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SOME IMPLICIT FUNCTION THEOREMS IN LINEAR
SPACES WITH A DISTINGUISHED CLASS
OF CONVERGENT SEQUENCES

A. Madkiewicz

Summary. In the pa-er the linear spaces with a distinguished class of convergent
Sequences (L-spaces) were defiried and s me convergence conditions of stationary one-step
lterative methods for solution of equations in these spaces were given.

Moreover, the application which the theorem on mean value (in a new version) may
have for research on convergence of the iterative methods, was shown.

The results obtained were used in formulating some implicit function theorems.

In mathematical analysis a situation arises in which the convergence
Of a sequence of elements in space of ome kind is determined by the con-
vergence of a sequence of elements in space of some other kind and the
latter sequence is generated by special “majorant” functions.

. The paper proves that the problem of existence and uniqueness of a
flxeg point of mapping which transforms into itself the linear space with
a distinguished class of convergent sequences (without norm), can be solved
0 a similar manner.

A convenient method of a majorant determination based on a new
Mean value theorem was also established. The results obtained were further
used to prove certain implicit function theorems. Other particular applica-
tions of the results were also discussed. :

This work presents part of the research carried out in the field of
nalysis in L-spaces. Other results on this subject are contained in [7] and

In the author’s doctoral dissertation.

. 1. Definition of the L-spaces. The L-spaces introduced in this sec-
1on are some particular linear pseudotopological spaces [Q, 3. Spr_ng class
Of sequences will substitute the class of filters determined in definition of
linear pseudotopological space. This substitution is performed, because the
geration processes are of sequential type and this is the subject of this
aper,
Let the real linear space E be given and suppose that some classes of
Sequences from this space are distinguished (the so-called convergent sequen-
ces), and for each sequence {X,} of this class exactly one element (limit)
IS determined x=lim,_,.. x, in such a way that the following conditions are
Satisfied :
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(1.1) a) If limyne Xp=x and &y, &y, ..., 'k, ... is a strictly

increasing sequence of naturals, then lim,e Xr, =X,
b) if x,=x for each n, then lim,. x,=x,
c)if limye Xp,=x and lim,,. y,=x, then the sequ-

eNCe Xy, Vi Xoy Voy o v« yXmy Yny - - - 1S convergent with
a limit x,

d) if limye X,=x and lim,,e ¥»=y, then lim,,e. X,
+yn:x+yv

e) if limpseo Xa=x and limye 4,=4(4, 4,€R) then
IS A Xa =k

Definition. 1. Space E with the distinguished class of convergent
sequences that satisfy the conditions (1.1) we are going to denote by E
and call the L-space with the carrier E.

Some considerations in the paper [5] imply that for every L-space E
there exists locally convex linear topological space E° with the same car-
rier and the following property

(1.2) x=liMpyo0o Xp in E=>x'P=lim, . X, in EO.

On the other hand, one can observe that the extracting class of all
convergent sequences in some linear topological space E°, the set of sequ-
ences that satisfy condition (1.1), is defined. Thus there is defined some
L-space with the same carrier as E° while the condition (1.2) is satisfied.

Definition 2. For given L-spaces E, and E, the mapping f: E\—E,
will be called continuous if

(1.3) xX=liMpyew X, in E; » f(x)=limpse f(Xn) in E,.

2. The mean-value theorem. Let E; and E, be L-spaces and let
r: E,—~E, then to the mapping r one might arrange a new function @r de-
fined in such a way

r(ix)/A while 2=0,
0  while 2=0.

Employing the function @r will introduce an important definition of
the “small” mapping:

22. Definition 3. The mapping r: E\~LE, is called small and one
will denote r¢ RE,: Ey) iff

a) r(0)=0,

b) if Xu—Xo; Xnm Xo € Eyy An=Ag; Any Ao € R and igxy=0 then Or(in, xn)—0

in E,.

The conception of the “small” mapping introduced by the above defi-
nition one can apply for defining the derivative of the operator f: E;—E,
in point z¢ £}

Definition 4. If there exists linear and continuous mapping
e: E,—~E, such that the mapping r defined as follows: r(h)=f(a+h)—f(a)
— (k) is “small”, then the mapping f is called differentiable at the point a.

Mapping [ (which is called the derivative of operator f in a point a)
is defined uniquely and as was shown in [7] it preserves a vast majority
of properties of the “strong” Fréchet derivative. Also in (7], using the idea

@.1) or(, x):{
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of N. Bourbaki the mean value theorem is proved. Before formulating the
theorem, we will make some initial assumptions:
If the domain of the function f is L-space R with the class of conver-

gent sequences in natural topology, then lim ﬂi’—‘x)—ﬂ (if it exists at

a0 1y
all) will be denoted by f(a). It is easy to show if the mapping f: R—F is
differentiable at the point a¢R, then there exists f(a) and holds

(f(@)x=#f(a), f(a)=F(a)" 1.
Let us assume that two mappings are given
f: R2[a, BI=E, ¢: RD|q, f]-R

and let us consider the conaitions:

(2.2) E° is linear topological Hausdorf space,

(2.3) mappings f and ¢ are continuous,

(2.4) B is some closed, convex subset of the space E",' .

(2.5) for almost every #¢|a, f] mappings f and ¢ are differentiable at a

point £, and
(2.6) )€ (t) B, s<t=) p(s)<o(t).

Theorem | (of mean value). If conditions (2.2)—(2.6) are satisfied
then f(8)—f(a) € (p(8)—¢(a)) - B. . .

If between the functions @ and f there are relations (described by the
fhesis of the theorem 1, then wesay that ¢ is a “majorant” of the mapp-
Ing  f (over the interval [o, B)). :

Methods of integrating a “majorant” were given by L. K antoro vich [6]
(defined in a bit different manner, but with similar properties), for mappings
acting in partially ordered linear spaces. He employed the Newton-Leibniz

formula of integral calculus:
X +h

Jo+B)=fx)= 1 f(9)-hx

His result was used then for proving the convergence of Newton’s
method,

As shown in |7], the mean-value theorem 1 one can apply for the same
goal but with far weakly assumptions imposed on functions f and ¢.

3. Majorant principle for one-step iterative methods in L-spaces.
Applying {)V C: R‘})xein[t))oldt’s idea [11] we will formulate the general
Principle of majorant, which will allow us to state if some iterative process
'S convergent in L-space or it is not. ;

Since that momgnt we will assume that E° is sequentially complete
lofa“)’ convex topological Hausdorff space and the additional condition is
sa iSﬁed:

(8.1 Xp—X in E<s Xp—x in EV. ,

In addition to this let B be some convex, bounded and close;i BSu_bseat
Of the space £9, which contains the origin. We do not assume tha : lZch
Jeighbourhood of zero, because in such a case E? would be the Ban
Space, anq our considerations were restricted to a “classical” case.
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Definition 5. Let in space E° the sequence {x,} be given, then the
nondecreasing sequence of real numbers {t,}, such that t,=0 for n=0, 1,

2,..., will be called the B-majorant of the sequence {x,}, if Xny1—Xn
€ (tns1—ta)- B, for n=0,1,2,.... For the B-majorant of the sequence {x,}
and for integers m>n=0 there holds

m—1 m—1
(3.2) Xm—Xn= 2 (Xiy1—X)€ X (biy1—1;)-Bc(tm—1ts) - B.

i=n =n

So if there exists lim,.. £,=t*¢ R, then from the sequential complete-
ness of space £’ and from condition (3.1) follows the existence of
Xr=limy e Xn € L.

In addition to this we get the “estimation”

(3.3) X*—x, € (t*—t,)-B for n=0,1,2,....

Let now the operator G: E—~E be given. Let us consider the equation
G(x)=x and the sequence that corresponds to this equation, which is de-
fined as follows

(3.4) Knp1=0(Xn) ordn =015 315",

while x, is given in advance,
We are looking for B-majorizing sequence {¢,} for the sequence {x,},
among the solutions of some difference equations of the form .

(3.5) tn+l“tn=1/’(tn—tn—h L tn—l)
with fixed bounded values 7, and ¢,.

Definition 6. Function v: QCcRP—R! is said to be of class I'"(Q)
if it has the following properties:

a) The domain Q is a hypercube Q=J,XJyX -+ XJ, where each J;
is an interval on [0, ) containing 0,

b) v is nonnegative and isotone on Qy, i. e., if (z},...,2)€Qi=1,2) and
z<2) (for j=1,2,...,p), then '

0=w(2},...,2)=w(z},...,2)).

Let we I(Q) and Q=J,XJyXJ;. Then the solution {£,} of the difference
equations (3.5) is said to exist for given #y, ¢,, it fhi1—En€J,, ta€ JynJs for
all =0, i. e. if the entire sequence {£,} defined by (3.5) exists.

In paper [7] the following theorem is proved

Theorem 2. Let the continuous operator (in the sense of definition 2)
be given G: EoD — E and some subset D,C D. Suppose there exists the
function w¢ I'(Q) and the point x,¢ D, such that: if G(x), x¢ Dyc D- then

(3.6) G(G(x))—G(x) €y(t—p, t, p)- B,

whenever (t—P: t: p)€ Q) G(x) -X € (t_p) . B, X—Xg Ep : B) G(x)"on ¢ B.

Let further for t, and t,>t,, selected in such a way that G(x,)—Xo¢t,- B,
exist a solution of difference equations (3.6). Then

— if the elements of the sequence defined by (3.4) belong to D, and
for every n,(ta—tu—y, b, ta1) € Q, then {t,} is a B-majorant of the sequ-
ence (x,);

— if there exists lim,_,.. t,=t*, then there also exists lim,_,. X,=Xx*
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and the estimation (3.3) holds;

—Iif x*¢D and G is continuous mapping (in the sense of definition
2) in the point x*, then x*-G(x*)

In applications of theorem 2 one should always show that the sequence
{*s} is included in the set D,. The following lemma that guarantees the
existence of mentioned inclusion might be proved with the help of in-
duction. '

Lemma 1. Let the assumptions of theorem 2 hold. If Xy ..., Xm€D,
and with fixed m Sp: ={x: X—Xp € (ti—1tn)+ Bl D, (for n=m, m+1,...)
then x,¢D, for n=m. If in addition to this there exists limpet,=1t%
then the condition X, €Dy for n=m is satisfied, if S,: ={x: x—Xm€(l*
~tm)- Bjc D,

In our interest there is this particular situation when there exists the

3
function ¢: R>J>R (while /= J) such that
i=1

(3.7) p(u—v, u, v)=q@)—¢(v) if u, veJ, v=<u.

It is then easily seen that {£,)cJ/ is a solution of (3.5) with £,=0,
L =g(0) if and only if
(3.8) tori=o(t,) for n=0,1,... .

Assuming function ¢ to be continuous over J, then from (3.8) follows that
t*“ q (t+) If limn—-)oc t”:'t* é j.

In further considerations we will employ the following result obtained
by L. Kantorovich:

Theorem 3. Let ¢: £, s))cR!'=R" be continuous and isotone, and
Wlo) =1y, @(sy)<s,. Then the sequences tnr1=o(tn)y Sns1=®(Sn) n=0,1,...
Satisfy ty<ty=ty 1< iMooty =1 S 8*=liMyso0 Sn=Sn11=Sn =5, Where t* is
the smallest and s* the largest fixed point of @ in [ty Sl.

In the case of our considerations /,=0. i

Tae conditions imposed on the function y guarantee a monotonicity of
the function @. Hence in virtue of Kantorovich's theorem, we conclude that
E<g(t) for 0<#<t* and f* (if it exists) is the smallest fixed point of the
Operator @ in J.

At present, the theorem on uniqueness can be formulated

_ Theorem 4. Suppose that the assumptions of theorem 2 are salis-
fied, excluding the inclusion (36), that will be replaced by a more ge-
neral condition : let for every x,y¢D, :

(3.9) G(y)—G(x) €v(t—p, 1, p)- B,

if only (t—p, t, p)¢ Q, y—x€(t—p)- B, y—X,€t-B, x—x,€p-B. Let for bo-
Unded values t,=0, tlilq;(O), then equalltie; (3.7) and (3.8) hold, and let
hm"-'wtn:t*=<p(t*)el exist. Then the only fixed point of operator G in
the set Dyn'S, is x* (where Sy: ={x: X—X,€1*- B},

Proof: Assume y*=G(y*)¢D,nS, Then y*—xuéf*'B—‘:(t*“to)'B'

With the help of induction we will show that y*—x,€(¢*—t):B for all
n=0. In fact, since {t,} is B-majorant of the sequence {xn}, SO
y*'_xn F1= G(.}'*)"_G(xn)ew(t*—tm t*, 1) 'B:(t*—t""'l) B,
S0 y*=lim,e x, = x* :
385
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Applying again the Kantorovich theorem 3 we can state a more ge-
neral form of the theorem 4, where the region of uniqueness is spread.
Theorem 5. Suppose the assumptions of the theorem 4 are satis-

fied. Let there exist the point t¢J such that t>t* and ()<t for
t*<t<t. Then x* is the only fixed point of operator G in the set

Dyn U {x: X—X,€8, B}
s< ¢
Proof: Let y*=G(y*) € Dyn{x: x—x,€8,-B and So<t) It So=t",
then the uniqueness follows from theorem4.If y*—x €8, B, ,=0, *<s,< ¢,
then by induction we show that y*—x, 1€ (Sut1—2ns1) B, Where §,.1=q(Sn),
ﬂ=0,1,2,... .
Let y*—x,€(s,—t,) - B. Then

P = (Y~ )+ (= Ta) - -+ -+ (01— %) € (Su—tn) - B+ (tar—1:)- B
A+ oo+ (t,—1,) B s, B.
Since (3.9) and x,—x,¢%,-B we have at present
Y —=Xnq1= G(Y*)— G(xn) € p(Sn—tny Suy L) B=((Ss) —p(tn)) - B=(Sn41—tn 1) - B.

In virtue of the Kantorovich theorem 3 there is lim, e fp=1*=limy e Sny
and hence x*=lim, e X,=y*

4. Implicit function theorem. The results obtained are applied at pre-
sent for proving a few theorems on implicit function.
Further by E\XE, we are going to denote the L-space with a carrier
E, <XE, and a class of convergent sequences distinguished in the follow-
ing way
(xn—Xp) = (x}—xp in £, and x2—x? in E,).

. Theorem 6. Let E, and E, be two L-spaces and X, be the subset
of E,. Let us consider the transformations x,: E;—~ X, and G: (x(E,)+Xo)
X E\—~E, and suppose that for each fixed z¢Ey the mapping G(- 2):
Xy(2)+ X, — E, satisfies the conditions of theorems 4 and 5 with Dy,
=Xo(2)+ Xy Xo: =X4(2) and the [u nction ¢ and the set B are indepen-
dent of the choice of the pointz. Let also XyC Js,<i(Sy+B). Then there
exists a uniquely defined function x: E,—(x,(E,)+X,) such that G(x(z), 2)
=Xx(2). Let in addition x, and G be continuous mapping (in topological
sense), then x is a continuous function that transforms E) into E3.

Proof: The existence and uniqueness of function x follows directly
from theorems 4 and 5.

Now let us suppose that functions x, and G are continuous (in topo-
logical sence). Then one can show, by induction, that continuity of the
function x,(2) implies the continuity of the mapping X, 1(2)=G(xA(2), 2)
which is the superposition of continuous mappings. So x, is a continuous
function for every n.

At present let V be any neighbourhood of origin in E3, then for 7
large enough (dependent on B and ¢ only, and independent of z) by virtue
of (3.3), assumptions on the set B, there holds the following x,(2)—x(2) ¢ V.
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So X is a continuous function as a limit of uniformly convergent sequence
of continuous functions.

At present, employing the mean-value theorem, we will state other ver-
sions pf theorem 6. We start with introducing some new notions.

Similarly as in §3, we assume that JcR is an interval of the form
[0, a], [0, a) or [0, -+ co). The set S=[y,2] of x¢E, such that x=y+Az—y)
Where 0<71-1, 1¢RR, we are going fo call interval,

Definition 7. Let the interval ScE that contains points x and Y,
be given. Let, further the functions G: E—E and ¢: J—J be given, such
that the mapping f: [0, 1)>E defined by equality f(2)=G(x+i(y—x)) and
the function : [0, 1]-R defined by y(2)=q(p+i(t—p)) satisfy the as-
Sumptions of mean-value theorem 1, while ;

(t—p, P EQ=IXIX], y—X,€ t-on,
y—xE(t—p)-B,\.o, x—xoep-on

(where x, is a given point in E and B, is dependent on x, convex, bo-
Unded and closed subset of E°). Then the function ¢ is called the Bx,
majorant of the mapping G over interval S.

From the mean value theorem 1 for the By, majorant of the mapping G
over interval [x, y] we conclude that G{y)—G(x)=f(1)—/(0)€(w(1)—v(0)
By, =(4(t)—(p)) - Be,,

Definition 8. Let D, be some convex subset of the space E. If on
every interval contained in D, the function ¢: J—J is a By majorant of
the mapping G: D,~E, then we say that ¢ is a By majorant of the
mapping G on D,

Now from theorems 1, 4, 5 follows
Theorem 7. Let E, and E, be two L-spaces, and let X, be a convex

Sel. Further, there are defined transformations
Xot By X A (Xo(Ex)+Xo)><El—’E2

and the function : J—J, that for every z¢E, is a B-majorant of the
mapping G(-, 2): x,(2)+X,—E, over the set xy(2)+X, (while the function ¢
and set B qre independent of z and x,). Let also X,C Usu<;\(So'B)- Then
t’l(ficr(e )exi)sts a uniquely defined function x: Ey—(xo(E\)+Xo) such that
), 2)=x(2). ;
If, in adEz’i)tion, xo and G are continuous functions (in a topological
Sense) then x(z) is a continuous mapping.

REFERENCES
L. N.Bourba ki. Fonctions d'une variable réelle. Eléments de mathématique. Livre V.
9 Paris, 1976. : Livre V
- N.Bourbaki. Espaces vectoriels topologiques. Eléments de mathématigue. -

Paris, 1953—1955. :
3. H. R. Fischer. Differentialkalkil fiir nichtmetrische Strukturen.Aﬂ"a"s"’?"d' Sci

Fennicae. Series A, 247, 1957.
% H.R. Fischer. Limestriume. Math. Ann., 137 1959, 269—303.

387



. A.Frolicher, W. Biicher. Calculus in vector spaces without norm. Berlin, 1966.
JI. B. Kanrop%nuu. [lpunuun Maxopantr n meroa Heiotona. Joxaadw AH CCCP, 76,
1951, 17—20.
. A. Mac¢kiewicz The construction of majorants for mappings in L-spaces (to appear).
.J.M. Ortega, W. C. Rheinboldt. Iterative solution of nonlinear equations in
several variables. New York, 1970.

9. J. M. Ortega. The Newton-Kantorovich theorem. Amer. Math. Monthly, 75, 1968,
658—660.

10. Nonlinear Functional Analysis and Applications. (L. B. Rall ed.) New York, 1971.

11. W. C. Rheinboldt An unified convergence theory for a class of iterative processes.
SIAM J. Numer. Anal., 5, 1968, 42—63.

12. S. Yammamuro. Differential Calculus in Topological Linear Spaces. Berlin, 1975.

oo (2=l

Institute of Mathematics Received August 22, 1977
A. Mickiewicz University
Poznarn “Poland

388



	Image00380
	Image00381
	Image00382
	Image00383
	Image00384
	Image00385
	Image00386
	Image00387

