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In this short paper I try to answer questions raised by my teacher
Borislav Bojanov which concern interlacing of zeros of real polynomi-
als and consider two specific topics. The first one concerns one of his
favorite results, a theorem due to Vladimir Markov which states that the
derivatives of two polynomials with real interlacing zeros posses zeros
which also interlace. The second is a problem about monotonicity of ze-
ros of classical orthogonal polynomials and Sturm’s comparison theorem
for solutions of Sturm-Liouville differential equations.
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1. Introduction and Markov’s Interlacing Property

Discussing mathematics with Professor Bojanov was a rare experience for
the author of this note. It was pleasure and fun where ideas, challenge and
jokes were composing an amalgama that I shall never forget and I shall miss.
As I miss its main ingredient: Bojanov himself, his personality, rigor and smile.
Though he had the ability of a theory builder, what he really adored was to be
a problem solver. He used to appreciate very much papers containing a piece,
a nice, clever and ingenious idea that one remembers forever. I remember
when he saw for the first time the Collected Papers of Szegd [18], edited by
Richerd Askey, while he was visiting our department in Brazil in 1997. He was
reading exhaustively Szeg6’s papers and, some days before he left, Bojanov
told me why he thought Szegé was a great mathematician. The reason, in
Bojanov’s opinion, was that not only Gabor Szegé saw important problems
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and solved them long before others, but also because every single paper of the
great Hungarian master contained a piece, there was a nice little trick that
catches one’s thoughts, and even feelings, and that mixture made Szegd’s work
an art.

One of the favorite nice pieces Bojanov used to adore and comment fre-
quently was a result of Vladimir Markov [10]. In order to formulate it, we
introduce the notion of interlacing. In what follows we denote by m,, the space
of algebraic polynomials of degree not exceeding n. Let p(z) and ¢(z) be real
algebraic polynomials with only real distinct zeros and p(z) = (z — z1)(z —
x9) -+ (x — xy) and either g(z) = gn(z) = (x — y1)(@ — y2) - (x — y,) or
q(x) =gn-1(z) = (x —y1)(x —y2) - - - ( — Yn—1). Sometimes the real algebraic
polynomials with real zeros are called hyperbolic ones. Also, the zeros of the
first derivative of a polynomial are called its critical points. We say the the
zeros of p and ¢ interlace and write p < ¢ if

T <Y1 <T2 < <Yp-1 < Ty <Ypn
when ¢(z) = g, (z) or
T <Y1 <Tg < Yn—1 < Ty

when ¢(z) = ¢n-1(2).
Theorem A (Vladimir Markov). If p < g then p’ < ¢'.

It is clear that this nice result states that the operator of differentiation
preserves the property of interlacing of zeros of two polynomials. I was still
in the beginning of my studies as MSc student when Bojanov showed me this
result and made various comments on it. The first one was if one could find a
proof different from the original one which is reproduced in Rivlin’s book on
Chebyshev polynomials [15]. That proof uses the Lagrange interpolation for-
mula and somehow “hides” the nature, and even the beauty, of the statement.
I remember I came up with a proof for the case when the polynomials p and
q are both of degree n and proudly presented it to my teacher as I do now,
without the proud of twenty-five years ago. The idea is rather simple. One
thinks what would happen with the critical points if one “pushes a bit” only
one of the zeros of p to the right. It turns out that all zeros of p’(x) also go to
the right so that we formulate the following:

Lemma 1. If p(z) = (z — z1)(z — z2) -+ (x — x,) has distinct and real
zeros and p'(z) = n(z — &) (x — &) -+ (x — &n—1), then all the critical points
1,8, ...,&n—1 of p are increasing functions of each of its zeros xp. More
precisely, if

pe(r) = (z —a1) -+ (2 —ap)(w — 2 — &) (T — Tpy) -+ (€ — Tn),

where € is a sufficiently small positive number, and

pe(z) = (z = &i(e)(z = &(e)) -+ (2 = &na (e)),
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then & < &;(e) for every j=1,...,n—1.
Similarly, if € is a sufficiently small negative number, then &;(e) < §&; for
every j =1,...,n— 1.

Proof. The proof is based on the simple technique of counting the sign
changes. We consider only the case when ¢ > 0 and count the signs of the
“new” polynomial p.(x) at the critical points ¢; of the “old” one. Since

pe(z) = p(z) —ep(x), where p(z) = p(z)/(z — zk),
P (x) = (x — z)p'(z) + p(z), and p/(§;) = 0, then

pL6) = =7 6) = e,

Recalling that € > 0, we obtain

sign pL(&;) = sign (§; — zx) p(&;) = sign p(§;).

Therefore _

sign pZ(&;) = (—=1)""7 = sign p/(x;)
Since p.(z) has a unique zero in (x;,z,41), which we denote by &;(¢), and the
sign of this polynomial at &; is still the same is in the left end point x;, it
changes sign after &;. Thus, z; < &;(¢). O

Since my enthusiasm was not shared completely by Professor Bojanov and 1
saw only his curious smile when I showed him this simple argument, I realized he
knew this proof. Nevertheless, I needed to prove a similar fact about symmetric
polynomials some years later, when I wrote my first paper on monotonicity of
zeros of orthogonal polynomials [4] and I only modified slightly the above proof
(see [4, Lemma 1]).

It is worth mentioning that Shadrin [16] provided a proof of the lemma with
arguments identical with the above ones. Another proof of Lemma 1 was given
by Nikolov [13]. Much earlier, in 1951, Videnskii [19] established some suffi-
cient conditions for interlacing of zeros of generalized polynomials, and applied
his result to establish some Markov-type inequalities with curved majorants.
Until 2007 or so, Bojanov was unaware about Videnskii’s result, it was com-
municated to him by A. Shadrin. Professor Bojanov himself obtained various
results on V. Markov’s zero interlacing property for perfect splines and splines
in [1, 3] (see also Theorem 5.7 in [2]), which do not follow from Videnskii’s suffi-
cient conditions. Recently Milev and Naidenov [11, 12] derived zero-interlacing
properties of exponential polynomials and alike. I do thank my colleague and
friend Geno Nikolov for the information about all these contributions.

Back to my discussions with Bojanov in the late eighties, I remember that
he emphasized another important question: which linear operators, except for
differentiation, preserve the interlacing property. Needles to say, he wanted to
see another proof, deep enough to reveal the role of the differential operator
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and which would allow the desired extensions. Some years later I realized the
tight connection between interlacing of zeros of real hyperbolic polynomials and
stability, which is given by the classical Hermite-Biehler theorem and which,
together with the Gauss-Lucas theorem, implies immediately Markov’s result.

It turns out Bojanov’s questions were deep and an answer, though still not
complete, can be given with the help of the very recent progress on operators
which preserve stability, due to Julius Borcea (who, sadly enough, passed away
at the very same day, April 8, 2009, as Professor Bojanov) and Peter Branden.

One of the versions of Hermite-Biehler’s (see, for instance [14]) theorem is
as follows:

Theorem B. Let p(x) and q(x) be real polynomials whose degrees are equal
or consecutive integers. Then the zeros of the polynomial

f(@) = p(z) +iq(x)

belong to one side of the real axes if and only if p and q are hyperbolic polyno-
mials whose zeros interlace.

Recall that the Gauss-Lucas theorem states that the critical points of a
complex polynomial belong to the convex hull of its zeros. The the Hermite-
Biehler and Gauss-Lucas theorems immediately yield Markov’s one. Moreover,
it is clear that one can characterize the operators which preserve the interlacing
of zeros of hyperbolic polynomials if finds all operators which preserve the
property that a polynomial possesses zeros only on one side of the real axis.
Since a simple rotation, that is, multiplication by =+, takes the upper or the
lower half-planes to the left, one, we may consider the polynomials whose zeros
belong to the half-plane ¥z < 0. The real polynomials with this property are
called Hurwitz or stable ones. In what follows we recall the Routh-Hurwitz
criterion for stability. In order to this, and for other purposes, suppose that
P(x) =ap+ a1+ --a,z"™ and Q(x) = by + byx + -+ by_12" L + b, 2™ are
real algebraic polynomial with a,, > 0 and either b, = 0, b,_1 > 0 or b, > 0,
which means that P is always of degree n and (@ is either of degree n — 1 or n,
and both polynomials posses positive leading coefficients. Then we form the
polynomial

G(z) = P(z?) 4+ 2Q(2?)

=ag+box +arx® + x>+ +bp_127" "+ apz®™ + bzt

It is either of degree 2n, when b, = 0, or 2n + 1 otherwise, and its leading
coefficient is also positive. Vice versa, given an algebraic polynomial G(z) with
positive leading coefficients, it can be represented in the above form and thus
define the polynomials P(x) and Q(z). Then the Hermite-Biehler theorem
and above mentioned rotation of the upper or lower half-planes to the left one
imply:

Theorem C. Let the polynomials P(z) and Q(z) and G(z) be defined as
above. Then the zeros of the polynomial G belong to the left half plane Rz < 0
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if and only if P and @ are hyperbolic polynomials whose zeros are negative and
interlace.

This result appears as Theorem 13 on p. 228 in [5]. With the above poly-
nomial G, or equivalently with the P and @, we associate its Hurwitz matrix

bp b1 by -+ b, O 0

ap ap as cee Ay 0 AN o 0

_ 10 b b by - b, 0O - 0
HG=HPQA =10 . 0 a o a 0 - 0
0 0 by

The the Routh-Hurwitz theorem states:

Theorem D. Let the polynomial G(x) be defined as above. Then it is stable
if and only if all principal minors of H(G) are positive.

Thus, we obtain a simple criterion for interlacing of zeros of hyperbolic
polynomials provided all their zeros are negative.

Theorem 1. The zeros of P and Q) are real, negative and interlace, if and
only if the principal minors of H(P,Q) are positive. Moreover, if Q € m,_1,
then P < Q and, if Q € m,, then Q < P.

In the general case, we may consider the Taylor expansion of the polynomials
at a sufficiently large real number, larger than the zeros of the two polynomials.

Recall that if A(x)=A¢+A12+- - -+A,2" and B(x)=Bo+Biz+---+Bpz",
then their Hadamrd product is defined by

Very interesting property of stable polynomials was established by Garloff and
Wagner [6]. They proved that if A and B are stable, then their Hadamard
product A x B is also stable. Therefore, we can state the following consequence
of this interesting fact:

Theorem 2. Let p,q, P and Q be real hyperbolic polynomials with negative
zeros and p < g and P < Q. Then (p* P) < (¢ * Q).

2. Monotonicity of Zeros Satisfying a Sturm-Liouville
Differential Equation

As I have already mentioned above, I became interested in zeros of orthog-
onal polynomials after I finished my graduate studies. In 1992 I asked Prof.
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Mourad Ismail for help concerning zeros of a specific family of orthogonal poly-
nomials which arises in the Ly Markov inequality when he kindly sent me a
bunch of papers. There, in [8], I found a very interesting conjecture on mono-
tonicity of positive zeros of ultraspherical polynomials. Bojanov was not an
expert in this topic but I remember his initial interest on the problem and the
many discussions we had on this theme after I really got interested and begun
contributing on it. It is widely known that the zeros of the orthogonal poly-
nomials are all real, distinct and are located in the convex hull of the support
of the measure with respect to which they are orthogonal. These zeros are
the nodes of the corresponding Gaussian quadrature formula and this is one
of the main reason for the interest in their behaviour and location. The most
famous and well known orthogonal polynomial and those of Jacobi, plP )(x),
Gegenbauer, c™ (z), Laguerre, L (z), and Hermite, H,(x). Very interest-

ing questions are related to the behaviour of the zeros of P,(f)"ﬁ)(x)7 e (x)

and Lg{l)(m) when they are considered as functions of the parameters «, 5 and
A. There is an additional challenge here because the zeros of the classical or-
thogonal polynomials obey a very interesting electrostatic interpretation. We
recall it for the zeros x,i(«, 5) of the Jacobi polynomial pld) (x). Consider
an electrostatic field generated by two fixed charges at —1 and +1 with forces
(8+1)/2 and (a+1)/2, respectively, where o, 8 > —1, so that these charges are
positive, and n free unit charges located in (—1,1). Suppose that they repel
each other according to the logarithmic potential law which means that the
force is reciprocal to the distance between the charges. Equivalently, we may
interpret this situation as if the charges are distributed along infinite wires per-
pendicular to the real axis. Then the energy of this electrostatic field attains its
minimum at a unique location of the free charges, when they coincide with the
zeros Tpnk(a, B8) of pP (z). Tt is clear from this electrostatic interpretation
of z,k (e, B) that they are increasing functions of S and decreasing functions
of a. Formally this fact was established by Andrei Markov [9] who proved a
nice simple criteria for monotonicity of zeros of orthogonal polynomials using
the fact that the zeros of the orthogonal polynomials coincide with the nodes
of the Gaussian quadrature formula (see also [17]).

Once we discussed with Professor Bojanov the classical Sturm compari-
son theorem on zeros of solutions of Sturm-Liouville differential equation and
its eventual application to results on interlacing and monotonicity of zeros of
orthogonal polynomials.

Theorem E (Sturm’s comparison theorem). Let y(z) and Y (z) be
solutions of the differential equations

y'(x) + f(@)y(z) = 0 (1)

and
Y (2) + F(x)Y (z) = 0, (2)
where f,F € C(a,b) and f(z) < F(z) in (a,b). Let z1 and x2, with a < (1 <
G2 < b be two consecutive zeros of y(x). Then the function Y (x) has at least
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one variation of sign in the interval (¢1,(s) provided f(x) # F(x) there. The
statement holds also:

o for ¢ =a if

yla+0)=0 and  lim {y'(2)Y(z) —y(@)Y'(x)} =0;  (3)
o for (o =0bif

yb—0)=0 end lim (/@)Y ()~ y@V' @) =0. (@)

We refer to the preliminary chapter of Szegd’s book [17] or to Chapter 8 of
Hille’s book [7].

This theorem is widely used for obtaining sharp limit for the zeros of the
above families of orthogonal polynomials which are called the classical fami-
lies of orthogonal polynomials. Indeed, the Jacobi, Gegenbauer, Laguerre and
Hermite polynomials are solutions of such differential equations. Chapter 6 of
Szegd classical reading [17] contains various such results. Nevertheless, there
was no proof in the literature on the monotonicity of zeros of classical orthog-
onal polynomials using Sturm’s theorem and Bojanov said it was surprising.
Some year later I discussed seriously the same question with my colleague and
friend Panos Siafarikas who also passed away too early. I remember I had al-
ready thought about this matter and that Panos was sceptical about such an
application because if one considers Y (z) — y(x) in the case corresponding to
the classical orthogonal polynomials, with two different values of the parame-
ter, the difference usually changes sign in the interval of orthogonality. I was
sure that this phenomenon was not only necessary but also sufficient for estab-
lishing monotonicity and shared my belief with Siafarikas but I never took this
idea seriously till very recently when I worked with my colleague and friend
Ranga on zeros of certain para-orthogonal polynomials whose zeros are located
in the unit circumference of the complex plane. It turns out that Sturm’s
theorem is very helpful for establishing monotonicity of zeros of polynomial
functions which are solutions of Sturm-Liouville differential equation. Here is
the theorem we need:

Theorem 3. Let f,F € C(a,b) and y(z) and Y (z) be solutions of the
differential equations (1) and (2), satisfy (3) and (4), and both have n distinct
zeros in (a,b). Let the zeros of y(x) in (a,b) be x1 < 3 < - -+ < @, and those of
Y(z) be X1 < Xo <--- < Xp. If there ezists n € (a,b), such that f(n) = F(n)
and

o F(x)— f(x) <0 forx € (a,n) and F(x) — f(x) > 0 for x € (n,b), then
xp < Xi for everyk=1,...,n;

o F(x)— f(x) >0 forx € (a,n) and F(x) — f(x) <0 for x € (n,b), then
x> Xi for everyk=1,...,n.
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Before we prove this theorem, it is worth mentioning its simplicity. It says
that we may draw conclusion about monotonicity of zeros of solution of Sturm-
Liouville differential equations provided the difference F'(z)— f(x) changes sign
in (a,b). Besides, it is not possible that the difference F(z) — f(z) maintains
the sign in (a,b) if both y and Y have exactly n distinct zeros in (a,b). Indeed,
if it was so, say F(z) — f(x) > 0 in (a,b), and if we set zp = a and x,+1 = b,
then by Sturm’s Comparison Theorem E, the solution Y (z) of (2) would have
changed sign in every interval (zy,zr+1), K =0,1,...,n, which would produce
at least n + 1 distinct zeros of Y () in (a,b), a contradiction.

Proof of Theorem 3. We prove only the statement in the case when F(xz) —
f(z) < 0forz € (a,n) and F(z)— f(x) > 0 for € (n,b) because the arguments
in the other case are identical.

Let y(z) have m zeros on (a,n) and n — m zeros in [n,b), that is

<2 << ... < Ty <N Tpg1 < ..o <y < b

The reader will realize that the conclusion in the cases m = 0 and m = n are
immediate from the arguments provided below, so that we consider the general
situation 1 < m < n.

First we shall prove that Xy > xy for k = 1,...,m. Assume the contrary,
that there is a j with 1 < j < m, such that X; < z;. Since F(z) < f(z) for
z € (a,;), then by Theorem E, the function y(x) would change sign at least
once in all the intervals (a, X1),...(X;-1,X;). This means that z; < Xj;, a
contradiction.

The fact that X3 > zp for k = m+1,...,n is also a consequence of Sturm’s
theorem. Since f(x) < F(z) for x € (@my1,b), Y(x) changes sign at least
once in (x,,b), at least twice in (z,—1,b), and so on, at least n — m times in
(m+1,b). Hence, X,, > x,, X;,—1 > xp—1, and so on, until X,,,11 > xpy1. O

Now we may consider a family of Sturm-Liouvile differential equations which
depends on a parameter T,

y' (x5 1) + ;) y(z; 1) = 0, (5)

where the differentiation is with respect to the variable z and 7 € (¢, d). Sup-
pose that f € C[(a,b) x (¢,d)], the solutions y(z;7) depend continuously on 7
and, for every 7 € (¢,d), y(x; 7) satisfies

lim y(xz,7)=0 and lim y(z,7) =0, (6)
0 —b—0

r—ra+
and possesses n distinct zeros z(7) € (a,b),
a<zi(T) < - <zp(T) <D,

which also depend continuously on 7. Suppose further that, for some 7,7 €

(c,d),
lim {y'(z,7)y(z;72) —y(z;m)y' (2;72)} =0 (7)

r—a+0
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and
lim {y'(x,7)y(x;72) — y(z; 1)y (x;72)} = 0. (8)

z—b—0

Then we may formulate the following useful consequence of Theorem 3:

Theorem 4. Let the solutions y(x;7) of (5) obey the properties described
above. If, for some 11,73 € (c,d) thereisn € (a,b), such that f(n; 1) = f(n;72)
and

o f(x;m2) — f(z;m1) < 0 for x € (a,n) and f(x;72) — f(x;71) > 0 for
x € (n,b), then x(11) < xk(12) for every k =1,...,n;

o f(z;m2) — f(z;m1) > 0 for x € (a,n) and f(x;72) — f(x;m1) < 0 for
x € (n,b), then xp(11) > xk(12) for every k=1,...,n.

It is worth mentioning that in the applications we should use either 75 =
T1+€ or o = 11 —¢, with sufficiently small positive €. In this situation, because
of the continuous dependence of the zeros with respect to the parameter 7, we
shall have not only monotonicity, but also interlacing of the zeros of y(x; 7) and
y(x;7 £ ). As an application of these results, we establish the monotonicity
of the zeros of the Jacobi polynomials in the case when «, 5 > 0. It is known
that

y(wsa, B) = (1 — 2)@HD/2 (1 4 ) D72 pleod) ()

is a solution of the differential equation
y' (w0, B) + f(xs0, B) y(as o, B) =0,

where

1-a? 1-8%2  nn+a+B+1)+(a+1)(B+1)/2

f@esB) = g Y a2 1- 22

Fix 8 > 0 and let us apply the theorem with 7 = a which varies in (0, 00).
Obviously y(x; a, 8) obeys the requirements (6), (7) and (8). Let 71 = a and
7o = a+ €. Then

. . _ef{n+l-a+pB-e—2n+1+a+p+e)r}
f(a:,a+6,ﬁ)—f(a:,oz,ﬁ)— (1_x)2(1_|_x) :
Hence, if € > 0, then f(n;a +¢,8) = f(n; a, B), where

_2n+l—-a+f—-c¢
T ntl+tatfre

€ (-1,1),

and

flx;a+e,8)— flz;a,8) >0 for € (-1,n),
flya+e,p)— flz;a,p) <0 for = € (n,1).
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Therefore, the zeros @, (a, §) of the Jacobi polynomial of degree n are decreas-
ing functions of a for @ € (0, 00). Observe that they are degreasing functions of
a in the entire range o € (—1, 00) but our theorem can not be applied for o < 0
because in this case we can not guarantee that (6), (7) and (8) hold. Never-
theless, I wish Professor Bojanov knew these little pieces and Panos Siafarikas
knew the above Theorems 3 and 4.
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