~y iff (yA¢¥)[x]—A
iff y[l—A]. Clearly ~= is an equivalence relation. Denote by |x| the class
{¥ y=x} and by K° the set of classes {| x| [x¢K}. The elements of K*
will usually be denoted by Greek letters: o, B, ... Set a=<<®B iff (wx€a)(3y¢p)
(vA€e¥)[if x||—A, then y||—A]. Evidentely =9 is reflexive and transitive
and x<y implies x=<%. Assumec further, that in K° we have relations R®
and R* with the properties:

if xRy, then | x{R%|y} (if xR*y then | x| R*|y|);

if aR% then (vx¢o)(yy¢B)(vA)[if DAY and x||—-0A then y|—A]

(analogously for R*).

Unfortunately R® and R* are not always the relations we need in
order to have a Kripke frame in contrast to the classical case. Sometimes
though we are able to prove that they satisfy the conditions imposed on
Kripke frames,

If we define: o |-2-p iff (yx€a){x||-—p] for variables in ¥ and other-
wise arbitrary, then extending |- to all formulas we get

Lemma 18, If (K0 =<0 RO, R*0, | 2.} is a Kripke model, then for A¢¥
and x¢K:x|— A4 iff 'x |= A,

It MareMaTtuyeckan noruka
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In cases when (K° =<© R% R*’,[[2) is a Kripke model we say that it
is the model obtained by filtering (K, <, R,R* |--) through ¥. The clas-
sical theory of filtration can be found in [6] and [10]. The proof of Lemma 18
is by induction on the complexity of A. The most interesting case of modal
operators is handled by means of the conditions for R® and R*.

Assuming this lemma proved we are able to describe the method of
filtration: let L be an extension of IK (O, {) adequate for the condition C.
If a formula A is not provable in [, then it is refuted in some Kripke
model (K, =, R, R%, [— A) satisfving C, i e. there is x,€K such that not
Xo{— A. We shall choose a finite set ¥ of formulas including all subformulas
of A, closed under taking subformulas. Then we try to define R® and R*
in such a way that we get a Kripke frame satisfying C. In case of a success,
we will have a finite countermodel (because if ¥ is finite, then K will
always be finite).

If the above described constructions are not applicable, another proce-
dure is available. In Section 2 we considered some extensions of the logic
M complete with respect to monotone Montague semantics. Here we are
going to show the decidability of several such logics using the cannonical
frame (K, <, R2%), :

Let ¥ be a finite set of formulas with the already familiar property of
being closed under subformulas. Define K° < and |- as in Lemma 18
and for PeK:

PP={a|(3x)[x¢a and x¢P).

For QcK, Q= U{x]x€w and a¢Q}. Easily, P< P’ Assume now that the
relation RY satisfies: RO KUX2K,if xRPP then [x|ROP?; if aRCQ, then
(vx€a)(yA)|if MACY and Q 4(A), then MA¢ x].

Lemma 19. If (K° =<9 R, |- )is a Montague model, then for A¢¥:
x| —A iff {x[[->A.

The proof uses the properties of R? assumed above. Generally speaking
this lemma will be exploited in the same way as the last one. If we succeed
to define R° which is monotone with respect to both arguments, satisfies
the rest of the conditions on Montague frames and has the properties from
the lemma, then the finite completeness of the logic will follow.,

This lemma exibits some of the complications arising from the intuition-
istic basis of the systems under consideration. For some monotone logics
we are able fo construct filtrations only of the cannonical model and even
here we can do it only for the choice of R?.

Nevertheless, the technique we have introduced is enough to establish
the following

Theorem 11 (on decidability). The logics listed on the next page
are with the finite model property.

Remarks. In the first half of this table only logics which have
just Montague semantics appear, and the logics in lower part are monotone.
The second half of the table includes logics — with Kripke semantics, and

the systenms in the lower part are normal. % and % show that M ia the

language is changed to [J or { respectively.
Proof of the theorem. We consider FK(O, {) first. As is already
known if A, is not provable in JK((2, ) then it is refuted in a model
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Additional axioms and rules

A=2S
M MA=MB
M) M-LMI]
M1(O} M417TM0)
M2(chH) M+[MASMMA
M2(O) M+[MMA<MA
MT () M+[MA<A
MT(O) M+[A=MA

A=R
Mon MA<MB
Monl (1) Mon +iM1
Monl (O) Mon+[71 Mo}
MonT (1) Mon+[MA= Al
MonT () Mon+[A<MA)
Mon3 ([ MonT () +[MA<MMA
ManS((}j' MonT(Q)-{-[’MMAsMA
1K () Mon %HQA/\ OB=[AA BY

M

IK, ($) Mon —O—-|-[<>[AvB]s<)Av<>B]
182() 1K (DY+HO A=A
182(5) CAK (O)+HA= O A
183(0)) ’SQ(D)+{DA£D£}A
183(0) IS2(O)HIOOA=0A
IK(O, O) Ko () HIOUH TR (G Y+ O 0}
IT(O, 8) IK(C, O)+[0AsA]+{A< O A
154 (3) I83{)+][01]
184 ({} I1S3{O)+1160]
154(0. ) ISH{)+184(O)
185 (1) IS4 (D) +[Av T 0 4]
155(0) ISH{O)HOAVTIO A [0 0 A= 4]
185 (0, &) 185 (D) +185(0)
IS5 (04 0) IS5 (0, OY+H[OOA=Al+{A=1O 4]
IB (73, ) IT (O, G)+HAVOTOAHOAVT QA0 O A=T4]
IR (T+$) IB(O, Q)+ {O QA=A AT O A

(K, <, R, R%, |—) with no additional requirements on R and R* Let ¥ be
the set of all subformulas of A, Then K- js finite. Define

aR%B iff (wx€a)(vy¢P)(vA)[if TA¢Y and x{— (JA then yi—A),
aR*p iff (wxea)(yy eBY(vA) [if OCA€¢Y and y||—A then x|— O A].

From aR%B and §<°a, B it follows that EROL. If u¢é, vel, A€W and
al—UA, then x|— DA, as |#[<% and a=|x|; if f=|y}, then oRB
implies y [-— A, therefore v|/— A, hence ER%. Analogously it can be shown
that aR™B, a=%, (<8 imply ER*, and so on. We have proved that
(Kp =< R% R*) is a Kripke frame, Then we can apply Lemma 18 and get
a finite model where A, is not true.
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By Theorem 10 the logic JT((J, ¢) is characterized by Kripke frames
where R and R*-are reflexive. The above filiration works, we only need to
show that R and R*® are reflexive in this case. Indeed, if TJA¢W, x¢a
and x||— (1 A it follows from the axioms that x{— A and we get uR%;
the same argunient applied to R*® gives its reflexivity.

Again by Theorem 10 the logic £84(, ¢) is the logic of Kripke fram-
es with reflexive and transitive relations R and R* We could use the
Lemmon -- Scott filtration (cf. [10]) adopting the following definitions:

aR%B iff (vxca)(yyeP)(yAD[if OAcY and xif——-'EIA then yil—0O4],
a*ROBff {(yxca)(wy eP) (wA) it OA¢Y and y |— O A then x| — (Al

It is not difficult to sec that R* and R* defined in this way are reflexive
and transitive.

However, another method, due to Segerberg {12] is also applicable
here. Let us go back to the definitions of R® and R* given for 1K (O, )
but change the set ¥, now demanding that it contains all subformulas of
A, together with their modalized forms, i. e. if B¢ ¥ then [OB and OB
should be in W. K? is still finite because O[B=[B and ¢ OB~ OB in
I$4. To see that R is transitive, take JA¢Y¥ and x|— [JA. Then
x|—0O0A4, but OOA€Y. So if eRB, BRY, a=|x|, f=]y|, y=}z|, then
yi|—0A4A and z||—A, hence aR%; analogously R*0 is transitive.

In I85-group of logics our first examples are the systems which expose
no connections between R and R* Corollary 3 shows that /85(0, ¢) is
characterized by Kripke frames where R and R* are equivalence relations.
Again we use the set ¥ of Segerberg and define:

aRB iff (yx€a)(yvyeB)(wA)[if DA€Y then x![— JA iff y||— OA},
aR*Bff (wx€ o) (wy €B) (wA) [if O AEY then xij— QA iff y[l— OA]

R and R*? are reflexive, transitive and symunetric as can be easily shown.
For the decidability of I85(03+ ¢) it is sufficient to note that QA
there is equivalent to 7174 and we can reduce the problem to the same
one for I§5(03, ).
Next consider Mon — the minimal monotone systen. If 4,¢ Mon let ¥
be the set of all subformulas of A, Let R® be defined from the cannonical
mode! for Mon by the following definition:

aROP iff (yx¢a)(yA)[if MAEY and Pch(A) then MA¢x].

Now we show that aR°P and a<f imply PROP. Let o=| x|, B=|y|,MA¢ Y
and ﬁgk(A), then MA¢x, but MA¢Y, | x|<%y| and therefore MA¢y, so
BRP. We show that eRIP and P<=Q imply aR,Q. Let u=|x|, MA¢W¥
and Q =h(A): from P<Q it follows that P<=Q, so MA¢x, therefore aRQ.
Finally, if xR¥P, then {x|RPO: if MA¢ ¥ and P'<h(A), then from P< p?
it follows that Pz A(A), then xR¥P gives MA¢x. The second condition on
RO is automatically satisfied. Thus if A, ¢ x, in the cannonical model, then
not | x,[ || = A, in the obtained model, which is finite.

For MonT () note that an adequate condition is “if x¢ P, then xRP”
(see Proposition 7). The medel defined above (for Mon) is appropriate here,
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too. We only show that aAEP gives aRWP. Let MA¢Y¥ and Pch(d4). Ii
a=|x| and a¢ P, then x€P and hence x¢h(A), i. e. A¢x, but then by
the axiom MA ¢ x, therefore aRP.

Monl (o) is characterized by the condition “non xR@". In order to
get an useful filtration add to ¥ the formula M0O. K° remains finite. Let R°
be the same relation. Assume aoR°(@ for a=|x|. From @ <@, 20)=
and MO¢W it follows that MO¢ x ——a contradiction.

The system Mon3(¢{) is characterized by Montague frames with “if
x€ P then xRP” and “if xR{y|yRP} then xRP". Denoting by JP the set
{y|yRP} the latter condition is expressed by “if xRJP then xRP”. Take
now as ¥ the Segerberg set of all subformulas of a non-provable formula
A, together with all modalized variants. From MMA==MA it follows that K°
is still finite. The definition of R® is unaltered, so there is no need to check
again the first condition. For the second assume that oR°JOP, where
Jop={RBROP}, MA¢Y and PciA). Then JOPch(MA):if ye P, thenyep
and BRCP, and from P<h(A) we have MA¢y, i. e. y€¢A(MA). So, in this
case aRJ°P gives that x¢a implies MMA¢ x, but from the axioms it follows
that MA¢ x. Thus we get aR"P.

As for the logic 7K,(¢) (which should bear the name /—C2(¢{) in a
more traditional terminology), one has to take ¥ to be a set containing all
subformulas of A, together with all disjunctions of its elements and all
formulas of the kind O[A v B] for ¢QA¢¥ and O B¢ Y. Clearly KU is finite
in this case, too. Let-us check the condition “if eRYPU Q) then aR°P or
aR°Q". Assume the contrary, that «RY(PU Q) and not aR°P and not aRQ.
This means that there are ¢ A¢Y, ¢ B¢W such that P=A(A), Q Sk(B), but
OA¢x and OB¢y for x¢o and yep. Then from x~y we get OBéx
and so OAV OBéx. By the axiom $[AVB]¢x and by the construction

of ¥: 0AYV OBeY and O[AVB]¢Y. Then by the easily established in-
clusions :

P —
PUQ <Py Qch(A)UhB)Sh(AUB),

and from | x|RY(PU Q) it would follow that O[AVB]¢ x: a contradiction.

Joining the results for MonT () and IK,(¢{) we can prove the deci-
dability of /S2(Q)—a non-normal analogue of 7. Analogously, from the
result for Mon 3($ ) and IK({) we can obtain the decidability of I83(0)—
"a non-normal variant of S4.

Finally, we present applications of the method of filtration of algebras.
These applications solve the problem of decidability for the rest of the
logics in the table. For the logic M we can take as ¥’ the set of all sub-
formulas of A, and the operation M® can be defined arbitrarily outside W'
For MT(3) ¥’ is the same, MCA=MA if MA¢¥’ and MA=0 otherwise.
Clearly M!A=< A. Varying this construction the decidability of a great num-
ber of extensions of M can be proved (for example extensions with addition-
al axioms MA<<MMA, M1, etc., defining M°4 as 0,1, 4 etc.,, when MA¢Y,
and as MA, when MA¢Y¥').

The cases of monotone extensions of M are more interesting, though.
Following Lemmon, we say that A¢¥® covers B it BeW,B=A MBcY,
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where ¥ is the set of all subformulas of Ao plus MO, If A covers only
Ap..., A, we define MA as MA,v.. VMA,. A always covers 0, so the
definition is correct. If the logic is monotone, then MA-<MA: if 4 covers A;
then A,<< A, so MA,;<<MA, therefore MA,V...VMA,<MA. Moreover, if MA¢WY,
then MA=<<M°A:MAc¢w’ implies A¢¥ and hence A covers A and so
MCA=MAVMA4,, V.. -V MA,. It foilows that M4 ¢y’ implies M4 :=MA,

As a first application of the just described operation M°® on W0 we give
another proof of the finite model property for Mon. Let us check the vali-
dity of the monotonicity rule in ¥,. If A covers A;, then if A< B, B covers
A;, too. Therefore A< B implies MCA<<MJB,

For MonT(): MPA<A is valid because MYA<MA and MA=<A. For
Monl (O): add M1 to W, the 1 covers | and from 1<MI it follows that
1<MIVMA, V... For Mon3(1): add to ¥ all modalized forms plus all
disjunctions ; ¥/ remains finite and MYA<<MOMo4: if MoA =MA,V...VMA,,
then MA,<M°4, so MMA,<<MM°A, hence MA,<MM'A and M°A<MMOA ; then
since MPA ¢, MMOA ==MMO4 ; thus MCA<MMIA.

Another application is the finite completeness of IK, (1) where ¥’ is
enriched with MO and all formulas of the kind C1[AAB] for MA, MB¢ ¥,

Combining the proofs we just carried out we can establish the finite
model property of /82(1), /83([7) and IS4().

We have found a quite interesting proof of the finite completeness and
consequently of decidability of the intuitionistic analogue of the Brouwer’s
modal logic FB([], ¢'). We have shown above that this logic is characterjz-
ed by frames with reflexive and symmetric R and R* Now we use the
filtrations known from the proof for IT{ 1, {), enlarging W by stipulation :
¥ OAe¢Y then (1TOAEY. K° remains finite as follows from the axioms
of IB([], ¢ ). Analogously, if we want to include 07O Ain'Pevery time O A
is in ¥, we can do it without making K¢ infinite. It is easy fo prove in
IB(3) the sequent 37 3A=<A4 and hence 110700 A=<0A. On the
other hand using the axiom with ] we get 1O 007 0A=<T7J4, but by
the law of double negation for formulas of the kind (1B (which can be
proved analogously to the case of I85(5+ O )—see Corollary 6), it follows
that NA=071 1A The equivalence | 17777 0d={]4 shows that the
operation of adding 37 is idempotent. At the same time, due to the equi-
valence ¢TI0 10A= G A we can assume that ¥ contains O ¢ A together
with each ¢ A¢ W, without becoming infinite. We prove now the symmetry
of R% If «R°B but not PRYa we have Xeo, yep, [JACY, y|— 4, but
not x|}—A. By the azioms and the latter x||—570JA and by the defini-
tion of ¥: O70A¢¥. Then ¢RB gives y]l—1714 —a contradiction. In
the same way we can show that R* s symmetric,

6. INTUITIONISTIC MODAL LOGICS WITHOUT THE FINITE
MODEL PROPERTY

Now we turn to negative examples. First we are going to present a modi-
fied version of Gabbay’'s example [6, § 24). His example was a simplifi-
cation of Fine's logic {16]. In this way we answer affirmatively the ques-
tion about existence of extensions of 184(¢) without the f.m.p. It should
be noted that it is an open problem whether there is an analogous construc-
- tion for /84 ([1).
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Let us introduce the following notations:
B= QAN G AN QA= OIANA OlAV ALY OlA A O1AV A5])
V OlAsA OA VAl
C=O00ANOAN GAINCIOAINTOAZA O Ay
AQCTOAN QANTO Asly
Ax=BvC, 184T=I84()+Ax.

Denote by & the formula built up from the propositional variables
Pv P Ps:

QPN Q PN OPs=> Qlpi A OlpaVosliV OlpaA Olpi VPl

V OlpsA O LoV pall
Further we set Pi.(i==1,2,3 and n=0) as follows:

Pro=py Poo=pe Pio=pa;
Praoi="10PiaAOPixANOPan
Poyi1= O PLaATO Pon A O Pan
Psuin=0PiLaA O P ATO P

Lemma 20. If in a Kripke model for 7§84+ there is an x such that
not x|—#& then for any n=1, x| —O P (i=1,2, 3).

The easy proof by induction on n is left to the reader.

Lemma 21, P,<77 Py, for k=1, n=1.

Lemma 22. The formula § is true in any finite model for LS4

Proof. If b is refuted in a model for 484+ then this model is infinite
(use Lemmas 20 and 21).

Lemma 23. Not I84+|—b.

Proof. Gabbay [6, pp. 121—122] gives a classical model for §4+
where & is true. Hence & cannof be provable in /§4+ which is a subsys-
tem of §4+. In this way we have (by Lemmas 22 and 23):

Proposition 21. The logic 1§84+ does not have the finite model
property.

We shall describe briefly another logic without the f. m.p., because this
logic was published in [37]. It is an extension of the well known interme-
diate propositional logic of Dummett (obtained by adding the axiom
[A=B]V[B=A4] to the intuitionistic propositional calculus) and at the same
time an extension of fT([}). We construct the logic by adopting a modi-
fied version of Makinson’s example [17] of a classical extension of the
system 7.

Our logic has three remarkable properties:

1) As is well known (cf. [18)) all (non-modal) extensions of Dummett’s
logic are tabular and so have the f.m.p. Our example shows there are
modal extensions of Duminett’s logic not finitely complete,

2) The corresponding classical logic is trivially finitely complete: it is
simply equivalent to the classical propositional logic since [JA==A is among
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its theorems. So we produce a logic without f.m.p. whose classical coun-
terpart has the f. m. p.

3) In contrast to the previous example, the formula valid in all finite
models but not provable is not an ad koc introduced formula, but a very
natural one: M A=A, Consequently, on finite models our logic coinsides
with non-modal Dummett’s logic and its proper modal axioms can be distin-
guished only by infinite models.

The logic is defined as follows: let DumT+ be the extension of JT{[)
by the axioms

Ax=1A=11A<A=[4 and [A=B]V[B=A4],

Lemma 24, The formula p=[ip is valid in any finite model of
DuamT+.

Lemma 23. p=iJp is not a theorem of DamT+.

From these two lemmas we obtain

Proposition 22, DumT+ does not possess the f.m.p.

. Property 3) follows from Lemma 24 and the axiom JA=<4 of DumT+;

property 2) is given by

Proposition 23. Ax is equivalent to A< []A in the classical logic.

7. CONCLUDING REMARKS

The author is indebted to D. Vakarelov for the advice to undertake
the above investigations. The main results connected with Montague and
Kripke semantics were obtained during the period December 1975 — May
1976 and were shortly announced in [36]. The decidability results and the
examples of logics without the f.m. p. were presented in November 1977;
the most interesting examples of logics without the f.m.p. are published
in [37]. In April 1978 the author gave a lecture on the intuitionistic modal
logic at the Banach Mathematical Centre in Warsaw, where he described
the central results of this paper. This work is a part of the author’s Ph. D.
Thesis, defended at Moskow State University (July 1978).

Some additional results not mentioned in this paper are as follows. The
topological characterization of /54 ([1) (our Corollary 1) was obtained by
Radev [38] analogously to the proof for 84 in [3).

Mihajlova proved [39] that Z§4 () has exactly 31 different moda-
lities, 184.2(5) and 184.3(1) have 19 each, and I85((]) has 9 modalities,
namely p. Tp, Tp, Dp, 10p, 5hp, WITp, OTp, 10 T1p (before that
she had proved in her M, Sc, Thesis, 1978, that $5{() has only 7 modali-
ties: p, 1p, Tip, Opy 0P, O 10710)

Vakarelov showed [40] that the implication (and negation) free irag-
ment of the intuitionistic modal logic may be used to obtain quite simple
examples of incomplete logics. An unexpected result was presented by the
same author iu [41]: there exists a continuum of intuitionistic modal logics
which don’t admit the law of excluded middle, i e. they are consistent but
became inconsistent after adding A\V/71A4 as an axiom, and so they are
strongly intuitionistic. Later on Tselkov showed [42] there exists a conti-
nuum logics incompatible with any single formula in the Rieger-Nishimura
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lattice. An open question is whether there exists an absolutely strongly
intuitionistic logic, incompatible with any classically provahle but intuitionis-
tically unprovable formula,

Popov gave in [43] Gentzen-type calculi for JK{[7), IT(D)), IK4(D)
(i.e. IK(O)+JA=<[1A), and IS4(O); the cases with ¢ are open.

Kirov studied in {44] the intuitionistic analogue of the modal logic of
provability @ (or K4W in Segerberg’s notation). He proved its completeness
with respect to the class of all finite structures with irreflexive and transi-
tive R. The logic IGL is an extension of JK (1) by the axiom [JJ(JA=A]
= [JA. With help of this result he obtained some properties of IGL: clo-

) A -
sure under several rules, like D—A—- or %%- Ursini developed an alterna-

tive treatment of the same logic in [45] and [46]. In [47] the so-called
“strong modality” (1! A=AA 14 in IGL is studied. The logic of this new
opetator turns out to be /S4Grz — the extension of 4§4(1 1) by the axiom
of Sobocidski [7![J![A= 1! A]= A]=A.

In some unpublished work Vakarelov showed that 7] and ¢ can
be introduced strictly analogously to the classical case — with one relation
R, if we add 007AV 101714 as an additional axiom; then (x|—¢O A iff (3)
[xRy and y{— A} (R is the relation for [J) may be used as a definition
of 08/]1, and 0 A=="107A4 will be true. The same observation was made
in [48].

Finally, the author showed in [49] that the intuitionistic double nega-

tion can be considered as a modality. Namely, 77 satisfies [T1AA TIB]
A

=T[AA B] and T}Ti%é’ since it is an JK-“necessity” with some addition-
al properties, e. g. A<TIA and T1[14)<7T7I4. That is why it was inte-
resting to obtain a full axiomatization of this new intuitionistic modality.
Let we denote T7 by [3; F+(1]) is the positive (without negation) fragment
of IK((1) extended by axioms A=7]4, (J[[14>A4] and TJ[AV[A=B]] i 4
is a formula of the intuitionistic propositional logic (ZJPL) without groups

of odd number of adjacent symbols 7] we shall denote by A%the “pairing’

of the negations in A (i. e. the replacement of every double negation by 7).
Then the answer of our question is given by the following
Theorem. If A contains only even negations then it is provable in

IPL iff A?’[—} is provable in 7+ (O).
I* (O) possesses an adequate Kripke scmantics. Some superintuitionis-
tic logics may be treated in the same style. E. g. the axiomatics of the

double negation of Dummett’s KC (with additional axiom TAVT]A is
I (0) plus OJAVB)=[OAvOB] _
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