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The next volume of Leibniz’s philosophical heritage appeared after a 20-year
waiting. In fact, it contains three books of 1000 pages each plus 500 pages indexes.
A preliminary edition, the so called Vorausedition, had been printed ad usum col-
legialem in 1982-1991.

From a technical point of view, the edition is a model of an academic approach to
the scientific heritage of any classic: all variants and hesitations have been shown,
with up to five modifications published, one over the other! This fact raises the
question about a future re-edition of the older volumes in the same style. In the
meanwhile, let us hope to see the next logical papers of Leibniz published soon.
And, may we dream to read them in the Internet?

The volume covers the most productive period of Leibniz’s logical researches:
1677-June 1690. Part A consists of Leibniz’s papers on scientia generalis, char-
acteristica, and calculus universalts. The first half of Part B includes Leibniz’s
excerpta et notae marginales to scientia generalis, etc., and the second one includes
papers and marginalia on metaphysica. Part C is devoted to philosophia naturalis,
theologia, moralia, and scientia juris naturalis. That is why I will limit my review
with Part A which is the most interesting from the logical point of view. All Leib-
niz’s considerations may be divided into three directions which I will present from
the standpoint of today. Many of the papers had been published before (some of
them partially) in Die philosophischen Schriften von Gottfried Wilhelm Leibniz (ed.
C. Gerhardt, 7 volumes, Berlin, 1875-1890) or in Opuscules et fragments inédits de
Leibniz, éxtraits des manuscrits de la Bibliothéque royale de Hanovre par L. Coutu-
rat (Alcan, Paris 1903; reprint Olms, Hildesheim 1961), and had been translated in
G. W. Leibniz, Logical Papers (ed. G. Peterson, Clarendon Press, Oxford 1966). I
will refer to these old editions marking them G, C, and P respectively.

II

The first direction I will name ‘Logical Dreams’. It includes the well known
sketches of the program of both philosophers which might take the quills in their
hands and instead of disputing on a certain scientific question, could sit down at
their abaci inviting each other in a friendly manner: Calculemus! According to this
program, human reasoning had to be transformed into a kind of arithmetic using
characteristic numbers instead of notions. In such a way, the logical truth of a
proposition would turn into an arithmetical truth of a calculation. E.g., if the num-
ber of ‘animal’ were 2 and that of ‘rational’ were 3 (Leibniz’s loved example) then
the number of ‘man’ being by definition a ‘rational animal’ would be obtained by the
multiplication 3-2. Then the answer of the question ‘Is every man a rational being?’
could be reduced to the fact that 6 is divisible by 3. Some of the most representa-
tive texts concerning this program are the following: La vraie méthode (C. 153-157);
De numeris characteristis ad linguam universalem constituendam (G. 184-189); De



republica literaria (G. 66-73); Ad constitutionem scientiae generalis (G. 127-156);
Recommandation pour instituer la science générale (G. 157-173); Elementa rationis
(C. 335-348); De lingua philosophica (C. 288-290); De arte characteristica ad per-
ficiendas scientias ratione ninentes (G. 198-203); Discours touchant la Méthode de
la Certitude et de UArt d’Inventer pour finir les disputes, et pour faire en peu de
temps des grands progrés (G. 174-183). The concrete realizations arithmetization
of the reasoning will be analyzed bellow.

I have to add two notes here. First, all Leibniz logic operates with atoms of
the kind ‘A est B’ and so is limited to syllogistic logic or, in the best case, to the
monadic predicate calculus. Both of them are decidable. On contrary, we know
now that the full predicate calculus containing dyadic relations is not decidable.
Thus, even having relations reduced to properties using appropriate philosophical
speculations (that Leibniz had insisted to be possible) no procedure of checking
reasoning completely could be algorithmic. Second, no translation of arbitrary
reasoning into arithmetic could be ipso facto a panacea for its correctness because of
the undecidability of the arithmetic itself; the business of the computists is not more
algorithmic than the business of the philosophers. Hence, the plan to load a few
selected men to decompose (in a quinguennium!) all human knowledge to syllogistic
relations connecting a list of primary notions and so to liquidate any disputation
had been radically unrealizable. Nevertheless, the fragment of the arithmetic that
Leibniz had had in mind to be used is decidable because it is the fragment containing
only multiplication (without addition). At the end of the review we will see how
certain translations of the monadic predicate calculus (with equality) into arithmetic
of the integers with multiplication would be working.

II1

The second direction of Leibniz’s investigations I will entitle ‘Algebraic Papers’. 1
include the abstract representation of the logical laws which (according to the initial
language) leads to well known (now!) algebraic structures as partially ordered sets,
semi-lattices, lattices, Boolean algebras, etc.’ Here are some of the appropriate pa-
pers: Specimen caleuli universalis (G. 218-221; C. 239-243; P. 33-39); Ad specimen
calculi universalis addenda (G. 221-228; C. 249; P. 40-46); De formis syllogismo-
rum Mathematice definiendis (C. 410-416; P. 105-117); Generales Inquisitiones de
Analysi Notionum et Veritatum (C. 366-399; P. 47-87); Specimina caleuli rationalis
(C. 259-264); Non inelegans specimen demonstrandi in abstractis (G. 228-235; P.
122-143). T have given a full picture of all Leibniz’s approaches, showing their exact
place in a uniform algebraic scheme.

Let us begin with the traditional syllogistic. As we know from the result of J.
Stupecki, the syllogisms not admitting empty terms are axiomatized by the following
four axioms of J. Lukasiewicz:

sAs, sIs, (mAp)&(sAm) = (sAp) (Barbara), and (mAp)&(mZs) = (sIp)
(Datist).?

Consider A and 7 as binary relations < and # in a class of arbitrary objects,
and take &, = in their informal sense. Then < is reflexive and transitive, i.e.,
it 1s a quasi-ordering relation. In order to obtain an algebra, < has to be anti-
symmetric, i.e., an additional axiom (sAp)&(pAs) = (s = p) is needed; strictly

1See my ‘Various syllogistics from an algebraic point of view’, presented at the 2nd
Panhellenic Logic Symposium (Delphi, 13-17 June 1999: Proceedings, 197-200). The ab-
stract of this paper is accessible also from my Web-sites: hitp://www.math.bas.bg/ visot and
hitp://www. geocities.com/sotirov.geo.

2 Jan Lukasiewicz, Aristotle’s syllogistic from the standpoint of modern formal logic, 2nd ed.
(Clarendon Press, Oxford, 1957).



speaking, = here belongs to the extended language of syllogistic. In such a way,
the set of terms turns into a partially ordered structure.® The second relation #
is reflezive and monotonic with respect to <. So the traditional syllogistic may
be shortly characterized by the pair (<,6). One cannot find this assumption in
Leibniz’s manuscripts, but it is notable that he was the first to introduce the three
non-traditional syllogistic laws (e.g., in Flementa Calculi, C. 52).

In most of his manuscripts, Leibniz introduces into the syllogistic a composition
of terms; let us denote it by o. Independently of what it is ‘in reality’, a conjunction
or a digjunction, as a minimum it should be tdempotent, commutative, and associa-
tiwwe. To be formulated these three properties require only term equality to appear
explicitly. Such a structure G. Birkhoff names semi-lattice. An ordering relation
just we need in syllogistic may be defined in it by # < y «= & = 2 o y. Then o will
be an inf with respect to < so introduced. The possibility to build up syllogistic
in this way was noted many times by Leibniz. In fact, he lists idempotency and
commutativity of the composition, defines A as it was shown (e.g., in Primaria
Calculi Logici fundamenta, C. 235-236), and only associativity was not mentioned
explicitly. However, it is described in examples (e. g., in Elementa ad calculum
condendum, C. 258).

Of course, a second ordering relation may be defined by « < y — y = z o y;
then o will be a sup with respect to it. If we continue in this direction, it would be
natural to have two dual operations simultaneously, o and e, one of them playing
the role of a term conjunction, and the other being a term disjunction. This means
that one of them has to be an nf and the other to be a sup with respect to a
unique ordering relation <. The coincidence of corresponding relations is ensured
by the laws of absorption connecting o and e: so(sep) = s and se(sop) = s.
The resulting system <=, o, ® > coincides with the algebraic structure named now
lattice, a structure introduced and studied for the first time by C. S. Peirce. * Now,
let us suppose an extreme element e exists in a structure <=,o > with the sole
property xoe = e for any . The last axiom gives e < z. So e is the least element of
the structure. The second syllogistic relation # can be defined by 28y — z oy # e.
In such a case, if only elements different from e are admitted, z0x is exactly the
requirement 2 # e. Leibniz uses literally the same definitions of < and 6 calling
our # e ‘est Ens’ (Generales Inquisitiones, Principles 164 and 169). Obviously, if
term negation appears in the semi-lattice with some minimal suitable properties
then the extreme element becomes definable by Leibniz’s ‘non-Ens’: e = bo (—b) for
b a fixed element (e.g., Specimina calculi universalis, C. 259). The last basis may be
characterized by the triple <=, 0,e(o,—) > because e is represented as a function
of o and —.

When the structure contains term negation in its full volume, the relation #
becomes definable by <: zfy — # £ —y (also, < by 0: & <y — z0 — y). If empty
and universal terms are prohibited then the full syllogistic of negative terms can be
produced from the system <<, — > using the axioms:

——v=w,e<y—-y<-v,r<y—rfL-y

or, the last replaced with # £ —z.5 Leibniz lists the first three laws of negation,
e.g., in Generales Inquisitiones, Principles 96, 93, 91 = 100; another exposition
including the fourth formula has been given in Fundamenta Calculi Logici (C. 422).

The next combination <=, 0, — > includes term composition and term negation
(besides equality) with appropriate axioms so to obtain a Boolean algebra of terms.

3G. Birkhoff, Lattice theory, 3rd ed. (Amer. Journ. Math., Providence, 1967).

*C. S. Peirce, ‘On the algebra of logic’, Amer. Journ. Math., 3 (1880), 15-57; also in Writings,
vol. 4 (Indianapolis), Indiana University Press, Indianapolis, 1989, 163-209).

5See A. Wedberg, ‘The Aristotelian theory of classes’, Ajatus, 15 (1948), 299-314; J. Shep-
herdson, ‘On the interpretation of Aristotelian syllogistic’, Journ. Symbolic Logic, 21 (1956),
137-147.



Then both relations # < y and fly can be defined by zoy =z and z o (—y) # x
respectively. These definitions are used by Leibniz, e.g., in Primaria Calculi Logict
fundamenta (C. 236).

Finally, the relation = can be replaced by a property ‘= 0’, where 0 1s the empty
term. Then four syllogistic relations corresponding to the traditional categorical
propositions can be defined on the base of < o,—,= 0 >. Using Leibniz’s notation
for the composition, they can be written in the following symmetric manner: s.Ap
is s(—p) =0, sOp is s(—p) # 0, s€p is sp = 0, and sTp is sp # 0. Leibniz used the
last representations in Generales Inquisitiones (Principle 151). Tt is curious that
precisely the same four equations have been proposed 160 years later by George
Boole. ©

v

The third direction I call ‘Arithmetical Models’; it includes some concrete trans-
lations of logic (or, more exactly, of syllogistic) into arithmetic. All Leibniz’s ‘arith-
metical’ papers (FElementa Characterisicae universalis, Flementa caleuli, Calculi
universalis Elementa, etc.) were produced in April 1679 (C. 42-92, 245-247; P/.
17-33). His first attempts to use simply divisibility of integers were unsuccessful.
He explored ‘s is divisible by p’ for ‘Every s is a p’ (like in the example above) but
met difficulties using ‘s multiplied by z 1s divisible by p’ for ‘Some s is a p’: some of
the syllogisms cease being true in this interpretation. Only the more complicated
method using pairs of co-prime numbers (Caleulus consequentiarum; Modus Eram-
inandi Consequentias per Numeros) was successful as Stupecki proved. 7 In this
interpretation, if the pair of co-prime numbers (s1, $2) is assigned to s and (p1, p2)
to p, then ‘Every s is a p’ is true when s; is divisible by p; (for i = 1,2), and ‘Some s
is a p’is true when s; and po as well as s and p; are co-prime. This model obviously
was more sophisticated than the one initially planed, but its larger shortcoming is
that it could not envelop syllogistic of term negation or that of term conjunction.
A correct reconstruction of Leibniz’s primary plan which can be extended on the
whole Boolean syllogistic is possible. &

In fact, Leibniz’s ideas may obtain two dual arithmetical realizations. The first
one I call Scholastic, following Leibniz himself. Terms are evaluated by integers
greater than 1. If the same letters are used for the term values, sAp is replaced
with ‘s is a divisor of p’, and sZp with ‘g.c.d.(s,p) > 1’. If empty terms are
admitted, they are evaluated by 1. For the second interpretation named Letbnizian
(being partially used by him) an arbitrary integer w > 1 is introduced and terms
are evaluated by its proper divisors (i. e., less than u); sAp is replaced with ‘s is
divisible by p’, and sZp with ‘l.c.m.(s,p) < «’. If empty terms are admitted, they are
evaluated by u. When negation appears, the ‘universe number’ u without multiple
factors must be introduced in both arithmetical semantics; terms are evaluated by
divisors of u different from 1 and u (in the case of excluding empty and universal
terms), and ‘non-s is interpreted as %. If a term composition appears (in such a
case, the full Boolean syllogistic is obtained), sp is modeled by g.c.d.(s,p) in the
Scholastic arithmetical interpretation, and by l.c.m.(s,p) in the Leibnizian one.

For the pure monadic predicate calculus, the fact is used that any monadic
proposition 1s equivalent to a monadic proposition with the same predicate symbols
and one variable only. Let this sole variable be z. In addition, we may suppose

8G. Boole, The mathematical analysis of logic, being an essay towards a caleulus of deductive
reasoning (Macmillan, Cambridge 1847).

"Lukasiewicz (footnote), § 34.

8See my ‘Aritmetizations of syllogistic & la Leibniz’, Journ. applied non-classical logics, 9
(1999), n. 2-3, pp. 387-405.



it is not bound ‘twice’ anywhere. So, no subformula is a Boolean combination of
two formulae A(x) and B, one of them containing a free # and the other containing
z bound; in (Quz)A(z), where @ is a quantifier, a free x does occur in A. Let an
arbitrary integer u > 1 without multiple factors be taken, and let its divisor d;
be associated with the predicate P;(x). Further, following the construction of the
formula, a divisor of u will be associated with any subformula containing a free z,
and a statement about divisors will be associated with the subformula when i1t does
not contain a free z. If @ and b are associated with A(#) and B(z), then g.c.d. (a,b)is
associated with A(x)&B(z), & with = A(x), and so on for other Boolean connectives.
The statements ¢ = w and @ > 1 are associated with (Va)A(z) and (Jz)A(x)
respectively. If statements p and ¢ are associated with subformulae A and B, then
‘p and ¢’ and ‘not p’ will be associated with A&B and —A, respectively. Finally, a
certain statement comparing divisors of u with u and 1 will model the initial monadic
proposition. This statement is an arithmetical truth for an arbitrary integer u off
the initial closed formula is a predicate tautology.

Finally, for the monadic predicate calculus with equality, any individual variable
x; must be evaluated by a prime divisor of u, say, by d(«x;); the interpretation of
any predicate P; may be arbitrary divisor d(F;) (possibly 1 or «). Denote by AR[F]
the arithmetical model of the formula F'. Then for atomic formulae, AR[P;(x;)] is
‘d(x;) divides d(F;)’, AR[x; = z;] is ‘d(x;) = d(x;)’; for a subformula G, AR[(Vz)G]
is ‘for any prime divisor d, ARS[G]" where ARY differs from AR in attaching d to

z.?
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