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SOME IMBEDDINGS FOR WEIGHTED SOBOLEV SPACES
A. Kufner, B. Opic

Summary. The paper deals with weighted Lr-estimates of functions by certain weight-
ed Lp-norms of the first derivatives; these estimates, derived for smooth functions, can be
used for to derive imbedding assertions for Sobolev weight spaces. Two types of weight
functions are considered: general weight functions and special weight functions depending
on the distance from the boundary.

0. Introduction. 0.1. Let Q be a domain in RV and let a, a,, ..., axn
be functions defined on Q, positive a.e. on Q and such that a,¢L! (Q),

loc

a7 1P=b Ll (Q) for i=0,1,..., N with p>1. The functions q; are called
weight functions; we shall denote by a the vector function a={a,,

ey ANge
Further, let L?(Q;a,) be the set of all functions z=u(x) such that

(0.1) I & psa, =[] & (X)|? @y (x)dx)}P< o0.
Let us denote by | -l pa thenexpression defined for u by
Nl ., =¥, Il oufox, ia, -
0.2. Sobolev weight spaces. We shall denote by
wWhe(Qsa,, a)
the closure of the set of all functions # ¢ C'(Q) such that
(0.2) I llpia, + 1122 l11,psa

is finite, the closure being taken with respect to the norm (0.2).
Further, we shall denote by W}!”(Q; a,, a) the closure of the set C3(Q)

with respect to the norm (0.2).
Obviously, the sets L?(Q;a,) with the norm (0.1) and W'»(Q; a,, a),
W7 (Q; ay a) with the norm (0.2) are Banach spaces.

0.3. The aim of this paper is to derive inequalities of the type

. ¥ ...0
(0.3) J1a() 17 by(x) dx=C =[50 (x) 1 a,(x)dx,
i. e.
(0.4) et llpsp,=C* ll 1y, psa -
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for smooth functions # with constants C, C* independent of u. More pre-
cisely, we are interested in determining for what weight functions b, the
above estimate holds.

Inequalities of the form (0.3) enables us to derive imbeddings as

(0.5) W2 (Q;aga)2LP (Q50,)
and
(0.6) Wi (5 a,, a)2L? (Q; by).

We shall also deal with a certain modification of (0.3).

0.4. The domain. We shall suppose that Q is a bounded domain
with a boundary 0Q which is — roughly speaking — Lipschitz-continuous
(for a more precise description see [10] or [7]). For such domains the notion
of the unit vector v of the outer normal to 0dQ is meaningful a. e. on 09,
v=(Vj, ... VN).

1. General Weight Functions. 1.1. First of all we shall deal with the
inequality (0.3) for the case p=2. The result is summarized in the follow-
ing theorem, the proof of which is based on ideas of Beesack [l] and
Benson [2].

1.2. Theorem. Let the weight functions a; belong to C'(Q) for

i=1,..., N. Further, let there exist a function v such that
N
(1.1) by ()= —(2 5(a(x)5e (/o)

is a weight function and that

(1.2) 0.2 |9e¢C () for i=1,...,N.

If u¢C (Q) is such tlzat
(1.3) u‘-’ > ( a" [v)a;v,=0 a.e on 09,
then the following mequalzty is valid

(1.4) Jl1e)P b (x)dx= s 2l

1.3. Remarks. (1) Condition (1.1) can be rewritten as

L (x) 2 a;(x)dx.

(1.5) v Or (a; (x)o (xX)+by(x)7v(x)=0 on Q.

Therefore, one can say that the inequality (1.4) holds if the weight func-
tions @y, ..., an, b, are such that there exists a solution v of the partial

differential equatlon (1.5).
(ii) Condition (1.2) can be weakened in various directions. E. g., one

can replace (1.2) by the condition

ug(% |v)a e W (Q), i=1,...,N.
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1.4. Proof of Theorem 1.2. Obviously,

ou Jdv
pa) n | PP mn 1/2)2
O'\UL[@' aiP—u( dx[/'a)a,. |

N
= & I( ?'J P a;+u? (-~- [v)2a,—2u i”—(——/ v) ;.

This together with the identity

2135 (“ ’fu) a,.:o'd%[ (u*( d(?:,- | v)a;)—u? ; 0v /fu)a)
implies the inequality
0 9 9
(1.6) [(a") a+102 (o | D @+ g (e ) @)
=3 O @@l 1v)a)
0x; .
Since the identity
N
(1.7) ) Kd /'U)QH t+52 0\ ((I, 0 [ V)]=—by

is obvious, we obtain from (1.6) and (1 7) the inequality
i y v
‘\; ( 0\:‘)(1 (X) -1 bo(x) d (l (6_ / U)(I)

Integration over Q and Green’s formula yield
e (—%—)a () — 02 by (x)] dx=[ 22| 2 s Y (5 [ D) ay]dS,
which implies the inequality (1.4) in view of condition (1.3).
1.5. Examples. Let N=2, Q=(0,1)x(0,1).
(i) Let a;(x)=x2 i=1,2. Taking v(x)=(x,xy)"'%, we obtain by (1.1)
bo(x)==1/2. An investigation of condition (1.3) shows that we have to con-

sider functions «¢C'(Q) such that u(x)=0 for x¢0Q with either x,=1,
or x,=1. For such functions # we have the inequality

(1.8) [lu(o) P dx= 2[[((;’” )szazxﬂ(ﬂ) x2dx].
In particular, this inequality holds for u¢C}(Q).
(ii) Let a;(x)=(x}+x2)?/x; i=1, 2. Taking v(x)=(x?+x2)~"2, we obtain

by(x)=x,+ x5. Now (1.3) implies that for u¢C'(Q) such that u(x)=0 for
x€0Q with either x,=0 or x,=0 (and in particular for u¢C}(Q)) we have

(1.9) (o) [ () dx = P> [ Quj0x,)? x7 (x3+ x? dx.

=1
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(iii) Let a,(x)=x?+x2, i=1,2. Taking o(x)=(x?+x))~', we obtain
by(x)=4(x?4x2). So, for the same functions « as in (i) we have the inequality

(1.10) f}u(x){‘-’(x}{—xi)dx;g% 3 f(%)‘“’ (2 +x2) dx.
. Q =1 Q i

1.6. Remarks. (i) It follows easily that the inequalities (1.8) etc.

hold for a general domain Q=R?, if we suppose u¢Cl (). Especially, such

domains are of interest that contain parts of the coordinate axes, on which
the weight functions a; degenerate. (Naturally, one has to make some minor
changes; e. g.in 1.5 (i) it is necessary to take v (x)=(x?+x2)~"" in order to
avoid problems with negative x,s.)

(ii) Inequalities (1.8) and (1.10) are closely connected; it is obvious
that a ‘worse’ weight function &, (x) is eliminated by a ‘better’ constant
C in an estimate of the type (0.3).

(iif) The estimates derived in the above examples can be obtained by
a repeated or modified use of the one-dimensional Hardy inequality (see [3,
Theorem 330]); the constants obtained in these examples are in some cases
better.

There is an analogue of Theorem 1.2 for general p>1. We give here
the corresponding assertion without proof:

1.7. Theorem. Let p>1. Let the weight functions a; belong to C* ()
for i=1,..., N. Further, let there exist a function v such that v=0 and
0v/0x;=0 on Q (i=1,...,N),

- Yoo v P
by (x)=—( 2 0_‘,:[((71' (x)(’a';.’lf ()= (x)

is a weight function and a,-(g% [v)yP—1¢ C1(Q) for i=1,...,N.

If u¢C (Q)is such that
N

Lo 0v
lu? 2 (
i==l

dx‘-

[v)P~'a; v,=0 a.e. on 0Q,

then the following inequality holds:

A’ -
[lu(x) P bo(x)dx= X [|25(x) P a,(x) dx.
Q =10 ¢

18. Remarks. (i) Analogous remarks as in Section 1.3 can be made
again for Theorem 1.7. ;

(ii) If the conditions dv/ox;=0 (i=1,...,/N) are replaced by conditions
0v/0x;=<0 (i=1,...,N), an analogous assertionas in Theorem 1.7 holds with
— 0v/dx; instead of dv/dx; and with —b,(x) instead of b, (x). (The con-
dition =0 remains unchanged.) :

(ili) For p=2,4,6,... the conditions v=:0, 0v/0x;=0 (or 0v/0x,<0)
can be omitted.

2. Special Weight Functions. 2.1. In this part we shall be concerned
with weight functions a, of the type

(2.1) a,(x)=s, (dist (x, M),
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where M is a certain part of the boundary dQ of the domain Q and s,=s,(¢)
are positive continuous functions defined for ¢>0. Further, we shall
suppose that

(2.2) Si)=8y(t)= ... =sx()=s(t)
and that the weight function &, is given in terms of a positive continuous
function c,=0,(¢) by the formula b(, x)= o, (dist (x, M)).

2.2. For these special weight functions, inequalities of the type (0.3)
appear in the literature: So it can be shown that for s(¢)=£ we have (under
certain assumptions) o, (¢)=1{57 (see e.g. [10] or [6]), and for more general
S(f) one can take o, (¢)=s"VP=D([[{s7Vr=D (1) dTt]~” (see e.g. [6]). It is
the Hardy inequality which plays here an important role — either in its class-
ical form (see [3, Theorem 330]) or in a certain generalized form (see e. g.
[8]). Here we shall use the following generalization which covers all the

cases mentioned above.
23. Generalized Hardy inequality. Thenecessary and sufficient

condition for the inequality
(2.3) (T1ft) 17 50 () dbyr<C (T | ()17 st) db)'P
0 0

to be valid with 1<p=g<-> and with a constant C independent of f is
(i) the condition

) !
(2.4) sup ([ 6, (t) dT)Ve( [ V@D (1) dr)P—1P < oo
>0 ¢ 0

for f(0)=0 and
(ii) the condition

5 oo
(2.5) sup ([ o, (1) dr)e ([ s—1e=D (1) dr)e—DiP < o
t>0 0 ra

for f(=)=0.

For the proof see [9]; see [4], too. The symbols f (0), f (<) stand for
the limits of the function f=f(¢) continuously differentiable on (0, =) for
t— 0+ and £— co, respectively.

24. The domain. Here we shall deal with special domains G=RY.
We shall suppose that provided A is the closure of the unit cube A in R¥-1,
a function ¢=¢ (x’), x'=(x, ..., Xxy—1), of the class C%'(A) is given and
(2.6) G={x=(x", xn); X €A, ¢ (x)—d<xny<0p (x)}
with a certain fixed 6>0.

The set M— 0G which appears in (2.1) is given by M={x=(x", xn); x' €A,

xXy=g(x")} ) )
25. Sobolev weight spaces. Having modified the domain to the

form G from Section 2.4, we shall modify the spaces introduced in Sec-

tion 0.2.
(i) For G from (2.6) we have

L)
[lw(x)Pag(x)dx=[( [ |w(x',xy)Pa,(x, xn)dxy)dx’
/ A @(x’)—d

J
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-

(

w(x’, o(x")—1t) Pay (x', o(x") ) dt)dx"

(we have used the substitution xy=¢(x")—¢ in the inner integral). In what
follows we shall work with the so-called spaces with mixed norms: For
p>1, ¢g>1 we denote
o(x")
1 lpgya=[f( [ |w(x', xn) P ag(x', xn)dxn)?? dx']Ve
A o(x")—8 ,

S
=L R e (=B an(x, ¢ () =B deyre dx']h.
)

The Banach space of functions w=w(x) such that the norm [ @l p,g);a,iS
finite, will be denoted by L‘»?(G;a,). Obviously L?(G;a,)=L" 7 (G;ay).

(ii) In the definition of Sobolev weight spaces.in Section 0.2 we sup-
posed that u¢L?(Q;a,) and odu/ox;¢L?(Q;a;). If we replace Q by G from
(2.6) and replace the second assumption by du/ox, ¢ L» D (G;a;), i=1,...,N,
we obtain spaces, which we shall denote by

(2.7) Wtlra(G;a, a) and W} @ D(Gaga).
(iii) Moreover, we shall suppose that
(2.8) ‘ supp #N(@G—M)=7.

Consequently, a function z¢ W®9(G;a,, a) vanishes on 0G with-exception of
the part M, and w¢ W\'»9(G;a,a) vanishes on M as well.

2.6. Let us now consider the domain G and the [set M from Section
2.4 and the weight functions s(dist (x, M)) and o,(dist(x, M)). Together
with the distance dist (.x, M) one can consider the ‘distance of a point x=(x’, x)

¢G to Minthe xy-direction’,given by the number ¢(x’)—xx. Since @ ¢ C*I(A),
both distances are equivalent, i. e., there exists a ¢,>0 such that

(2.9) ¢ [o(x")—xn]=dist (x, M)=o(x')—xx
(see [5, Lemma 1.3]). .

2.7. Property (H). We say that a continuous positive function &= /A(f)
defined for £>0 has property (H), if for every pair of positive constants
¢y, o there exists a pair of positive constants C;, C, such that ¢;=f/t=c,
implies C,=A(t)/h(7)=C,.

If a weight function s from (2.1), (2.2) has property (H), we can in
view of inequalities (2.9) consider the weight function s(@(x')—xa) instead
of s(dist(x, M)) and vice versa, and similarly for o,.

The main result of this chapter is

28. Theorem. Let us consider the domain G from Section 2.4. Let
the functions o,s and the numbers p,q be such that (2.5) is satisfied.
Let the functions o,, s have property (H). Then the inequality

’ T B ou
(2.10) u 11(];0“—"2(:“6'(‘\,”(p.ll);"

holds for u¢ Wh»(G;a,a) with a; given by (2.1), (2.2) and with a con-
stant C>0 independent of u.
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[nequality (2.10) holds for u¢Wi®D(G;aya) as well, if oS, p,q are

such that (2.4) is satisfied.
2.9. We omit the proof of Theorem 2.8, which is rather technical: In

| 1l 4:0, »-[i( | u(x',yo(x")—t) 70, (dist (x, M))dt)dx']"a

we replace the function o, (dist (x, M)) in the inner integral by o,(f) (as a
consequence of the fact that o, has property (H)) write [ instead of []
(in view of condition (2.8)), estimate the inner integral using (2.3) for
ft)=u(x',9(x")—f) and go back to the mixed norm | 0u/0xnllp.g:a With
a (X)—S'(dl\t (x, M)).

2.10. Remark. Inequality (2.10) enables us to derive imbeddings of
the types (0.5), (0.6), but with the spaces (2.7) on the left-hand sides and
with L7(G;b,) instead of L?(Q;b,) on the right-hand sides, ¢ =p.

2.11. Example. Let us take

(2.11) s()=t5, o, ()=t
Then conditions (2.6), (2.7) are satisfied for
(2.12) n=((e—p+1)q/p)—1

with e>p—1 if f(0)=0; e<p—1 if f(0)=0.

Since the functions s, o, from (2.11) have property (H), Theorem 2.8
yields the following assertion:

Let 1<p-<g< <> and e&>p-—1. Then the inequality (2.10) holds with
weight functlom defined by (2.11) and n given by (2.12) for u¢ W19 (G ; ay, a).
If ueWhHro(G;a,a), then this inequality holds not only for e>p—1, but
also for e<p—1.

[f in particular g=p, then it follows from (2.12) that n=g—p and the
result coincides with known results (see Section 2.2).

2.12. The case ¢¢C"*(A), 0<Ai<1. Let us again consider the domain
G from (2.6), but with a function ¢, which is only A-Holder-continuous. In
this case the inequalities (2.9) have to be replaced by ¢, [¢ (x")—xn]'*<dist
(x, M)=¢ (x')—xn (see again Lemma 1.3 in [5]). Using again the method of
proof of Theorem 2.8, we obtain — using some monotonicity properties of o,, s
instead of property (H)—agzain an inequality of the type (2.10) in a little
modified form. We shall not give an exact formulation of the result men-
tioned ; the following example can elucidate the situation:

Let us introduce s and o, by (2.11). If we suppose

e>A(p—1)
and define n by the formula
__{p"‘ [e—A(p—1)]g—A, if e<A(p—1)+Ap/g,
(Ap)~te—r(p—Dlg—1, i e=A(p—1)+hip/q,
then inequality (2.10) holds with 1<p=g<co for u¢ W' (G;ay,a).
For ue¢ Wi@9 (G;a,a) inequality (2.10) holds not only in the above-

mentioned case, but also for e<<A(p—1) and for n given by
: 7{/7“" [e—A(p—1)]g—A, if €=0,
[p i (Ee—p+1)g—1]r, if €<O.
These results coincide for ¢=p with the results derived in [5].
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