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LAGRANGE INTERPOLATION ON INFINITE INTERVAL

Kalman Farag6

Summary. In the first part of this paper we present some basic theorems about or-
thogonal polynomials, which are necessary for the study of interpolation. The second part
refers about my latest result obtained together with G. Réna.

§ 1. Let us denote by P,(x) the orthogonal polynomials associated with
the weightfunction w(x) on the interval (-cc, <o), where w(x) satisfies the
nequality

1) ae"¥ <w(x)<be™

and let the coefficient of x" in P,(x) be positive.
Let us consider the following polynomials of degree n:

(2) Qu=Pu(x)+A. Pr_y(x)+B. Py_(x),

where B-20, which are called Quasi-Hermite polynomials. It was proved in
the book of G. Freud |1] that the zeros of quasi orthogonal polynomials
are real and distinct.

Let

(3) El.u<$2.n<~ ‘e <5n.n

be the zeros of Q,(x) in increasing order.

The following theorem is proved:

Theorem. There exist constants ¢, and ¢, independent of n so, that
the inequality

(4) L A L T e
vn V1

holds.

The proof of this theorem uses the following lemmas with the follow-
ing notations:

l,, are the fundamental polynomials of Lagrange interpolation;

i,n are the Christoffel number of mechanical quadrature.

Lemma 1. 1f I5-3(x) is an arbitrary polynomial of degree at most
2n—3, then
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n

(5) [ 1 sxye)ix = X dyulhaostér)

r=l
holds.
Lemma 2.
(6) 0< f B (w(x)dx=irm r=1,2,...,n.
Lemma 3. Let &, and &, ., are the two consecutive zeros of Q,(x). Then
Sr 1,n
(7) [ W(,’C)dx< }v.n e /:r—5~ ro

iron

holds.
Lemma 4. It &, <\/rz, then

52
_cyexp(=§7,)

(8) /:r,n ==

Vv
holds.

Lemma 5. liell, (x) is a polynomial of degree at most n—1 and
) | f Il -y(x)e” *dx=1,
then
"

(10) ~ 112 (x)= NTh(x)

r=1

holds, where /,(x) are the orthogonal Hermite polynomials.
Lemma 6. Let f denote

(11) fll= max  f(x).e~
and

,7;' {
(12) ap=Sup ‘,n:l” )

where 1, are polynomials of degree at most n, then there exist constants ¢;
and cg, for which

(13) e <an<con
holds. , :
Lemma 6 was proved by G. Freud, while the remaining lemmas are

the infinite equivalent of same classical finite results.
§ 2. Let f(x) be continuous and bounded function in [0, o) and let

(14) Ifl= sup f(x)\

0=x oo
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We consider the r-th modulus of continuity of

r

(15) w/(f;d)= sup ?:(;)(—l)ff(x-f—sh) :
U-hx!:{go =20 |

Denote by «,(f; x) the Lagrange interpolation polynomials.

The lower estimate for the approximation error of interpelation is as
follows:
1

2 =8 X 1
con® . wAf;n -).w(—Q-), =

v

x=0;

1 1

(16) /)=l f; D)=} am. (4_”.‘;_";)4 '“’r(f : n.T) W (

3

8| =

2.1f .(2;‘ )w(?e“zﬁ)n.w(g—), x24n§",

where w(x) is the weightfunction for which the asymptotical Laguerre po-
lynomials are orthogonal, and for which the inequality

(17) axce” *=w(x)=bx e~
holds.
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