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APPROXIMATION BY MEANS OF BIMODULAR NORM

J. Musielak

Summary. A functional ‘o(x) defined in a real linear space Xis called a convex pseu-
domodular, if 0= p(x)Seo, (0)=0, &(—x)= o(x), slax+Ay)<a o(x) + Foly) for a, f=0,
a+pf=1.Let Xbe a real linear space, Y a real normed linear space, and let p(x, y) be a
functional defined in XXV such that it is convex pseudomodularboth in X and Y separate-

ly, and o(dy, y)=elx, iy) for real L. Let [(x. y)[|,= inf {y s oy, y)=1), then || x |0
=sup {4,(x,y)lig: ]iyz' =1} is a norm in the llnear space X"—{x || x]j0cc0, x€X]}, called

the bimodular norm.Necessary and sufficient conditions for approximation of elements .x € X0
by means of a subset X; of X° are expressed by means of the functional p.

1. Let X be a real linear space. An extended real-valued functional
o defined on X is called a convex pseudomodular, if 0 <g(x)<co, (0)=0
g( x)=0(x), o(ax+A8 ) )< ag(x)+Beo(y) for a, =0, a+p=1. If, additionally
g(x) 0 implies x= 0,0 is called a convex modular. The linear subspace

(~={x: o(3x) > 0as 1 — 04} of X is called a modular space. The func-
tional
X ~=inf {£>0: o(x/e)<1)

is a homogeneous pseudonorm in XF (if o is a convex modular, e is a
norm in X~), and x ~<1 implies 0 (%)= x|~ (see [1] and [2]).

The pseudomodular o will be called

(i) left-continuous, if lim e~(1x)=g~(x) for every x¢ X,
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(ii) right-continuous, if llm o(Ax)=0(x) for every x¢X;
+
(iif) continuous, if it 1s both left-continuous and right- contmuous
Proposition 1.1. 1f g is left-continuous, then the inequality 'x ;__<_1
is equivalent to o (x)<1. If g is right-continuous, then the inequality ' x '~ <1

is equivalent to E(f)<l. g
Proof. Let o be left-continuous and let x ~<1. Then ¢(ix)=1 for

all 0<i<1, and so g(x)<1. If ' x ~<l1, then o (x) <1 always. Hence
' x'o~,<l implies o(x)<1. The converse implication is true always. Now, let
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o be right-continuous and let o(x)<<1 . Then x - =1. Let us suppose that
x ~=1, then o(4x)>1 for all 2>>1. Consequently,o(x)=1, a contradiction.
The converse implication is true always.

2. Let X, Y be two real linear spaces. An extended real-valued func-
tional o defined on AX Y is called a bipseudomodular on XXV, if o(x, y)
is a pseudomodular on X for each y¢ Y and a pseudomodular on Y for each
x¢ X, and moreover, o(ix, y)=o(x, 2 y) for every real A I, additionally, o(x, y)
=0 for all y¢Y implies x=0, ¢ is called a bimodular (see [1]).

For all (x,y)¢ X'<Y one can define

() -mf{r> 0:0 (—,y) ’l}—mf r>0: 0 (% —)<1}

in case when the set under the sign of infimum is void, we put | (x, )/,
=CC,

Now, let ¥ be a normed linear space, and let us write

[x/o=sup{lx,y) ,: |y},
Xo={x: | x|0<c0, X€X).

Then - °is a pseudonorm in X° If p is a bimodular, ||-|° is a norm in X°,
called the bimodular norm (see [1]).

Proposition 2.1. Let x,, x¢ X° and let ¢£>0. Then

(i) if | x,—x|/°<e, then o(x,—x, y)<<1 uniformly in the ball y|<1/g

(i) if o(x,—x, y)=1 uniformly in the ball y <1/e then  x,—x °<e.

Proof. Let | x,—x °<e then o(x,—x, y/e)<1 uniformly in the ball
'y =1, i e o(x;—x, y)<I uniformly in the ball y <1/e. Conversely, let
g(x,-—x,y)<l uniformly in the ball "y <1/, then n(vl—r y/e)=<1 uniformly
in the ball y|<1, and so x,—x!°<e

Proposition 2.2. Let X, X€X and let £>0;

(i) if o(x,y) is left-continuous in X for every y¢Y, then x,—x °<g,
it and only if, o(x,—x, ¥)=<1 uniformly in the ball y| <1/

(i) if o(x,y) is right-continuous in X for every y¢ Y, then ' x;—x °<g,
it and only if, o(x,—x, ¥)<1 uniformly in the ball y <1/e.

This follows from Propositions 1.1 and 2.1, immediately. From Propo-
sition 2.1 follows also

Proposition 2.3. Let x,, x,¢X° for n—1,2,... There holds x, — X,in
X0 if and only if, for each r>0, o(x,—X, y) >0 as n— co uniformly in
the ball y|<r.

3. If g-+XCX° x¢ X% we call

x(¥)=int {| x;—x °:x € X}

the best approximation of the element x by means of the set X,.

We shall consider for a given =0 the problem under which condi-
tions Ex (x)=4. We shall treat the cases 0=0 and 0>>0 separately. If £x (x)=0,
we shall say that x may be approximated arbitrarily by elements from X
in the bimodular norm - °.
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Theorem 3.1. Let o be a bimodular in XXY and let g=X,CX",
x € X°, xeX The element x may be approximated arbitrarily by elements
from X, in the bimodular norm | - % if and only if, there is a sequence of
elements x, ¢ X, such that o(x,—x, y)<1 uniformly in the ball 'y =n (or
equivalently, if and only if, there is a sequence of elements x,,e/\’1 such
that o(x,—x, y)=1 uniformly in the ball y |<n).

Proof. Let o(x,—x,y)~1 uniformly in the ball |y |<n, where x, ¢ X,
then o(x,—x, y)r/n=1 uniformly in the ball 'y <1, and so x,—x °<I1/n.
Hence x,—x °—0. Conversely, let Ex(x)=0,i e x,—x[°—0 for a
sequence of elements x! ¢ X,. By Proposition 2.3, this implies o(x,—x,y) —0
as n— co uniformly in each ball y |<r. In particular, there exists an in-
creasing sequence of indices n; such that o(x! —x, y)<I for n= n, uniformly
in the ball y =k, Writing xk‘:x;k, we get o(xx—x, y)<1 uniformly inthe
ball |y =k

Theorem 3. 2. Let 0 be a right-continuous bimodular in XX Y and let
g+ X,CXO x€X% x€X, 6>0. There holds Ex (x)=9, if and only if,

() for every X, ¢ X, there exists y, ¢ Y such that Y =1/ and o(x,
—X, yl) ;

(it) for every n>0 there exists x,¢ X, such that o(x,—x, y)<<1 uni-
formly in the ball y '<1/(0+). An equivalent necessary and sufficient
condition for Ex (x)-dis obtaired,if we replace the inequality o(x,—x, y)<l1
in (ii) by the inequality o(x,—x, y)=1.

Proof. First, let us see that Ex(x)=4 is equivalent to the conditions

1° | x,—x |°=4 for every x, (Xl,

20 for every >0 there exmts x, € X, such that ' x,—x'°<d+.

Condition 2° may be replaced by an equivalent condition replacing the
inequality | x,—x °<d-+y by |x,—x °<d+.

Now, let us suppose that there holds 2° then, by Proposition 2.1,
o(x,—x, y)<1 uniformly in the ball |y <1/(d-+5), and we obtain (ii). Con-
versely, let us suppose (ii), then, again by Proposition 2.1, x,—x °<d+n.
Since 5>0 is arbitrary, this gives 2° Now, applying Proposition 2.2 we
find that 1° is equivalent to the following condition: there exists y, ¢ ¥ such
that | y, =1/4, but o(x,—x, y,)=1, i. e. we get the condition (i).

4, Let us yet remark that just as in the case of modular spaces, be-
sides norm convergence one may consider also modular convergence ([2], 1.04).
A sequence of elements x, ¢ X°is called o-convergent (bimodular convergent)
to x¢ XY if there exists an r>0 such that g(x,—x,y)—0 as n—co uni-
formly in the ball 'y <=r. o-convergence of {x,} to x will be denoted by
Xn ¢, x. From Proposmon 2.3 follows immediately that x, — x (in bimodular
norm | - °) implies x, ¢, x. Converse implication does not hold in general.
In fact, it is easily seen that x, ¢ x implies x, — x for every sequence of
elements X, € X if and only if, for every r>0 uniform convergence to 0 of
a sequence g(x,y)in the ball |y =r implies uniform convergence to 0 of
this sequence in the ball y 's=2r (this generalizes Theorem 1.31 in [2]). To
problems of g-convergence in X° we shall return in another paper.
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