APPROXIMATION BY MEANS OF BIMODULAR NORM

J. Musielak

Summary. A functional $\widetilde{\varrho}(x)$ defined in a real linear space X is called a convex pseudomodular, if $0 \le \widetilde{\varrho}(x) \le \infty$, $\widetilde{\varrho}(0) = 0$, $\widetilde{\varrho}(-x) = \widetilde{\varrho}(x)$, $\widetilde{\varrho}(\alpha x + \beta y) \le \alpha \ \widetilde{\varrho}(x) + \ \widetilde{\beta}\varrho(y)$ for α , $\beta \ge 0$, $\alpha + \beta = 1$. Let X be a real linear space, Y a real normed linear space, and let $\varrho(x,y)$ be a functional defined in $X \times Y$ such that it is convex pseudomodular both in X and Y separately, and $\varrho(\lambda x, y) = \varrho(x, \lambda y)$ for real λ . Let $||(x,y)||_{\varrho} = \inf\{\gamma > 0 : \varrho(\gamma^{-1}x,y) \le 1\}$, then $||x||^0 = \sup\{||(x,y)||_{\varrho} : ||y|| \le 1\}$ is a norm in the linear space $X^0 = \{x : ||x||^0 < \infty$, $x \in X\}$, called the bimodular norm. Necessary and sufficient conditions for approximation of elements $x \in X^0$ by means of a subset X_1 of X^0 are expressed by means of the functional ϱ .

1. Let X be a real linear space. An extended real-valued functional $\widetilde{\varrho}$ defined on X is called a convex pseudomodular, if $0 \leq \widetilde{\varrho}(x) \leq \infty$, $\widetilde{\varrho}(0) = 0$ $\widetilde{\varrho}(-x) = \widetilde{\varrho}(x)$, $\widetilde{\varrho}(ax + \beta y) \leq \widetilde{a\varrho}(x) + \widetilde{\beta\varrho}(y)$ for α , $\beta \geq 0$, $\alpha + \beta = 1$. If, additionally $\widetilde{\varrho}(x) = 0$ implies x = 0, $\widetilde{\varrho}$ is called a convex modular. The linear subspace $X_{\widetilde{\varrho}} = \{x : \widetilde{\varrho}(\lambda x) \to 0 \text{ as } \lambda \to 0 + \}$ of X is called a modular space. The functional

$$x \in \inf \{\varepsilon > 0 : \widetilde{\varrho}(x/\varepsilon) \le 1\}$$

is a homogeneous pseudonorm in $X_{\widetilde{\varrho}}$ (if $\widetilde{\varrho}$ is a convex modular, $|\cdot|_{\widetilde{\varrho}}$ is a norm in $X_{\widetilde{\varrho}}$), and $|x|_{\widetilde{\varrho}} < 1$ implies $\widetilde{\varrho}(x) \le |x|_{\widetilde{\varrho}}$ (see [1] and [2]).

The pseudomodular $\widetilde{\varrho}$ will be called

(i) left-continuous, if $\lim_{\lambda \to 1^-} \widetilde{\varrho}(\lambda x) = \widetilde{\varrho}(x)$ for every $x \in X$,

(ii) right-continuous, if $\lim_{\lambda \to 1+} \widetilde{\varrho}(\lambda x) = \widetilde{\varrho}(x)$ for every $x \in X$;

(iii) continuous, if it is both left-continuous and right-continuous.

Proposition 1.1. If $\widetilde{\varrho}$ is left-continuous, then the inequality $|x|_{\widetilde{\varrho}} \leq 1$ is equivalent to $\widetilde{\varrho}(x) \leq 1$. If $\widetilde{\varrho}$ is right-continuous, then the inequality $|x|_{\widetilde{\varrho}} < 1$ is equivalent to $\widetilde{\varrho}(x) < 1$.

Proof. Let $\widetilde{\varrho}$ be left-continuous and let $x|_{\widetilde{\varrho}} \leq 1$. Then $\widetilde{\varrho}(\lambda x) \leq 1$ for all $0 < \lambda < 1$, and so $\widetilde{\varrho}(x) \leq 1$. If $x|_{\widetilde{\varrho}} < 1$, then $\widetilde{\varrho}(x) < 1$ always. Hence $x|_{\widetilde{\varrho}} \leq 1$ implies $\widetilde{\varrho}(x) \leq 1$. The converse implication is true always. Now, let

 ϱ be right-continuous and let $\widetilde{\varrho}(x) < 1$. Then $\|x\|_{\widetilde{\varrho}} \leq 1$. Let us suppose that $\|x\|_{\widetilde{\varrho}} = 1$, then $\widetilde{\varrho}(\lambda x) > 1$ for all $\lambda > 1$. Consequently, $\widetilde{\varrho}(x) \geq 1$, a contradiction.

The converse implication is true always.

2. Let X, Y be two real linear spaces. An extended real-valued functional ϱ defined on $X \times Y$ is called a bipseudomodular on $X \times Y$, if $\varrho(x, y)$ is a pseudomodular on X for each $y \in Y$ and a pseudomodular on Y for each $x \in X$, and moreover, $\varrho(\lambda x, y) = \varrho(x, \lambda y)$ for every real λ . If, additionally, $\varrho(x, y) = 0$ for all $y \in Y$ implies x = 0, ϱ is called a bimodular (see [1]).

For all $(x, y) \in X \times Y$ one can define

$$\|(x,y)\|_{\varrho} = \inf \left\{ \varepsilon > 0 : \varrho \left(\frac{x}{\varepsilon}, y \right) \le 1 \right\} = \inf \left\{ \varepsilon > 0 : \varrho \left(x, \frac{v}{\varepsilon} \right) \le 1 \right\};$$

in case when the set under the sign of infimum is void, we put $||(x, y)||_{\varrho} = \infty$.

Now, let Y be a normed linear space, and let us write

$$||x||^0 = \sup\{|x,y\rangle|_0: ||y|| \le 1\},\$$

$$X^0 = \{x: ||x||^0 < \infty, x \in X\}.$$

Then $|\cdot|^0$ is a pseudonorm in X^0 . If ϱ is a bimodular, $|\cdot|^0$ is a norm in X^0 , called the bimodular norm (see [1]).

Proposition 2.1. Let $x_1, x \in X^0$ and let $\varepsilon > 0$. Then

(i) if $||x_1-x||^0 < \varepsilon$, then $\varrho(x_1-x,y) < 1$ uniformly in the ball $|y| \le 1/\varepsilon$;

(ii) if $\varrho(x_1-x,y) \le 1$ uniformly in the ball $y \mid \le 1/\varepsilon$, then $\mid x_1-x\mid^0 \le \varepsilon$. Proof. Let $\mid x_1-x\mid^0 < \varepsilon$, then $\varrho(x_1-x,y/\varepsilon) \le 1$ uniformly in the ball $\mid y\mid \le 1$, i. e. $\varrho(x_1-x,y) < 1$ uniformly in the ball $\mid y\mid \le 1/\varepsilon$. Conversely, let $\varrho(x_1-x,y) \le 1$ uniformly in the ball $\mid y\mid \le 1/\varepsilon$, then $\varrho(x_1-x,y/\varepsilon) \le 1$ uniformly in the ball $\mid y\mid \le 1/\varepsilon$, then $\varrho(x_1-x,y/\varepsilon) \le 1$ uniformly in the ball $\mid y\mid \le 1/\varepsilon$.

Proposition 2.2. Let $x_1, x \in X$ and let $\varepsilon > 0$;

(i) if $\varrho(x,y)$ is left-continuous in X for every $y \in Y$, then $x_1-x \mid 0 \le \varepsilon$, if and only if, $\varrho(x_1-x,y) \le 1$ uniformly in the ball $||y| \le 1/\varepsilon$,

(ii) if $\varrho(x,y)$ is right-continuous in X for every $y \in Y$, then $|x_1-x|^0 < \varepsilon$,

if and only if, $\varrho(x_1-x,y)<1$ uniformly in the ball $|y|\leq 1/\varepsilon$.

This follows from Propositions 1.1 and 2.1, immediately. From Proposition 2.1 follows also

Proposition 2.3. Let $x_n, x_0 \in X^0$ for n = 1, 2, ... There holds $x_n \to x_0$ in X^0 , if and only if, for each r > 0, $\varrho(x_n - x_0, y) \to 0$ as $n \to \infty$ uniformly in the ball $|y| \le r$.

3. If $\phi = X_1 \subset X^0$, $x \in X^0$, we call

$$E_{X_1}(x) = \inf \{ ||x_1 - x||^0 : x_1 \in X_1 \}$$

the best approximation of the element x by means of the set X_1 .

We shall consider for a given $\delta \ge 0$ the problem under which conditions $E_{X_1}(x) = \delta$. We shall treat the cases $\delta = 0$ and $\delta > 0$ separately. If $E_{X_1}(x) = 0$, we shall say that x may be approximated arbitrarily by elements from X_1 in the bimodular norm $|\cdot|^0$.

Theorem 3.1. Let ϱ be a bimodular in $X \times Y$ and let $\emptyset = X_1 \subset X^0$, $x \in X^0$, $x \in X_1$. The element x may be approximated arbitrarily by elements from X_1 in the bimodular norm $|\cdot|^0$, if and only if, there is a sequence of elements $x_n \in X_1$ such that $\varrho(x_n - x, y) < 1$ uniformly in the ball $|y| \le n$ (or equivalently, if and only if, there is a sequence of elements $x_n \in X_1$ such

that $\varrho(x_n-x,y) \le 1$ uniformly in the ball $|y| \le n$.

Proof. Let $\varrho(x_n-x,y) \le 1$ uniformly in the ball $|y| \le n$, where $x_n \in X_1$, then $\varrho(x_n-x,y)r/n \le 1$ uniformly in the ball $|y| \le 1$, and so $|x_n-x|^0 \le 1/n$. Hence $|x_n-x|^0 \to 0$. Conversely, let $E_{X_1}(x) = 0$, i. e. $|x_n'-x|^0 \to 0$ for a sequence of elements $x_n' \in X_1$. By Proposition 2.3, this implies $\varrho(x_n'-x,y) \to 0$ as $n \to \infty$ uniformly in each ball $|y| \le r$. In particular, there exists an increasing sequence of indices n_k such that $\varrho(x_n'-x,y) < 1$ for $n \ge n_k$ uniformly in the ball $|y| \le k$. Writing $x_k = x_{n_k}'$, we get $\varrho(x_k - x, y) < 1$ uniformly in the ball $|y| \le k$.

Theorem 3.2. Let ϱ be a right-continuous bimodular in $X \times Y$ and let $\emptyset + X_1 \subset X^0$, $x \in X_1$, $\delta > 0$. There holds $E_{X_1}(x) = \delta$, if and only if,

(i) for every $x_1 \in X_1$ there exists $y_1 \in Y$ such that $|y_1| \le 1/\delta$ and $\varrho(x_1)$

 $-x, y_1) \ge 1;$

(ii) for every $\eta > 0$ there exists $x_{\eta} \in X_1$ such that $\varrho(x_{\eta} - x, y) < 1$ uniformly in the ball $|y| \le 1/(\delta + \eta)$. An equivalent necessary and sufficient condition for $E_{X_1}(x) = \delta$ is obtained, if we replace the inequality $\varrho(x_{\eta} - x, y) < 1$ in (ii) by the inequality $\varrho(x_{\eta} - x, y) \le 1$.

Proof. First, let us see that $E_{X_i}(x) = \delta$ is equivalent to the conditions

 $1^{\circ} \mid x_1 - x \mid^{\circ} \geq \delta$ for every $x_1 \in X_1$;

2° for every $\eta > 0$ there exists $x_{\eta} \in X_1$ such that $|x_{\eta} - x|^0 < \delta + \eta$.

Condition 2º may be replaced by an equivalent condition replacing the

inequality $|x_{\eta}-x|^{0} < \delta + \eta$ by $|x_{\eta}-x|^{0} \le \delta + \eta$.

Now, let us suppose that there holds 2° , then, by Proposition 2.1, $\varrho(x_{\eta}-x,y)<1$ uniformly in the ball $\|y\|\leq 1/(\delta+\eta)$, and we obtain (ii). Conversely, let us suppose (ii), then, again by Proposition 2.1, $\|x_{\eta}-x\|^{\circ}\leq \delta+\eta$. Since $\eta>0$ is arbitrary, this gives 2° . Now, applying Proposition 2.2 we find that 1° is equivalent to the following condition: there exists $y_1 \in Y$ such

that $|y_1| \le 1/\delta$, but $\varrho(x_1 - x, y_1) \ge 1$, i. e. we get the condition (i).

4. Let us yet remark that just as in the case of modular spaces, besides norm convergence one may consider also modular convergence ([2], 1.04). A sequence of elements $x_n \in X^0$ is called ϱ -convergent (bimodular convergent) to $x \in X^0$, if there exists an r > 0 such that $\varrho(x_n - x, y) \to 0$ as $n \to \infty$ uniformly in the ball $|y| \le r$. ϱ -convergence of $\{x_n\}$ to x will be denoted by $x_n \xrightarrow{\varrho} x$. From Proposition 2.3 follows immediately that $x_n \to x$ (in bimodular norm $|\cdot|^0$) implies $x_n \xrightarrow{\varrho} x$. Converse implication does not hold in general. In fact, it is easily seen that $x_n \xrightarrow{\varrho} x$ implies $x_n \to x$ for every sequence of elements $x_n \in X^0$, if and only if, for every r > 0 uniform convergence to 0 of a sequence $\varrho(x_n, y)$ in the ball $|y| \le r$ implies uniform convergence to 0 of this sequence in the ball $|y| \le r$ (this generalizes Theorem 1.31 in [2]). To problems of ϱ -convergence in X^0 we shall return in another paper.

REFERENCES and as the first state of the sta

- T. M. Jedryka, J. Musielak. On bimodular spaces. Prace Matem., 15 (1971), 201-208.
- 2. J. Musielak, W. Orlicz, On modular spaces. Studia Math., 18 (1959), 49-65.

Krasinskiego 8D Poznan Poland Received on May 20, 1970

the half the show difference at the recent