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1. Introductory Remarks  

There are at least four aspects in which Leibniz’s logical heritage can be considered. The 
first aspect is purely philosophical and the central topic here is the well known scene with the 
two disputing philosophers which finally take their quills, sit down at their abaci and inviting 
each other in a friendly manner begin calculating “the truth”. According to the programme of 
Leibniz, human reasoning is to be transformed into a kind of arithmetic using characteristic 
numbers instead of notions. In such a way, the logical truth of a proposition should turn into 
an arithmetical truth of a calculation. E. g., if the number of animal were 2 and that of 
rational were 3 (Leibniz’s beloved example) then the number of man being by definition a 
rational animal would be obtained by the multiplication 3·2. Then the answer to the question 
‘Is every man a rational being?’ could be reduced to the fact that 6 is divisible by 3. 

Some of the texts concerning this program can be seen in the editions of Gerhardt and 
Couturat. Their titles are very representative: Discours touchant la Méthode de la Certitude et 
de l'Art d'Inventer pour finir les disputes, et pour faire en peu de temps des grands progrés 
(GP VII, 174–183); Projet et essais pour arriver à quelque certitude pour finir une bonne 
partie des disputes, et pour avancer l’art d’inventer (C, 175–182), etc. 

Two comments can be made here. First, all Leibniz’s logic operates with atoms of the 
form ‘A est B’ and therefore is limited to syllogistic logic or, in at best, to the monadic 
predicate calculus. Both of them are decidable. On the contrary, nowadays we know that the 
predicate calculus with dyadic relations is not decidable. Second, no translation of arbitrary 
reasoning into arithmetic could be ipso facto a panacea for their correctness because of the 
undecidability of arithmetic itself. The business of the computists is no more algorithmic than 
that of the philosophers. Hence the plan to assign a few selected men the decomposition of all 
human knowledge to syllogistic relations (in a quinquennium according to Leibniz’s dream!) 
and this way to liquidate any disputation had been radically unrealizable. Nevertheless, the 
fragment of arithmetic that Leibniz had had in mind to be used is decidable because it is the 
fragment containing only multiplication (without addition).  

The second aspect of treating Leibniz’s logic is algebraic. Its central theme is the abstract 
representation of the logical laws which (according to the initial language) leads to nowadays 
established algebraic structures such as partially ordered sets, semi-lattices, lattices, Boolean 
algebras, etc. Some of the relevant papers of Leibniz are: De formis syllogismorum 
mathematice definiendis (C, 410–416); Generales Inquisitiones de Analysi Notionum et 
Veritatum (C, 366–399); Specimina calculi rationalis (C, 259–264). A full picture of all 
Leibniz’s approaches showing their exact place in a uniform algebraic scheme is given in my 
paper Various syllogistics from an algebraic point of view2.  

                                           
1 I am deeply grateful to my German colleagues, especially to Prof. H. Schepers, Prof. H. Breger, Prof. 

M. Schneider, and Dr. Herma Kliege-Biller, for their consultations, for the opportunity to see some 
Leibniz's manuscripts, and for assigning me the extremely valuable Academy Edition of Leibniz. 
Due to the hospitality of Prof. W. Lenzen in Osnabrück I obtained access to the literature lacking in 
Bulgaria. All my papers devoted on Leibniz’s logic are accessible from my web-page 
http://www.math.bas.bg/~vlsot. 

2 2nd Panhellenic Logic Symposium (Delphi, 13–17 June 1999), Proceedings, 197–200. 
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The third aspect can be regarded as geometrical. The topic is the popular representation of 
notions using so-called Euler circles (sometimes incorrectly named Venn diagrams). The 
original Leibniz drawings can be seen in De formae logicae comporatione per linearum 
ductus (C, 292–321). Let us note here that the confusion in the arithmetical models proposed 
by Leibniz and analyzed in details in my paper Arithmetizations of syllogistic à la Leibniz3 
becomes obvious when circles are used. The probable explanation of the contradiction 
between the arithmetical idea, which is in fact wrong, and the correct geometrical one is the 
20 year span between them. 

Finally, the fourth aspect includes the arithmetical models of the Aristotelian syllogistic 
built by Leibniz in April 1679. His most important ‘arithmetical’ papers are Elementa 
characterisicae universalis (A VI, II, 181–194); Elementa calculi (A VI, II, 195–205); 
Calculi universalis elementa (A VI, II, 205–216), etc. Strictly speaking, these papers are the 
only relevant ones to our task: to implement a natural and working translation of syllogistic 
into arithmetic. That is why, let us remind Leibniz’s attempts, his fault and his success. 

 

2. A short exposition of Leibniz’s manuscripts of April 1679 

The example with the rational animal gives a criterion for Universal Affirmative 
propositions: “Every s is a p” (sAp) is true when s is divisible by p. (We use the same letters 
for terms and their characteristic numbers.) In Leibniz’s notation: s = xp.  

As it can be seen, the number of a composite term is always greater than the number of 
any of its components, i.e., the characteristic number of species is greater than the 
characteristic number of genus. This fact expresses the view that terms are sheaves of 
properties – a view laid down in Aristotle's Organon. However, if the term is treated as a class 
of objects – a view in better concordance with our set-theoretical intuition – then it would be 
more natural for the characteristic number of the species to be less than the characteristic 
number of the genus. In Nouveaux Essais sur l'Entendement humain  Leibniz analyses in 
details the reasons for both views:  

“La maniere d'enoncer vulgaire regarde plustost les individus, mais celle d'Aristote a plus d'egard 
aux idées ou universaux. Car disant ‘tout homme est animal’, je veux dire que tous les hommes sont 
compris dans tous les animaux; mais j'entends en même temps que l'idée de l'animal est comprise dans 
l'idée de l'homme. L'animal comprend plus d'individus que l'homme, mais l'homme comprend plus 
d'idées ou plus de formalités; l'un a plus d'exemples, l'autre plus de degrés de realité; l'un a plus 
d'extension, l'autre plus d'intension” (GP V, 496).  

Clearly, Leibniz did note the possibility of two approaches to term inclusion. The first is 
his own (“generis notio sit pars, speciei notio sit totum”); the second, accepted “in scholis”, as 
he says, is the opposite one. According to the other approach, a second (inverse) criterion for 
UA-propositions is possible: “Using fitting characters, we could demonstrate all the rules of 
logic by another kind of calculus than the one developed here, merely by an inversion of our 
own calculus” (A VI, II, 200). Hence, let us keep in mind that Leibniz assumes two 
equipollent variants of interpreting UA-propositions, but accepts one of them as a working 
hypothesis. In the terminology of Couturat, he prefers term comprehension to term extension. 
(Sometimes the two semantics of term relations are called intensional and extensional 
respectively.) For this reason we name the interpretation just described Leibnizian in 
opposition to the dual interpretation that Leibniz himself named Scholastic. 

                                           
3 Journal of applied non-classical logics, 9(1999), 387–405. 
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The interpretation of Particular Affirmative (PA) propositions in Leibniz's manuscripts is 
less clear and more problematic. Moreover, no sufficiently complete example can be found. In 
the first logical manuscript the rule means that a PA-proposition is true when either the 
number of the predicate is divisible by the number of the subject or the number of the subject 
is divisible by the number of the predicate (GP VII, 171). But the acceptance of such a rule is 
equivalent to a supposition that “Some s is a p” (sIp) always implies either “Every s is a p” or 
“Every p is an s” – an alternative which is not true, of course, as Leibniz himself observes 
later. Indeed, in the next manuscript (GP VII, 192–193) another rule is outlined: sIp is true 
when s, being multiplied by another integer, is divisible by p; in Leibniz's notation: sx = yp.   

However, if we understand this rule literally, it will be trivially true because any integer s 
becomes divisible by any other integer p after multiplying it by a suitable integer, e.g., by p 
itself. That is why it is natural to complete the criterion for PA by the condition that the 
multiplier must be less than the number of the predicate. Now both criteria proposed by 
Leibniz can be formulated in a uniform manner: sAp is true when any divisor of p is also a 
divisor of s; sIp is true when s and p have a common divisor greater than 1, or, g.c.d. (s, p) > 
1. 

Unfortunately, the procedure of checking just described sometimes gives a negative result 
when applied to a true syllogism. Such is the case with Darii: it ceases to be true (see the 
paper cited in footnote 3 for details). The cause for the failure of the initial Leibniz plan was 
in the confusion of the two intuitions: his criterion for UA explored the comprehensive 
representation of terms, i.e., the genus was understood as part of the species, while his 
criterion for PA explored the extensive one (the species as part of the genus).  

The prehistory of the arithmetization ended with the building of a radically different 
system, in which terms were interpreted by pairs of co-prime numbers, i. e., numbers without 
common divisors grater than 1. The main corresponding papers are Calculus consequentiarum 
(A VI, II, 221–227); Modus examinandi consequentias per numeros (A VI, II, 228–236); 
Regulae ex quibus de bonitate consequentiarum formisque et modis syllogismorum 
categoricum judicari potest, per numeros (A VI, II, 242–251). In this interpretation, if the pair 
of co-prime numbers (s1, s2) is assigned to s, and (p1, p2) to p, then ‘Every s is a p’ is true 
when si is divisible by pi (for i = 1, 2), and ‘Some s is a p’ is true when s1 and p2 as well as s2 
and p1 are co-prime. This model was proved adequate by J. Słupecki (see a detailed 
description of this model in the classical book of Łukasiewicz 4). However it is obviously 
more sophisticated than the one initially planed. Moreover, its greater shortcoming is that it 
can not envelop syllogistic of term negation or that of term conjunction. 

 

3. Arithmetical models of syllogistic 

In the Scholastic arithmetical interpretation terms are evaluated by integers greater than 1. 
sAp is replaced with ‘s is a divisor of b’, and sIp with ‘g.c.d. (s, p) > 1’. If empty terms are 
admitted, they are evaluated by 1. For the Leibnizian interpretation, an arbitrary integer u > 1 
(a “universe”) is introduced and terms are evaluated by its arbitrary proper divisors (i. e., the 
divisors which are less than u); sAp is replaced by ‘s is divisible by p’, and sIp by ‘l.c.m. (s, p) 
< u’. If empty terms are admitted, they are evaluated by u.  

                                           
4 J. Łukasiewicz: Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic, Oxford, 2nd ed. 

1957. 
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When negation appears, the ‘universe number’ u without multiple factors must appear in 
both arithmetical semantics, terms are evaluated by divisors of u different from 1 and u (in 
case the empty term and the universal term are excluded), and ‘non-s’ is interpreted as u/s. If 
term composition appears, which leads to full Boolean syllogistic, sp is modeled by g.c.d. 
(s, p) in the Scholastic arithmetical interpretation, and by l.c.m. (s, p) in the Leibnizian one.  

Both arithmetical semantics are adequate to syllogistic in its full volume including 
arbitrary Boolean combinations of elementary syllogistic atoms (sAp and sIp) as well as 
arbitrary Boolean combinations of terms. It was also shown that the arithmetical 
interpretations can be extended to involve pure monadic predicate calculus (with or without 
equality).5

Although the Scholastic and the Leibnizian translations are dual and therefore, in theory, 
are equipollent, in practice they have quite different behaviour and different philosophy. This 
is the cause to present here the work of the Scholastic interpretation only and to leave 
Leibnizian interpretation for future investigation. 

 

4. The Scholastic arithmetical interpretation in action 

We shall test the Scholastic arithmetical model of the logic of notions as described above. 
Of course, this application has a purely hypothetical character because Leibniz, as we 
mentioned, did not leave us any comprehensive rules about the translation of the logical 
operations into arithmetical ones. Moreover, his sketches of such translation are incorrect. 
The material for our test is rather illustrative and artificial for the sake of simplicity and we do 
not claim adequacy to established taxonomy. Leibniz himself composed detailed 
classifications with definitions filling scores of pages (Table de definitions, C, 437–510). That 
is why it would be interesting to apply the arithmetical models to certain real biological 
classifications but this is another topic. 

According to the Scholastic interpretation, the notions shall be treated as classes of 
objects. This means that the functional definition of a compound term (what it is) is not 
important in contrast with its composition (what it contains). In other words, we will regard 
the notions as lists of objects and not lists of properties. 

Consider the extremely simplified diagram on Fig. 1: mankind is a compound term 
including the British, the French, the Germans, the Bulgarians, and “others”. Mankind is a 
part of the class of mammals which in our example consists of apes, dogs, and bats. Finally, 
the mammals together with the birds, reptiles, and insects comprise the class of animals. Let 
us stop here and attach prime numbers to prime notions: the nationalities just listed are 
assigned the numbers 2, 3, 5, 7, and 11, respectively. Then the characteristic number of the 
mankind will be 2·3·5·7·11. For the next prime notions (apes, dogs, and bats) we shall use the 
next prime numbers: 13, 17, and 19. Then mammals will be characterized by the number 
2.3·…·19. Finally we attach 23 to  birds, 29 to reptiles, and 31 to insects. Therefore the class 
of animals obtains the number 2·3·…·31.  

Now it is easy to check the universal affirmative sentences. It is enough to use simple 
division. For example, “Every man is a mammal” is true because the number 2·…·11 is a 

                                           
5 V. Sotirov: Monadic predicate calculus with equality arithmetized à la Leibniz, in: C. r. Acad. 

bulgare Sci., 54 (2001), n. 1, 9–10. 
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divisor of 2·…·11·13·…·19. Furthermore, we can observe that the model freely works 
“upward”, from species to genus. If one wants to expand the diagram adding for example the 
full configuration of plants, the prime numbers bigger than 31 can be used, and the diagram of 
the animals need not be changed. As a result, the vertex of the “vegetable part” will obtain the 
characteristic number 37·…·pk corresponding to the notion of plants and a new vertex over the 
animals and plants will appear representing the class of the living organisms with 
characteristic number 2·…·pk. 

As to the direction “downward” from genus to species, the Scholastic interpretation meets 
some difficulties demanding re-numbering of almost all notions in use. If one wants to 
subdivide, e. g., the class of “other” nationalities and to separate explicitly, say, the class of all 
Japanese, the whole diagram will have to be reconstructed. Then it will be necessary to 
change the characteristic numbers of some prime notions and those of all composite notions. 
One possibility is to introduce a new prime number in the row of the nationalities preserving 
11 for the class of “others”. However, the numbers of all “upper” classes – mankind, 
mammals, etc., will have to be multiplied by the new prime number. The same difficulty 
arises if one decides to list the subclasses of the apes – gibbons, chimpanzees, orangutans, 
and gorillas. 

On the base of our example we can demonstrate the arithmetical translation of the Boolean 
operations with notions. In order to simplify the situation, suppose that the class of animals 
consists only of reptiles, mammals, birds, and insects. On their turn, let mammals be 
subdivided into dogs, mankind, and bats. Their characteristic numbers are shown on Fig. 2. 
Suppose now that one wants to introduce a new class, say, the class of the winged. In our 
simple classification this class will include bats, birds, and insects. The new class will have 
the number 5·11·13 and will appear above bats, birds, and insects and below animals (see the 
right part of Fig. 3). The negation of winged is wingless (apterouse) and its number will be 
obtained by dividing 2·3·5·7·11·13 (for animals) by 5·11·13 (for winged). The result is 2·3·7 
(see the left part of Fig. 3). The last number shows that the class wingless must be placed 
between reptiles and animals, and a new notion arises at the crossing point of the lines 
wingless–dogs and mammals–mankind. Obviously it is the notion of wingless mammals. It 
includes dogs and mankind and has the number 2·3. 

Let us now check some partially affirmative sentences. For example, let us answer the 
question “Are there winged mammals?” We have to check if the number of mammals (2·3·5) 
and the number of winged (5·11·13) have a common divisor. Such divisor is 5 and it 
obviously corresponds to the class of bats, which appears below mammals and winged on the 
diagram. According to our scheme, the answer to the question “Are there winged reptiles?” is 
“no”, because 7 and 5·11·13 are co-prime. As we see, nothing can be placed below reptiles 
and winged. If the question is disjunctive, e. g., “Which is the class of men and dogs?”, or in 
other words “What does unite men and dogs?”, the answer is: the class of the wingless 
mammals unites them because l.c.m. (2, 3) is 2·3 and the corresponding class is the nearest 
one placed above the dogs and mammals. 

Unfortunately, the full Boolean diagram would contain 26 = 64 vertices and is difficult to 
fit on a page. However, this is not an obstacle to answering various questions using 
characteristic numbers. So, it is not necessary to find on the diagram the place of the class 
corresponding to the negation of the notion of mankind. We know that its number is 
complementary to the number 2, namely it is 3·5·…·13. If we identify the mankind with the 
class of rational animals following Leibniz, then it will be true that rational mammals exist 
(because 2·3·5 is divisible by 2) but rational winged do not exist (because 5·11·13 is not 
divisible by 2). 
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