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1. Introduction. In the style of his epoch, Leibniz has identified the whole
logical reasoning with the Aristotelian syllogistic. In such a way, Leibniz’s “Calcule-
mus!” has meant to construct an adequate model of the basic syllogistic relations
into the arithmetic of integers. All his trials to find some natural model of syllo-
gistic can be retraced from the first publications of his logical papers made by L.
Couturat ([1], [2]) as well as from the new academic edition of his philosophical
manuscripts [3]. Unfortunately, that trials have been unsuccessful. Finally Leibniz
has radically changed the arithmetical interpretation (in a series of manuscripts
dated April 1679): on the place of simple relations between integers based on di-
visibility, relations between pairs of (relatively prime) numbers appeared. In 1946,
J. Stupecki proved that the last model is adequate to the Aristotelian syllogistic
[4]; see also the celebrated book of J. Lukasiewicz [5]. However, the model of pairs
possesses two big disadvantages. The first one is that the initial naturalness has
died and is not fatal from the mathematical point of view. However, the second
disadvantage is principal: it is not clear how the model of pairs of integers can be
extended so to involve the generalizations of the Aristotelian syllogistic containing,
e. g., term negation or term conjunction.

We showed in [6] that Leibniz’s primary plan to explore divisibility of integers
had been vital and built up two kind of arithmetical models adequate to many sys-
tems of syllogistic depending on the term relations and operations used. Later on
we extended the arithmetical interpretation so to cover the entire monadic predicate
calculus: an abstract of this interpretation was announced in [7] and the proof of
the adequacy was published in [8]. It will be shown now that Leibniz style arith-
metization can be extended on the monadic predicate calculus containing equality
as well.

Two methodological notes may be added here. First of all; any variant of syl-
logistic is decidable while the whole arithmetic is not. In such a way, speaking in
abstracto, the calculation is not able to increase the “algorithmicity” of any dis-
putation according to Leibniz’s dreams. Nevertheless, that fragment of arithmetic
in which all variants of syllogistic were imbedded is decidable because it contains
multiplication only; see [9] and § 25 of [10]. The same fragment was used for the
pure monadic predicate calculus (without equality) and it will be used now for the
monadic predicate calculus with equality. The second note is that the full predicate
calculus containing arbitrary binary relations is undecidable. Therefore, we cannot
expect a natural Leibniz style translation of the logic of relations into arithmetic,
1. e., a translation using divisibility of integers only. In other words, the arithme-
tization of the monadic predicate calculus with equality achieves the maximum in
some sense.

2. The Main Result. The language of the calculus contains individual vari-
ables w1, xo, ..., one-place predicate symbols Py, Py, ..., the only two-place predicate
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=, quantifiers, any complete set of propositional connectives together with brackets.
Formulas are defined as usually. For this language, interpretations of the predicates
in non-empty domains, evaluations of the individual variables, values of formulas
in given interpretation under given evaluation, and predicate tautologies are intro-
duced in the standard manner (see § 29 of [11]).

For the arithmetical models; let N > 1 be an integer without multiple factors.
Any unary predicate P; is interpreted by arbitrary divisor of N (possibly 1 or N)
denoted with d(P;), and any individual variable z; is evaluated by d(z;), a prime
divisor of N (as usual, 1 is not supposed to be prime). Following the construction of
a formula F', the arithmetical statement AR[F] corresponding to given evaluation
will be obtained. Namely, for atomic formulas, AR[P;(z;)] is the statement “d(z;)
divides d(F;)”, and AR[x; = x;]1s “d(x;) = d(=z;)”. For asubformula G, AR[(Vz)G]
is the statement “for any prime divisor d, ARG[G]” where ARY differs from AR
attaching d to z. Finally, all propositional connectives have to be replaced with
their non-formal analogues. If AR[F] is a true arithmetical sentence for any N
under arbitrary evaluation of the individual variables, F' is named arithmetically
true. This semantics is relevant:

Theorem. Any formula of the monadic predicate calculus with equality is a
tautology iff it is arithmetically true.

Proof. First of all, a predicate formula i1s a tautology #ff its universal closure
is a tautology. Formulas without free variables are called propositions. Because of
the decidability of the monadic predicate calculus with equality, the domains may
be supposed to be finite. Namely, if a given proposition containing & predicates and
r individual variables is not a tautology then it can be refuted in a domain with
no more then N = 2% . r elements (see, e. g., Theorem 25.1 in [10]). Any model
built on such a domain can be transformed in an isomorphic arithmetical model:
if all elements of the domain D are ay,...,ay, take an integer u = p1 - ...  py
where p1,..., py are arbitrary but different prime numbers. If the interpretation
of the predicate P; is the non-empty subset of D {a;,,...,a;, }, let d(P;) be the
product p;, -...-p;,; if the subset is empty, d(P;) is 1. The evaluation of individual
variables is obvious: if the value of #; in the domain 1s ag, its arithmetical value 1s
ps. Conversely, if the formula is not arithmetically true for a given integer N > 1
without multiple factors, a set of its prime divisors may be taken on the place of
each its divisor (the set obtained will be empty when the divisor is 1). Further on it
will be sufficient to use the isomorphism between the Boolean algebra of all subsets
of the set of the divisors of an integer N > 1 without multiple factors, and the
Boolean algebra of all divisors of N with l.c.m., g.c.d. and reciprocals in the role of
the Boolean operations. As it seems, this isomorphism has been for first time used
by E. Bunitsky in [12].

There is a well-known translation of both basic syllogistic relations into the pure
monadic predicate calculus: sAp (“every s is a p”) is interpreted as Va(S(z) =
P(z)) and sZp (“some s is a p”) is interpreted as Jx(S(x)&P(x)). Applied to
the predicate formulas just written, the arithmetical interpretation described above
will produce the arithmetical semantics of the Aristotelian syllogistic named in [6]
Scholastic. Tts dual semantics was named there Leibnizian. The last semantics could
be extended on the whole monadic predicate calculus (with or without equality) but
then the dual arithmetical interpretation of any formula would simply coincide with
the normal interpretation of the negation of its dual.
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