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INVERSE RESULTS VIA SMOOTHING

M. Becker, R. J. Nessel

Summary. In 1972, Berens and Lorentz offered an elementary proof of the inverse
theorem for Bernstein polynomials in case O<a<l. Recently this was extended to all
values 0<a<2 (cf. M. Becker, Aequationes Math., in print), the main point being an
appropriate use of integral means. The purpose of the present paper will be to examine
this elementary procedure in connection withi further classical problems, e. g. with (zlobal)
Inverse theorems for a general class of linear approximation processes in Banach spaces,
for best approximation by algebraic polynomials, and for a variant concerning Bernstein
polynomials. It follows that this “elementary method” provides an interesting alternative
to the classical Bernstein argument via telescoping sums.

1. Introduction. In 1972, Berens-Lorentz [8] offered an elemen-
tary proof of the inverse theorem for Bernstein polynomials in case 0<a<1.
Recently this was extended to all values of a ¢ (0, 2) in [l], the main
point being an appropriate use of integral means. In fact, this approach to
(global) inverse results may be applied in other and more general situations.
Details were worked out in [5] for trigonometric convolution operators as
well as for a new proof of the Bernstein-Zygmund theorem concerning the
best approximation by trigonometric polynomials, in [2] for the Szdsz-Mira-
kjan and Baskakov and in [3] for the Favard operators in polynomial weight
Spaces, respectively. For further comments and references, however, let
us refer to [1-3].

The purpose of the present paper will be to test this elementary pro-
cedure in connection with further classical problems. Whereas Sec. 2 is
Concerned with some preliminary results, Sec. 3 treats inverse approxima-
tion theorems for a general class of approximation processes in Banach
Spaces. Section 4 is devoted to the inverse theorem for best approximation by
al€.€braic polynomials. Finally, Sec. 5 deals with a variant concerning Bern-
Stf}ln polynomials. Let us emphasize that the purpose of this paper is not
Primarily to establish new results. In fact, particularly those of Sec. 4 are
classical. The point will be to show that the elemenfary methodas suggest-
ed in |1, 8] may be used in various situations, thus providing an interest-
Ing alternative to the classical Bernstein argument via telescoping sums.
As for the Bernstein argument, the following procedure is restricted to
Nonsaturated rates of convergence. For the characterization of. saturation
Classes via smoothing one may consult [7] (cf. [10, p. 502]).
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2. Preliminaries. The proofs to be employed in this paper mainly rest
upon the following lemma which slightly extends that given in [5] and (8],

respectively.
Lemma 2.1. Let © be monotonely increasing on (0, d|, d=<1. If for

some 0<a<r, i>0 one has for all h, t¢[0, d), h<t<\ih that
2.1) Q ()= Mt (hJty (t=-+ Q1)
then Q(t)=0(t*), (t—0+).

Proof. Choosing A>1, c=d such that 3M=Ar"« ¢<l/A, define for
m¢N, the set of natural numbers, M, :=max {1, c== Q2(c), 3M A<}, h,,: =cA*—",
Then one has Q(h,)<=M, h¢ via induction. Indeed, Q(h,)=2(c) = Mk,
Since A>1, c<1 A" 2 for all m ¢ N, one has

B 1 < b= A" <\Jch A=m2 =\ B 11.
Thus (2.1) for h=h,, t=h,,_, delivers
Q (hm)gM [h;ln 1+ (}Zm‘/hm—l)r (k;ln_] o= Q (hm—]))]

SM[Ahs + A" {A ha+M bt M<[MA*++MA* "+ MA— M he <M, k.
Let £¢(0, ¢) be fixed and m ¢ N be such that %, <t¢<#h,_,. Then the mono-
tonicity of Q yields

Q=2 (hm—) =M b2 =M, Akt <M,A*te.
This completes the proof.
The next lemma contains some technical information about the func-

tions
(2.2) p(x)=x(1—x); x¢[0,1],

(2.3) p(x)=1—x; x¢[—1, 1]
Lemma 22. For 0=a<1, 0=8<2 one has
t s
(24) O0=[ fo@ *duds=px)<(-x2; x€0, 1), €0, 1],
h/i2  hj2

25) [ | o(etstt)t dsdt<[max{p(xth), o (0))-* M, 82

—h/2 —h/2
for all h¢ (0, 1/8], x ¢ [h, 1—A],
h/2 k2
(2.6) _{/” h{/?w(x—i— S+1)7¢ ds dt<[max {y (x+h),y (x) }]=# M, h?
for all h¢(0,.1/4), | x|<=1—h.
Proof. For a=1 there holds

z Z (@(l—u)~t duds=tlog(t/x)+(1—¢)log (1—2)/(1 —X))

<t(t)x—D+(1=1) (1=8)/(1—x)—1)=(t—x)*/x (1=x)

since log y=y—1 for y=0. Of course, the non-negativity of the integral
results from the non-negativity of the integrand.This proves (2.4) for a=1,
the case a<1 following by Holder’s inequality :
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t s t t
[ [ o@ eduds={f T o™ dudse{ [ ds}i-o<g(x)«(¢—x2.
Concerning (2.5), consider h=x<=2h=<1/4 so that max{¢(x-+h), ¢(x),
®(x—h)}=@(x+h). Then
) v
Ihx=J [ (x+8+8)"2(1—x—s—t) 8 ds dt
- h/2
h/2
=(l—x—h)# [[(x+s+t)"8dsdt.
B)
Since x=2h, one has for f=1
IS (1 =x—h) 8. (1—B 2—B) | (x+h)P-0— 25204 (x—h)>~# |
=@ (X +R) 8 M(x+h)?+2x>(x+ h)f +(x—h)2~B(x + h)B)< My p(x+ h)~# 2.

Here and in the following, M denotes a constant which may. have different
values at each occurrence. For f=1 one has

h/2
Inx=(1=X—R)"" [[ (h+s+1)=! ds dt=(1—x—h)-*[2hlog 2h—2klog i)
Zh2 .

=642 log 2/3k (1—x—h) <6k log 2/((x+k) (1 — x— k)= Mh2/ (x + h).

Thus (2.5) is valid for x ¢ [k, 2k] and by a symmetric argument for x ¢[1—24,
I—#) as well. For x ¢ [2h, 1—2h] one has

Jnx=(x—h)=B (1 —x— k)~ h2==q (x)~8 B2 [(14-h/(x—k)) (1 + 1/ (1 —x—h))]#
<@(x) #48 h2, VRN
and analogously 42(x—#h) #(1—x—h) #<38 h>p(xth)# so that (2.5) fol-
lows. The estimate (2.6) may be derived analogously (or via the transforma-
tion x —-(x+4-1)/2 giving o (x) — y (x)/4).

3. Approximation Processes in Banach Spaces. Let X be a Banach
Space with norm || - ||y and Yc X a subspace with seminorm |- [y. Struc-
tural properties of an element f ¢ X to be approximated will be measured
In terms of the K-functional which is given for =0 by

(3.1) K@t f; X, V)=K(t,f): =int{|f—g|x+t|glr:8€ 1}
Let [X] be the space of bounded linear operators of X into itself. Let ¢>0

be a parameter tending to infinity, and suppose that ¢ ()>0 is a function,
monotonely increasing to infinity such that there exists a sequence {o.5_;,

monotonely increasing to infinity with
(3.2) gielg @ (er+1)/@ (r)=L< o0

We shall be concerned with families {7,},>0C [X] of operators which satisfy
a Bernstein-type inequality, thus 7,f ¢ Y for each f¢ X, ¢>0 and

(33) (T fly=Mo@|lfllx; f€X >0,
as well as a certain invariance relation, namely
(3.4) | T,gly=Migly; &€Y, ox0.
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Theorem 3.1. Let {T,},>0C[X] satisfy(3.2—4). If f¢ X is such that
for some 0<a<1

(3.5) | Tef—fllx=0(e(e)~%), (e = ),
then one has
(3.6) K(t, f3 X, ¥)=0(t), (¢ —~0+).

Proof. Let g¢ Y be arbitrary. Since 7,(X)cY, it follows by defini-
tion (3.1) as well as by (3.3-5) that
K, N=f=TofIxHt T fly=Mo (@) +t| T, (f—8) Iy +[Te & lr I=Male) ™

+Mtlo @) f—&lxt+|g Iyl
Since g ¢ YV is arbitrary, we conclude for any £>0, o>0:K (¢, f)=M|p(e) °
+t (o) K(®(0)Y, f)]. For any 6>0 choose & such that (cf. (3.2))
@ (or+1) ' =0<p (e) ' =L (e41)™"

Then this implies that for any £, 6>0: K (¢, f)=M[d*+(¢/8) K(, f)] so that
the assertion (3.6) follows by Lemma 2.1.

The result of Theorem 3.1 is already contained in [7, p. 33] where it
was proved via telescoping sums. Using that argument, one additionally
has to assume the commutativity of the operators via

B7)  Tory=T, 4y, =T oty U=T - e0), ] = Ty, [[— Ty, |

2

In order to avoid (3.7), thus to extend telescoping arguments to noncom-
mutative operators, Kuptsov [13] used the following modification of (3.3)

(3:3%) | Tof=Tofly=Mo (@) | T f—T.f llx

to be valid for all f¢ X and 6<p. From the point of view of applications,
however, it seems to be impossible to verify (3.3*) for the standard exam-
ples.

In many applications (cf. [7]) one has

(3:8) Y:=D(B), |gly:=|Bglx

where D(Byc X is the domain of some closed linear operator B with range
in X. In this situation, (3.4) reads

(3.4%) | BT, gllx=M|| Bgllx; g€D(B), >0,

which is trivial in case the operators 7, and B commute and {7} is uni-
formly bounded.
The proof of Theorem 3.1 in particular shows that one may strengthen
the Bernstein-type inequality (3.3) considerably. Indeed (see also [15]),
Corollary 3.2. Let {T,}c[X] satisfy (3.3-4). Then for any f ¢ X, >0

(3.9) | Tofly=Mo @ K(p @7 f3X, Y)
Proof. Again one has for any g¢ Y

| Tof v=[To(f—8) lr+| To 8 ly=MIp (@) || f—8llx+|&¥]
which already implies (3.9),
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Let us observe that, strengthening Bernstein inequalities of type (3.3)
to those of type (3.9), may be equivalently expressed via a corresponding
strengthening of Jackson-type inequalities (cf. [12]). -

As an immediate consequence of Theorem 3.1, Cor. 3.2 we note

Corollary 33. Let {T,)C[X] satisfy (3.2-4).1If f ¢ Xis suchthat (3.5)
holds for some 0<a<1, then one has the Zamansky-type estimate

(3.10) | Tofly=0 (2", (¢ — ).

Let us conclude these general considerations with the observation that
in the particular case of semigroups of operators cne may give a very ele-
mentary proof of (3.10), even for the limiting case a=1 (see also [15]). To
this end, let {T'(¢)};=0c[X] be a uniformly bounded semigroup of operators
of class (Cy), i. e.

(3.11) T(t,+t)=T(t) T(t), T(0)=1 the identity,
| T@F = Mifls lim || 7O~ [1x=0.

Let A be the infinitesimal generator of the semigroup, i. e. Af:tlim T (S
-0+

—f], the domain consisting of all elements f¢ X for which the limit exists.
Then A is a closed linear operator which is densely defined. Let for
feX t>0

(3.12) Sifes £ {tT(u)fdu.
It follows that S;(X)c D (A) for each £>0 and :
613 ASS=tT (O f~F ] S, I~ |x=sup | T @)/~ Ix.

For the basic facts of semigroup theory see [9].

Theorem 3. 4. Let {T (1)} be a uniformly bounded semigroup of ope-
rators of class (C,) which is holomorphic, thus T (t(X)cD(A) and

(3.14) |AT (O] xsMEY fllxs fEX, £0.
Iffe X is such that for some monotonely increasing ¢
(3.15) | T =flx=0(@®), (¢—0+),
then one has the Zamansky-type result

(3.16) AT @) fllx=0 (o (£), (t— 0+).

Proof. Using (3.13) one has | AT(®)f|x< | AT (O —S:/1|x+] AT(®)
Stfix= Mt f—Sif |x+ M| ASif lx=Me="sup | T'(uw)f—fx, which already

completes the proof. ”

The assertion of Theorem 3.4 was essentially given in [6. p. 18] (cf.
9, p. 113]) where it was shown via telescoping sums. Let us consider the
Particular case ¢ (f)=¢=

Corollary 3. 5. Under the assumptions of Theorem 3.4 one has
for any 0<a<i

IT@)f~f x=0 @)= AT (O)f llx=0(&).
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For e=1 this improves results as given in [6], [9] (see also [15]).

4. Best Approximation by Algebraic Polynominals. In this section we
are concerned with the (algebraic) polynominal p, (f) of best approximation
of f¢ C[—1, 1], the space of continuous functions on [—1, 1] with the
usual sup-norm, thus

| f=p, (N =1, n=inf|| f—pallci—1, 1)
P,,Gpn
P, being the set of algebraic polynomials of degree n. To formulate the
result, for some 0<A=1 (cf. (2.3)) let

A f ) =f (x+0)=2f (X)+f(x=h); [x|=1—h,
oy (f, 9)=sup sup |43 f(x)),

’ 0<hss | x |<1-h
dp(x)=max {1 —x¥n, n~% = n—! max {\y(x), n—1}.
Then there holds the following classical result which is connected with ma-
ny names including those of S. M. Nikolskii, A. F. Timan, V.K. Dza-

dyk, S. A. Teljakovskii,LE.Gopengauz (see[14,18] for the details).
Theorem 4.1. Let a¢(0,2), f¢ C[—1,1] satisfy

(4.1) P, () (X)—f (x) =M[dn(x)]*; neN, x€[—1,1],

then f ¢ Lipya={f:f € C[—1,1], wy(f, ) O (%), 6 - 0+}.
Proof. In view of Lemma 2.1 it suffices to show that

(42) w3 (fy B)< M+ (/8 {0+ o5 (f, O

To this end define for n ¢ N, 2 ¢ (0, 1], x € [—1+h 1—h]:8pcn

=max {4, (x+h), 4,(x), 4,(x—Ah) }. From (4.1) there follows

(43) [4f (%) = |f(x+B)—p, (f)(x+R) | +2 p, (f) (*X)—f(x)|+]|f(x—h)
h/2

—P,(f) (x—h) +!dZ[Pﬁ(f)](X)1§4M(6n.x.h)“+_fhig (PN (x+s+1)|ds dt

Thus we have to estimate [p)(f)]’ using an appropriate Bernstein-type

inequality. This is given by the following lemma, the proof of which is post-

poned for a moment,
Lemma 4.2. Let f¢ C[—1,1] satisfy (4.1). Then for n=2 and.

y€[x—h, x+hc[—1, 1] one has
(44) (2, (N (9) [ =M[da (D)2 [(On,2.0)*+ 02 (fy Onn)l:
Using Lemma 4.2, one has by (2.6) for all |x|=1—£
hy/2 h/2
. /f) P, ()] (x+s+8) |dsdi=M [((Sn,x.h)“+wa(/ﬂf’n.x.h)]_fh/f2 [dn (x+s+2)] 2 ds dt
h/2 d
=M[@nen)* + @ (fibnsn)] 2 [] max {y :x‘itsq¥f). n~2

—h/2

= M[(an.x,h)a+w2 (f, dn.X.h)] h’/(d,,,x,,, )2-

ro
o
-



Therefore we conclude from (4.3) for all n¢N, 2¢(0, 1), | x|=1—4A
Id}zlf(x)] §4M ((srz.x,h)a‘|‘/'l'1(/l/dn.,\r,h)2 [(6n,x.h)a 35 Wy (f)‘sn.x.h)]; FOl’ ﬁxed h:d

€0, 1], x¢[—1+h, 1—4] choose n such that 6, x<0<dn—1, sp = 40px1-
Then [A2f (x)| < M[62+(h/0) {0°+ o, (f, 0)}], proving (4.2), and hence Theo-
rem 4.1.

Before proving Lemma 4.2, let us point out that the usual Bernstein-
Markov inequality for algebraic polynomials

(4.5) [P (x) =M[dy ()72 pa |

for pn € Pu, x€[—1, 1] (cf. [18, p. 227]) is too weak for our purposes.
Instead, we use the following stronger result (cf. [14, p. 71, [I8, p.
219, 224)).

Lemma 4.3. Let Q be a modulus of continuity, and let r be an arbitra-
ry integer. If p, € P, satiesfies | pn (X) |=[dn(x)]" 2 (4, (x));  x|=1, then with
Some constant M only depending upon r

| pa’ (X) | EM[da (X)) 2 (4a (x)); | x|<1.

In fact, all we need in this section is that

(4.6) | Pa(%)|=2 (4, (%) [ x[|S1
implies
(4.7) ()| SM[4, (]2 2(4a (%) ; | % =1
Proof of Lemma 4.2. For the Steklov means
é/2
(4.8) f3(x):=0672 [[f(x+s+t)dsdt; 6>0, |x|<1
—48/2

it is a well-known fact that for all x|<1 (cf. [10, p. 38))
(4.9) fs () —f (¥)| =(1/2) 6-2 f;]j'zl A, f(x) ds dt<(5/2) wg, (f ,9),

|5 (x)| =072 43 f(x) | =562 wy (£, 9),

using a suitable, but standard extension of f from [—1, 1] to some larger
Interval not effecting the modulus of continuity (apart from a constant fac-
tor 5, say, cf. [18, p. 121 f]). In addition we need a regularization process
of polynomial type, i. e, let {/,}, be a sequence of linear operators on

C[—1, 1] such that for each f¢ C[—1, 1]
(4.10) Jof € Py | JnflI= M| £l
(4.11) [ Juf () —f (X)| =My (f, 4,(x)); [ x| <1

For example, one may take processes constructed in [11, p. 146ff] or
(14, p. 65] via trigonometric convolution operators. Let us first show that

(4.12) (Gaf V' ()| SM[da (D)2 0y (f, dn () | %] 1-
Proof of (412). By (4.5), (49-10) one has
|Unf Y )| | Galf =) ()| + G S () —F7 ()| 1y ()]
< My (2 f—fo |+ L+ 1] S My (f, ) (da ()T 246" +1,
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say. In view of (4.11) and w,(fs, f)=w,(f, ), a theorem of Teljakovskii
[17], which gives an analog to Lemma 4. 3 for the difference p,—f, might
be used to deduce

(413)  L=|(f)" ()=, (0) | SM[da () T2 0y (f, 4u(%)); |X|<1,

so that (4.12) would immediately follow upon setting d6=4,(x). However,
since Teljakovskii uses telescoping sums in his proof, we establish (4.13)
?ygelementary methods using the Steklov means once again. One has by,
4.9), (4.11)

(414) L= (Jnfs—[Jafsls)" ()| | ((SaSols)"(X)— ([ fol)"(X) |+ ([ fs)s) (%) —F; (%)
=L+ ’ Agljnfd*fd](x) l +472| Aglf"—f] ()
<L,+4Md™? max w.z}(f, A, (9))+4072 || fo—f |l

VE {x —48,X,X+4

To estimate /,-we use (4.6-7). There holds by (4.9-11)
2
(415) (o fa=Un f) () = (12D LT 42, V(0 )]0 du dods df

=(1/2)0=* [ ﬁf | 42 {UF (- +ut+0)] (¥)—f (¥ +u+0)} | dudo ds dt
+(1/2)07* ffff‘d';’ﬂ f(x+u+v)du dv dsdt
—4/2

=(5/2) M max {w,(f, 4(¥))-+(5/2) w,(, 0):y € [x—9, X+3]}.
Next we prove that for j,(x, 6)=max {wy(f, 4.(¥)):y¢[x—0, x+4]}; 0>0
one has
(4.16) Ja(X, A (X)) =Mwy (f, 4n (%))

Proof of (416). For n>2, | x|<4,(x)=max {{1—x%/n, n2}<1/2 there
follows  ju (X, 4y (X)) = g (f, 1/1) = (1 + (1 — x3)712)2 w, (f, J1—x/n)
= (1G4 o, (f, dn (x))-

Next suppose x>4,(x). Since the case j,(X, 4,(X))=w,(/, 1/n?) is trivial
we have to consider Jj,(x, 4, (X)) =y (f, V1 —(x =4y (x))¥/n). If 4, (x)=n"2
i. e, 1—x2<n? then

1—(x— 4 (X)2=1—X24-2x n—2— 4 <n—2+2n2=3n72
hence

Ju (%, du () Sy (f, 3172 = (143 @y (£, 4, (x)).
i A4,(x)=J1—x%n, i. e, JI—x2> 1/n,then(l — (x—4a (X))/(1—-x)<1
+2n- 1 (1—x%)~12<3, hence ju (X, da(X))<(14y3)2 0, (f,\1—x%/n). Thecase
x<—4,(x) follows by an analogous argument so that the proof of (4.16)
is complete.

Setting d=4, (x) in (4.15) gives (Jufs—[Jnfals) (X)| S My (f, 4,(x)), 5O
ithat since (4.6) implies (4.7) one has

Ly=|(nfs—[nfsls)" (x)| SM[4n (X)] 2 03 (f, dn(x))-
With d=4,(x) in (4.14) this yields (4.13), and thus (4.12).
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By (4.1), (410-11) one has |p,[f=Jf] (0= p, (/YD) +If ()
— Lf () |EM[(4:(¥)*+s(f, 4a () Since (4.6) yields (4.7) with modu-
lus of continuity Q(f)=M[t*+w, (f, 1)}, it therefore follows that

(@17) (P [f=Ja f])" (9) | =MA (D2 [(4n () *+ 03 (f, 40 (3))]

Now we are ready to prove (4.4). Using (4.12), (4.17) one has for
YE[x—h, x+h]

[y (O D) | =[P =S ) D) |+ Gaf ) ()]

=M[dn (W] [(4n () 3 (fy A (WIS M[dn(9)]72 [(On,20)* + 0 (F, On,m))
The last inequality follows by arguments similar to those used for (4.16).
This proves Lemma 4.2.

At the end of this rather lengthy argument we have to point out that
the present procedure is by no means shorter than the classical one using
telescoping sums (cf. [14, p. 73f]). It is the different arrangement of the
details which may be of some interest. In particular, it may be possible to
shorten the present argument considerably in case it is possible to deve-
lop a more clever way in dealing with regularization processes in connec-
tion with Lemma 4.2.

5. Approximation by Bernstein Polynomials. In this section we
would like to discuss another variant of approximation by algebraic poly-
nomials, namely by Bernstein polynomials

Buf (9= 2 F() prn(), pan (6)=( ) %4 (1=

where x ¢ [0, 1], n¢ N, ¢ C[0, 1]. With ¢(x)=x(1—x) (cf. (2.2)) one has
Theorem 5.1. For f¢C[0, 1], a € (0, 2] the following statements are

equivalent

(5.1) | Baf (%) —f(x) <Mn=<2; n¢N, x¢[0, 1],

(52) o (X)2 | A f(x)| <Mhe; ke (0, 1/8], x €[k, 1—h].

In this theorem the pointwise structure as described by the endpoint
weight ¢ (x) has been moved into the Lipschitz condition (5.2) (ci. Theo-
rem. 4.1). For the saturation case a=2 this was shown in [4] (see also
[14a]) ; the similar saturation conclusion 4%[pf]=O (h?) for modified Berns-

tein- polynomials was obtained in [16]. On the other hand, in [1], [8] the
€quivalence of
(5.1%) |B,f ()~ ()| <M[p (9l neN, x€[0, 1]
With f ¢ Lipya was shown. Although most authors discuss (5.1%) which exhi-
bits a pointwise approximation rate, the nonoptimal inverse par@ of Theo-
rem 5.1, i, e. (5.1)= (56.2) for O<a<2, is indeed an immediate conse-
Quence of Theorem 5 in [8], which is proved via anintricate argument using
Intermediate space methods. In the following we would like to show how the
elementary method may be used to derive Theorems 5.1. This was suggest-
Tdd to the authors by Prof. Berens, Erlangen, which is gratefully acknow-
edged.

Before proving the theorem, we need some estimates for the Bernstein
Polynomials. Define
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wra(f, )= sup sup () 4 f(x)].

0<h=d x€[h1-h]

Let us again note that the definition of the Steklov means (4. 8) for
X €[0, 1], 6=<1/2 requires a suitable extension of f from [0, 1] to the real
axis R, namely (cf. [18, p. 121f])

o (f(x) for x¢]0, 1],
(5.3) f(x) -—\ —f(—Xx)+2(0) for x¢[—1, 0]

flx+2)=fE+2[/()—f(0)]; xeR.
With this definition one has for x ¢ (0, 1) (cf. (4.9))

(5.4) f:0) =/ (0)=fs(1)—f (1)=0,
(5:5) 1fs(x)—f(x) =(1/2)07" ff A2, (%) ds dE<(9/2) 9 (x)7 wau (£, 0),
f:,’ (x)| =0-2| 42 f(x)| <9072 @ (%)~ wra(f, 9).
One also has by (2 5), (6.5) for x ¢ [1/n, 1—1/n]
|2 f(x f [ 17} (et 5] ds dt=95" w2, (£,9) j:?:f(x+s+t)—aﬂdsdt

(56)  Slmaxip(e-1/n), o8 pl—Unjl-2 Mo rwr(id).
Lemma 52. For 0<a=2, x¢[0, 1] one has

n—-1
(8.7) 2 0 (&/n) = pra()=do (x); X0, 1,
(68) A= L | e n) - (1-24) k= nx“[qo(k/n) 1 pen (X)<20n,

(5.9) Hoe kZ:O] (k—nx)d—(1—2x) k—nx?| pan(X)<2n@(x).

" Proof. Obviously there holds

k+1 n—k+1 ,n42
(kfl) pkn(x)é k n—k (k+1

This proves (5.7) for a=2, whereas for a<2 this follows by Holder’s
inequality. In view of (1—2x)k+nx*=0; 1<k<n,

(k—nx)2+(1—2x) k+nx?=(k+1—(n+2) x)*+2nx (1 — x),
there follows

4
X1 —x) Primte (x).

) Xt (1 —x)—r<

A< 4

SHi= x) s 2 [(k—nx)+(1—2x) k+ n5%) Prt1nta (%)

— 4n+2) k+1 _ .
T x(‘(nl =X) ( n+2 —X)? Pptrnga (X)+8n ké;lpkﬂ’,,_;_?(x)

=4 (n+2)+8n=20n,
which proves (5.8). For (5.9) see [8, p. 700].
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Now one has the following Bernstein-type inequality for the Bernstein
polynomials (cf. [1, (5)]).

Lemma 53. For f¢Cl0,1],a €0, 2], n=3, ¢ (0, 1/2), x € (0,1) one has

(5.10) | (B f)"(x) | < M)~ 2eon (£,3){op () +572).
Proof. For (B,f)” there hold the representations (cf. [8, p. 705])

By W=n(a=1) T B, f(k+1))r) praa(®); 05351,

(Baf)' (x)=@(x)2 k)io[ (k—nx)3—(1—2x) k—nx? f (k/n) pra(x); 0<x<L].

In view of (5.4-6) one obtains

(Ba) ()= Balf =Y+ Bafi' @)
<P 3 [ (k=120 =12 ] () S [ pen ()

n——“’ k
#n(n=1) 2 A [0 [ Praea()

§ @ {(X) 2wy, (f, ) L: (k— nx) —(1—-2x)k— nx’]¢(~—) p,,,,, (%)

M0 (1,92 pi o ey (R

,;Mm?_,,( f, 0) [ (x)~2 As? Bi~e24§2 Ce]

with

C—k~ Prnz (%)) max {p (% ). @ (kH) (-ﬁ)}

=@ (1/n)™' pon-a(x) + 5 @ (k/n)= prn—2 (X)+@ (/1) pa—2,n—2 (%)

'PU/”) (n— 2)*’(‘ x)

il-smg (5. 7) and ¢ (1/n) (n—2)=(1—2/n) (1—1/n)=2/9 for n=3. Hence by
emma 5.2

—3
193 ¢ ¢l-— 2) ' prn—2 (X)=Meo (x)1,
k—

IA

Buf)" (x) | =Mwna(f, 8) [ (x)7 n? (n@(x))'~2 4072 (x) 7]
<M g (%)~ o (f, 9) [n/@(x)+07%),

Wwhich yields the assertion.

Proof of Theorem 5.1. To prove the direct part let f satisfy (5.2).
One has for x ¢ (0,1) (x ¢ {0, 1} being trivial) B,f(x)—f(x) =|Ba[f—fi] (x)!
?IB,.f.;(x)—-fa(x) + 3 ()=f ()] = L+ 1, +1;, say. By (5.4-5), (5.7) there
ollows

L+ [=(9/2) w24 (f, a){zz (k1) Prn () + 9 (X)}= M@ (X)™ wpu( f, 3).
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In view of fy(£)—fs(x)=(t—x)fs' (x)+ [L [4 f, (u)du ds one has by (2.4),(5.5)
n kin

12:(;/:\:‘0 f; :!‘f:;(u) du dSPk,n(x)

Rkin s

<95 2wyu(f, &) 2 [ [ () dids pra(x)
k=0 x x
<902 wa . (f, 0) e (x)? L” (R/n—x)? prn (X)< w2 (f, 6) @ (x)'—%2/n 62
k=0

This gives (5.1) upon setting 6=\/p(x)/n. Indeed, in view of (5.2)
| Baf (x)—f(x)| =M@ (X)~? wnu (, 0) [1+ (x)/n 67

< M (22 i fy o () =M g (x) (Jop (x) )= M2,

To consider the inverse part, let fsatisfy (5.1). Fora=2 see [4, 14a]. To
establish (5.2) for 0<a<2, in view of Lemma 2.1 it suifices to show that
for 0<h=<1/8, t<\h/2

(5.11) w20 (fy W)=M[t*+ (Rt} w24(f, D).

To this end define for n=3, & ¢ (0, 1/8], x € [, 1—h}: 0, c.n=max {\/o (x£-1)[nh,
Jo (x)/n). Then by (5.1). Lemma 2.2, 5.3 one has

¢ ()2 | 4] (x)| =dg ()| Baf =fll+o (x)* 45(Baf) (%)

h/2
SAM@ (4o ()2 [] (Baf)’ (x-t5+0) ds dt
h/2
<AM B )+ M (X) 2 wna (f, 8) [ [ [ @ (x+s+8=0+aD ds dt
—hj2

h/2
+872 [[ @ (ets+8)—o ds df) < 4M (3, 0.1)"
2

+M[max{g (x), @ (xEA)}]=2 @ (X)2 03 (f, 9) [(nen) 2 h* +h%72]
=M [ (’sn,x,lx)a + (h/dn,x,h)2 2 q (f, an,x,lx)]
upon setting 6=4, 4 Note that 83, =2k (1—2k)/3=\h/2

for £#<1/8. For fixed £<1/8, 0<¢< \Jh/2, x ¢[h, 1—h] now choose n such
that 0, ¢ n<t<0p—1,04=208nn This gives (5.11), and thus the theorem.
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